Frequency Response of Damaged External Post-Tensioned Tendons

McKinstry, Christopher A.


Bridges with external post-tensioned tendons are considered to be more durable than bridges with internal tendons (tendons within the webs and flanges), because external tendons are easier to inspect. In addition, in the event that extensive corrosion damage is detected, it is possible to replace an external tendon. However, an appropriate inspection for detecting damage needs to be determined for external tendons. This investigation focuses on the vibration technique, which uses the dynamic properties of the external tendon to infer the effective prestress force.

Four large-scale external tendons, designed to simulate one section of an external tendon between two deviators in a post-tensioned bridge, were tested. In the study, damage to the tendons was induced in a quantifiable fashion at a vii specific location and the tensile force was measured directly. In addition, free-vibration tests were conducted periodically. This provided a direct means of measuring the sensitivity of measured natural frequencies and measured tensile force to local damage. The measured data were correlated with an approximation of the stiff string vibration model. In addition to the laboratory specimens, field testing was conducted on a bridge with external post-tensioned tendons.

The findings from the study show that a loss in tensile force was not linear with a loss in the cross-sectional area of the strand, which results from stress redistribution within the tendon. Also, the natural frequencies were much less sensitive to the level of induced damage than the tensile force. While the measured data from the laboratory data compared very well with the analytical model, the field measurements exhibited a much greater deviation from the model. Due to several factors, the difference between the laboratory specimens and the bridge tendons are believed to be caused by larger levels of inherent error in the model. The findings from the investigation support the notion that vibration testing is most appropriately used in comparing relative differences between peer tendons.

The free Adobe Acrobat Reader can be used to view PDF files.