Assessment and Strengthening of ASR and DEF Affected Concrete Bridge Columns

Talley, Kimberly Grau


Alkali silica reaction (ASR) and delayed ettringite formation (DEF) are two causes of concrete deterioration. Both mechanisms cause expansion of concrete and thus extensive cracking. Most previous research on ASR and DEF focused on understanding the material science of the mechanisms. This dissertation adds to the smaller body of knowledge about ASR/DEF’s effect on the structural behavior of reinforced concrete columns. It compares the structural performance of ASR/DEF affected concrete column to mechanically cracked columns, evaluates the relative performance of four different concrete repair methods for strengthening damaged columns, and describes how to model pre-existing cracks in the finite element program ATENA.

Previous research on scaled columns used mechanically cracked concrete as an approximation of ASR/DEF cracking damage. These earlier column tests, by Kapitan, were compared to two columns affected by ASR/DEF. Due to a deficiency in original design of the actual columns modeled, all of these scaled column specimens failed in bearing during testing under biaxial bending. The ASR/DEF affected columns exhibited nearly identical performance (including bearing capacity) as Kapitan’s control specimen. Thus, with over one percent expansion due to ASR/DEF, there was no reduction in bearing capacity for these columns.

Based on the bearing failure observed in these scaled column specimens, concrete repairs were designed to increase confinement of the column capital to address the bearing capacity deficiency. A series of bearing specimens was constructed, externally reinforced using four different strengthening schemes, and load tested. From this bearing specimen series, both an external post-tensioned repair and a concrete jacketing repair performed well beyond their designed capacities and are recommended for bearing zone confinement repair of similar ASR/DEF affected concrete columns.

Further, this dissertation presents how Kapitan’s scaled column results were modeled using ATENA (a reinforced concrete finite element program). A technique for modeling the mechanical cracking was developed for ATENA. Once calibrated, a parametric study used the model to find that a 0.17-inch wide through-section crack in the scaled columnd (5/8 inches in the field) was the threshold that reduced capacity of the scaled column to the factored design load.

The free Adobe Acrobat Reader can be used to view PDF files.