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The contents of this report reflect the views of the authors who
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herein. The contents do not necessarily reflect the official views or
policies of the Federal Highway Administration. This report does not
constitute a standard, specification, or regulation.
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PREFACE

This report is the first report in a series which summarizes an
investigation of the feasibility of utilizing high strength concretes
and improved low relaxation steels in pretensioned bridge girders. This
report summarizes a field measurement program in which deformations of
long span pretensioned girders with low relaxation strand were monitored
from initial casting, through storage, erection and bridge completion,
and through the first year of traffiec.

This work is part of Research Project 3-5-84-381, entitled
"Optimum Design of Bridge Girders Made Using High-Strength Concrete and
Deflections of Long-Span Prestressed Concrete Beams." This report
specifically summarizes the work referred to in the second part of the
project title. The research was conducted by the Phil M. Ferguson
Structural Engineering Laboratory as part of the overall research
programs of the Center for Transportation Research of The University of
Texas at Austin. The work was sponsored jointly by the Texas State
Department of Highways and Public Transportation and the Federal Highway
Administration under an agreement with The University of Texas at
Austin and the State Department of Highways and Public Transportation.

Liaison with the State Department of Highways and Publie
Transportation was maintained through the contact representative, Mr.
David P. Hohmann and the former Area IV Committee Chairman, Mr. Robert
L. Reed. Mr. R. E. Stanford was the contact representative for the
Federal Highway Administration.

This research involved a great deal of coordination with field
operations. The authors are particularly indebted to Jesse Lawrance and
Heldenfels Bros., Inc., for their cooperation during girder fabrication.
Messrs. Ronald Bailey, Buddy Johnson, Orville Miller, and E. V. Weese of
the State Department of Highways and Public Transportation all provided
invaluable assistance in field operations. Numerous students from the
Ferguscn Laboratory assisted in readings over the long life of the
project. The authors are particularly indebted to Tommy Bush, Reid
Castrodale, David Hartmann, David Olvera, Tim Overman, Alan Phipps,
Guillermo Ramirez, Akbar Vasseghi, Charles Walker, and David Yates in
this regard.

This portion of the overall study was directed by John E.
Breen, who holds the Nasser I. Al-Rashid Chair in Civil Engineering.
Co~-directors supervising other portions of Project 381 were Ned H. Burns
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and Michael E. Kreger. The installation of instrumentation and early
readings of the girders was under the direction of Timothy E. Bradberry,
Research Engineer. The longer term monitoring of the girders and
development of the time dependent computer analysis were under the
direction of Dominic J. Kelly, Research Engineer.
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SUMMARY

Eight long-span (127 ft) pretensioned AASHTO Type IV bridge
beams made with high strength concrete and low-relaxation strand were
instrumented in the field. Longtime deformations and internal beam
temperatures were measured. Measurements were taken periodically from
the time the beams were cast, through construction, and continued for one
year after they were placed in service.

Deformation measurements included concrete surface strains,
prestressing strand strain, and quarter point and midspan camber or
deflection. The strain measuring systems did not work properly, and so
most of the strain data were invalid., Camber and deflection were
measured using a reference piano wire with a constant force retensioning
system based on use of a standard weight. This measuring system worked
extremely well. The average beam camber at erection was 3.3 in. After
the composite slab had been cast the average camber was 1.4 in. Long-
term camber after approximately 1000 days averaged 1.1 in. andvaried
from 0.2 in. to 1.8 in.

Internal concrete temperatures were measured with thermocouples
which were located in critical locations of the beam. Average beam
temperatures of as much as 15° F less than the ambient temperature were
measured. In general, the thermal gradients were near linear before the
beam became composite and highly nonlinear afterwards.

The measured time dependent camber or deflection was compared
to the results of several previously reported analytical techniques.
These analytical results did not accurately predict the measured
response.

A modification of the PCImultiplier technique forcalculating
longtime camber and deflection was developed. These new multipliers
were used to accurately predict the time dependent response of the
instrumented beams. The procedure was programmed for convenient use on
a personal computer. A program listing and user guide is included.
This technique was then used to calculate the sensitivity of time
dependent camber or deflection to some of the more important variables
such as concrete strength, creep, and construction time schedule. Based
on the results of the sensitivity study, one could expect camber or
deflection of long span beams, similar to those studied, to vary from 2

to 6 in. at erection and from -0.75 to 2 in. at the end of the service
life.



