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Abstract 

 

General Behavior of a Steel Trapezoidal Box-Girder  

during Construction 

 

Widianto, M.S.E. 

The University of Texas at Austin, 2003 

Supervisor:  Joseph A. Yura 

 
During its lifetime, a composite box girder bridge experiences both 

construction and serviceability stages. The construction stage is the most critical 

design stage for box girders, since during this period they have lower torsional 

rigidity compared to the composite section and are very susceptible to cross-

section distortion due to torsional loading. Recent failures of box girders, ranging 

from buckling of bracing members to complete collapse, all happened during 

construction, indicating that the behavior of box girders during construction is not 

yet well understood. 

Currently, design specifications do not provide designers with sufficient 

guidance regarding the behavior of box girders during construction. This thesis 

provides additional information about girder behavior during construction by 

presenting the results of parametric studies using a finite element computer 

program. Available hand methods are also presented. The required internal 

diaphragm spacing for limiting cross-section distortion and distortional normal 

stress is provided. The effect of using different top lateral bracing systems during 

monolithic and sequenced concrete pours on bracing forces, girder deformations, 

and normal stresses are presented. The sources of bracing forces, girder 



 vii 

deformations, and total normal stresses are explained. Based on the parametric 

studies, recommendations for the optimal top lateral bracing system and pouring 

sequence with regard to top lateral bracing forces, girder stresses and 

deformations are discussed.  
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CHAPTER 1 
Introduction 

 

1.1 GENERAL 

 

In general, there are two types of steel box girders: all-steel box girders 

and composite steel box girders. All-steel box girders utilize steel plates for the 

bottom flange and webs and use an orthotropic steel deck as the top flange. The 

composite box girder, shown in Figure 1.1, consists of a steel box girder topped 

by a cast–in-place concrete slab. The concrete deck acts compositely with the 

steel box girder by means of shear studs on the top flanges. Only the composite 

box girder is discussed in this thesis. 

 

Figure 1.1 Cross section of the composite steel box girder (US Steel, 1978) 

 

American steel box girder designs generally use a box girder with inclined 

webs as shown in Figure 1.1, instead of a rectangular box shape. For this reason, 

the girder is known as a trapezoidal box girder. Compared to the rectangular box 

shape, the trapezoidal shape uses less steel because the inclined webs allow a 
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narrower and more efficient bottom flange that permits reduction of steel in 

regions of low stress (Hall, 1997). In addition, the trapezoidal shape incorporates 

a much narrower and more compact flange (i.e. smaller width to thickness ratio) 

that requires less stiffening. From a fabrication standpoint, the trapezoidal shape 

is more practical than the rectangular box with regard to welding inside. 

During its lifespan, a composite box girder experiences several stages. In 

the shop fabrication stage before top lateral bracings are attached, the steel box 

girder is an open section U-shape girder. The addition of a top lateral bracing 

system in the shop stabilizes the top flanges during transport and erection. The 

section is classified as a steel pseudo-closed box section during this stage. After 

the deck forms are attached and the concrete deck poured and cured, the section 

becomes a very stiff composite closed box section. This thesis is limited to the 

behavior of open and pseudo-closed section of steel box girder during 

construction. 

 

1.2 BOX GIRDER VERSUS I-GIRDER 

 

The behavior of I-girder systems is now relatively well understood, 

allowing them to be used more frequently. Even though the behavior of box girder 

systems is not yet fully understood, box girders have many advantages over I-

girders, leading to their increasing popularity. 

 Some advantages of box girders over I-girders are as follows: 

• Box girders have a superior torsional behavior to I-girders. The closed cross-

sections of box girders have much higher torsional stiffness, which is often 

100 to 1000 times larger than in the comparable I-girders. This feature makes 

box girders preferable for curved bridges. 
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• Box girder bridges require less maintenance because of their protected interior 

and smooth exterior. The smooth exterior reduces the potential corrosion 

problems in box girders, since corrosion in steel bridges typically occurs in 

regions where water and debris can collect. 

• Box girder bridges have a low profile, which is beneficial in resisting wind-

induced vibrations in long span bridges. In addition, the low profile of box 

girders is also beneficial for satisfying the minimum vertical clearance in 

metropolitan areas. 

• Box girder bridges are usually lighter than comparable I-girder bridges 

because of their hollow structure. 

• In dealing with the bending stress, using a wide, properly stiffened bottom 

flange with a reasonable thickness in box girder bridges is a better solution 

than using a very thick plate or a large number of plates in I-girder bridges. 

• Under service loading, the multiple box girders exhibit better behavior than I-

girders, as traffic loads are more efficiently distributed to girders in the lateral 

direction due to the large torsional stiffness of the individual boxes. (Helwig 

and Fan, 2000). 