IMPLEMENTATION

This report summarizes a field monitoring program of the
deformation of long span prestressed concrete girders using high
strength concrete and low relaxation strand. The computation of
deflections is shown to be highly dependent on a knowledge of actual
field conditions including both actual material properties and actual
construction schedules.

A typical long span girder example (Type IV beam on a 127 ft
span) is presented to indicate that final, long term camber can vary
from as low as -0.75 in. to +2.0 in. depending on material properties,
environment, and construction schedules. A relatively user-friendly
program for use on a microcomputer is provided so that design or field
personnel can easily update deflection predictions as actual material
properties and construction time schedules become known. The program
results indicate that minor factors like the location of temporary
supports during storage can affect final deformations appreciably.

This report shows that girder deformation can be calculated
fairly accurately when material properties and construction schedules
are known. A number of suggestions are made for use by those updating
the SDHPT programs used for pretensioned girder design. Implementation
of the microcomputer program CAMBER in field offices would give a
practical method for establishing expected girder sags or cambers. This
should assist field personnel in deciding on final camber allowances
when setting deck forms.
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CHAPTER 1

INTRODUCTION

1.1 General

When designing and constructing bridges utilizing pretensioned,
prestressed concrete beams, both the designer and the constructor must
consider camber or deflection of the beams. Because the beam and slab
concretes shrink and creep, while the prestressing steel relaxes, the
camber or deflection changes with time. Being able to accurately
predict the camber or deflection with time is important. Excessive
camber or deflection can result in a rough driving surface. Differences
in the camber of adjacent beams during bridge erection may require using
a thicker cast-in-place slab to correctly level the slab, while
satisfying the minimum slab thickness requirement above every beam.
Accurate knowledge of the expected cambers during the construction
process can facilitate erection.

Prediction of net beam camber or deflection is difficult,
because it is the small difference of several large camber and
deflection components. These components, shown in Fig. 1.1, are the
camber caused by the prestressing force, and the deflections caused by
the beam weight and by the weight of the composite deck. Formulas to
calculate these midspan elastic camber and deflections for simply
supported beams are also included in Fig. 1.1. The actual magnitude of
camber or deflection for each component changes with time, because the
components are affected by time dependent material properties.

The time dependent material properties which affect the
deflection components include concrete creep and shrinkage, and
prestressing steel relaxation. Creep is the time dependent strain that
is caused by a sustained stress applied to the member. Shrinkage is the
time dependent strain that occurs as moisture leaves the concrete.
Relaxation is the loss in stress that occurs when the prestressing steel
is held at a constant strain. Because the concrete does not remain at a
constant stress nor the prestressing steel at a constant strain, creep
and relaxation interact and affect the magnitude of each other.

The camber caused by the prestressing force is affected by
creep and the magnitude of the prestressing force. As shown in Fig.
1.2a, creep causes the camber to grow with time. When the composite
deck is cast, the moment of inertia of the beam is increased. This
causes the camber to grow at a slower rate. The magnitude of the
prestressing force is reduced by creep, shrinkage, and relaxation.
Because the prestressing force is being reduced, camber is lost as shown
in Fig. 1.2a. This elastic deflection (lost camber) is affected by the
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strength or elastic modulus of the concrete while the loss is occurring.
The growth of camber due to creep is also reduced as prestressing force
losses occur, because smaller stresses are imposed by the force.

When the composite deck is added, the beam deflects downward.
This causes the prestressing strand below the beam center of gravity to
stretch and regain some of the lost prestressing force. As a result,
the deflection caused by the loss of prestressing force is slightly
reduced as shown in Fig. 1.2a.

The deflection component caused by the beam weight increases
due to creep, as shown in Fig. 1.2b. When the composite deck is cast,
the time dependent deflection grows at a slower rate due to the
increased moment of inertia. The deflection component caused by the
deck also increases due to creep as shown in Fig. 1.2c.

As a beam ages, the camber and deflection components continue
to grow. With time, components of time dependent camber and deflection
caused by creep can become as great as two times the initial elastic
components. Because each component increases with age, the net camber
or deflection is the small difference of increasingly larger components.
Because these components are large in comparison to the net camber or
deflection, it is difficult to accurately predict the net response.

With the development of higher strength concrete, (concrete
with strengths greater than 6000 psi), and low-relaxation prestressing
strand, bridges with longer spans are being built. Longer spans are
desirable in situations where the bridge must span over existing roads
or to minimize environmental impact. Longer spans are also being used
to minimize the construction cost by reducing the required number of
bents.

Unfortunately, the net camber or deflection becomes more
difficult to accurately predict when longer spans are used. The
deflection caused by the beam weight is a function of the span length to
the fourth power (see Fig. 1.1). Deflection predictions become much
more difficult and sensitive for longer spans.

When comparing net camber or deflection predicted by an
analytical technique to the measured response, the error should not be
considered as the difference between the measured and analytical net
response divided by the measured net response. Theoretically, the error
should be considered as the difference in the sums of the absolute
values of the components, divided by the sum of the absolute values of
the components for the actual beam. Unfortunately, it is impossible to
Separately measure the responses due to the prestressing force and the
weight of the beam. Therefore, when percentage error is determined in
this report, it will be the difference in the predicted and the measured
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net response divided by the sum of the absolute values of the components
calculated by the analytical technique.

1.2 Previous Experimental Studies

In the past, numerous experimental studies have been performed
to gain an understanding of how prestressed concrete beams behave with
time. These studies vary from experiments to determine time dependent
material properties to field and laboratory studies in which the time
dependent response was measured.

Several studies have been performed to determine the creep,
shrinkage, and age strength gain characteristics of concrete. The ACI
Committee 209 report [1] combines the results of several of these
studies and makes specific recommendations for the prediction of these
properties. That report also includes an excellent list of references.
One of the most important is Hansen and Mattocks' "Influence of Size and
Shape of Member on the Shrinkage and Creep of Concrete" [2]. Many
shrinkage and creep tests have been performed on standard concrete
cylinders. When applying the results of such tests to predict the time
dependent response of a beam, one must account for the difference in the
size and shape of the beam.

The ACI Committee 209 report primarily considers normal
strength concrete (f§ { 6000 psi). More recently, Ngab, Nilson, and
Slate [3] found that less creep and slightly more shrinkage occurred in
high strength concrete than normal strength concrete. They measured the
creep coefficient to be 50 to 75% that of normal strength concrete. The
measured shrinkage was not significantly greater. Carrasquillo, Nilson,
and Slate [4] found that at early ages high strength concrete had a
higher rate of strength gain than normal strength concrete. At later
ages the differences were negligible. They also found that the AASHTO
formula for predicting the elastic modulus overestimates the measured
modulus for concrete with strength greater than 6000 psi.

Several research projects have investigated the relaxation
characteristics of prestressing strand. Magura, Sozen, and Siess [5]
studied the relaxation of stress-relieved strand. Their results were
used to develop the widely used equation for predicting the amount of
relaxation that will occur for strands initially tensioned to any
stress. It appears in the PCI's "Recommendations for Estimating
Prestress Losses" [6]. This equation was modified by steel
manufacturers to predict the loss of low-relaxation strand [7].

More recently, Buckler and Scribner [8] performed tests on
stress-relieved and low-relaxation strand to study the stress relaxation
characteristics in prestressing strand subjected to varying stresses.



They found that the Magura, et al. equation for estimating the
relaxation of stress-relieved strand worked well. However, the modified
equation for low-relaxation strand underestimates the relaxation. Tests
were also performed in which the stress was intentionally reduced as
when the prestressing force is released. They found that for greater
reductions in stress, less relaxation occurred after the stress
reduction.

Only a few laboratory studies of the time dependent deflection
response of pretensioned, prestressed concrete simply supported beams
have been performed.

Rao and Dilger [9] studied the instantaneous and time dependent
camber and deflection of six beams with and without additional
nonprestressing reinforcement. The beams were 6 by 20 in. in cross
section with a 2.5 by 24 in. composite slab. Super-imposed dead load
was added to three of the beams. The camber and deflection response was
measured for 150 days. This investigation was performed to check the
accuracy of the "varying stiffness method."

Corley et al. [10] studied the behavior of four beams, 4 by 6
in. in cross section with a 6 ft clear span. Two of the beams remained
unloaded while a dead load was placed on the others shortly after
release. Measurements were taken for two years. The purpose for the
experimental study was to determine how accurately the time dependent
response could be predicted by the "rate of creep" and "superposition"
methods.

Zundelevich et al. [11] investigated the difference in camber
and deflection response of noncomposite beams made with normal and
lightweight concrete. The responses of nine specimens, 4 by 6 in. in
cross section with a 15 ft span length, were measured. The results were
compared for beams made with one of three different types of Hawaiian
aggregates.

Sinno and Furr [12,13] tested four full size 50 ft long Texas
Highway Department Type B bridge beams to determine the difference in
elastic and time dependent camber for beams designed with straight and
draped strands. The straight strands were blanketed at the ends of the
beams to prevent overstressing at release. Two beams were made using
lightweight concrete and two with normal weight concrete. One
lightweight and one normal weight concrete beam was made using straight
strands. The other two beams were made using draped strands. They
found that the straight blanketed strand beams could be designed to have
less elastic and time dependent camber than the draped strand beams.

Branson, Meyers, and Kripanarayanan [14] studied the
differences in time dependent behavior of beams made with different



weight concretes. The beams were 6 by 8 in. in cross section. The
beams were simply supported with a 15 ft span length. Twelve sand-
lightweight and three all-lightweight beams were tested. A composite
slab was added to six of the beams. Field measurements of five sand-
lightweight beams, 45 in. deep, in a composite bridge were also taken.

They found that the greatest camber and prestress losses
occurred in the all-lightweight beams, while the least camber and
prestress loss occurred in the normal weight beams. A prestress loss of
approximately 30% for the sand-lightweight beams was measured in the
field. Losses for similar normal weight and all-lightweight beams would
be approximately 25 and 35%, respectively. Specific comparisons of
camber were not given. The measured creep and shrinkage was not
significantly different for the lightweight concrete. Therefore, they
determined that the greater losses and cambers for the sand- and all-
lightweight concrete beams were the result of the smaller elastic
moduli,

Only a few other field investigations have been performed in
which the time dependent response of simply supported, pretensioned
prestressed beams have been measured.

Sinno and Furr [12,13] compared the time dependent responses of
lightweight and normal weight concrete composite beams., Time dependent
strain and camber of highway bridge beams were measured. The measured
strains were used to calculate the prestress loss. They found that the
lightweight concrete beams had greater initial and time dependent
camber, and greater prestress loss than comparable normal weight beams.

The measured beam camber and prestress loss were compared to
those predicted by a computer program written by Sinno [19]. They found
good agreement between the measured and predicted responses when
experimental creep and shrinkage data of the beam concrete were used as
input to the program.

Sokal and Tyrer [15] measured the camber and internal concrete
temperature of a 57 in. deep highway I-beam for a 60-day period. Low-
relaxation prestressing strand was used. The beam was steam cured.
Internal beam concrete temperature was measured and the measured camber
adjusted for thermal movements. The camber grew from 1.1 in.
immediately after release to 2.2 in. at 60 days. The measured camber
was compared to the camber predicted using CEB recommendations [20].
They found that for the environmental conditions in which the beams were
stored, the use of CEB data resulted in overprediction of the camber.

Gamble et al. [16,17,18] measured the time dependent strain and
deflection response of prestressed pretensioned I-beams in three
bridges located in Illinois. These beams were designed using standard



Illinois Department of Transportation design procedures. They were
designed using typical span lengths and construction materials. Other
information about these studies and the results are given in Bradberry's
report [21].

1.3 Methods of Analysis

In the past, several analytical techniques have been proposed
for predicting the time dependent behavior of prestressed concrete
members. The techniques are used to calculate prestress loss, camber,
or both. They vary in complexity from simple approximate formulas that
can easily be solved by hand to complex computer programs. Only
techniques which can be used to predict the response of composite,
pretensioned, prestressed concrete beams are mentioned in this section.

Techniques proposed for calculating the prestress loss or time
dependent camber which can be easily performed by hand include the
procedure in the AASHTO Specifications [22,48], the PCI Design Handbook
procedure [23], PCI's "Recommendations for Estimating Prestress Losses"
[6], and Tadros, Ghali, and Dilgers' recommendations [24]. The AASHTO
and PCI Design Handbook procedures are used to calculate the loss for
the beams in this study. The PCI Design Handbook multipliers are used
to predict the camber. These procedures will be discussed in Chapter 5.

Computer programs and techniques best suited for use on a
computer have been developed by Suttikan [25], Sinno and Furr [26,27],
Branson and Kripanarayanan [28], Hernandez and Gamble [29], Rao and
Dilger (9], and Huang [49]. The earlier work of Gamble has been re-
flected in the current AASHTO procedures [22,48]. The extensive work at
Lehigh University is generally too complex for non-computerized applica-
tion [49]. The technique proposed by Suttikan and modifications to the
techniques proposed by Sinno and Furr, and Branson and Kripanarayanan
were used to predict the response for the beams in this study. These
techniques will be discussed in Chapter 5.

1.4 Field Program

As part of this investigation, time dependent deformations of
long span preten