However, during transport, erection, and construction, the box girder 

consists of a pseudo-closed section with much lower torsional stiffness than that 

of the completed composite box system. This is a major problem during the early 

stages of curved bridge construction, when the girders are subjected to relatively 

large torques from loading of wet concrete during the deck pours. The following 

section discusses the construction stage of a trapezoidal box girder in more detail. 
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1.3 COMPOSITE BOX GIRDER DURING CONSTRUCTION STAGE 

 

In a single box girder system, the most important bracing systems for 

improving its stability are top lateral bracing and internal diaphragm bracing 

systems. Top lateral bracing systems effectively close the cross section (i.e. make 

a pseudo-closed section) and enable the curved girders to resist large torsional 

moments from construction loads. In addition, they are also effective in increasing 

the buckling capacity of the top flanges (Chen, 1999). Internal diaphragm bracing 

systems prevent cross-section distortion and limit additional normal stress due to 

distortion. Figure 1.2 shows bracing systems in a box girder during construction. 

 
Top lateral bracing system Internal diaphragm bracing 

system 

 

Figure 1.2 Bracing systems in a box girder during construction 

 

In addition, stresses due to construction loading can reach up to 60-70 

percent of the total design stress for a given cross-section (Topkaya et.al., 2002). 
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All of these facts indicate that a critical design stage for box girders occurs during 

construction. 

1.3.1 Historical failure cases 

That the construction stage is the most critical design stage for box girders 

has been highlighted by the failures of box girders, all of which happened during 

construction (Wolchuk and Mayrbaurl, 1980). In November 1969, the Fourth 

Danube Bridge, Vienna, was damaged during construction. In June 1970, a span 

of Milford Haven Bridge in Wales, shown in Figure 1.3, collapsed during the 

launching of a pre-assembled deck section due to unanticipated erection stresses.  

 

Figure 1.3 Failure of Milford Haven bridge in June 1970 (Flint, 2001) 

In October 1970, the West Gate Bridge in Melbourne suffered disastrous 

failures during erection. In November 1971, the bottom flange of the Koblenz 

Bridge in Germany buckled under temporary compression loadings. All of these 
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cases emphasize that the understanding of box girder behavior during construction 

is very important. 

 In addition to cases of overall failure, local failure of bracing members, 

such as the one shown in Figure 1.4, can also occur during construction. 

Certainly, the failure of bracing members will affect the overall stability of a 

girder and can lead to a catastrophic failure. 

 

 

Figure 1.4 Failure of bracing member during construction (Chen, 2002) 

 

1.3.2 Lack of guidance for designers 

Even though the construction stage is a critical stage, design specifications 

do not commonly provide designers with sufficient guidance regarding the 

behavior of box girders during construction. Most of the time, design work only 

emphasizes the bridge performance under service condition, without carefully 
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considering the construction stage. Because of the lack of knowledge of girder 

behavior during construction, designers may possibly use a lateral bracing system 

that may not adequately stabilize the girder during construction, leading to large 

deformations and stresses. On the other hand, designers can use excessive bracing 

that results in the waste of material and labor, and imposes fatigue problems. 

From a concrete pouring perspective, using a less than optimum pouring sequence 

can result in very large bracing forces, deformations, and total normal stresses. 

 As an example, the American Association of State Highway and 

Transportation Officials (AASHTO) Guide Specifications 2003 provides very 

limited information on the internal diaphragm spacing and top lateral bracing 

requirements. Section 10.2.2.3 of the specification states that the spacing of 

internal bracing shall be such that the longitudinal warping stress does not exceed 

10 percent of the longitudinal stress and shall not exceed 30 feet. Section 10.2.4 

of the specification indicates that top flange bracing shall have adequate capacity 

to resist shear flow and forces induced by vertical and lateral bending in the non-

composite section at the constructibility limit state. There is no guideline 

regarding the pouring sequence available in the specification. 

  Clearly, the current design guidelines do not provide sufficient 

information regarding the behavior of box girders during construction. Therefore, 

this thesis will examine girder behavior during construction by presenting the 

results of parametric studies. 
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1.4 UTRAP PROGRAM DESCRIPTION 

 

The UTRAP program is used to conduct the parametric studies. Whenever 

hand calculations were made, UTRAP outputs are used as a basis of comparison. 

UTRAP is a finite-element software package (Topkaya et.al., 2002), 

developed for the analysis of curved steel box girders under construction loads. 

The program consists of a Graphical User Interface, in which the input data is 

entered to the program, and an analysis module, which relies on the finite element 

method to compute the response of the three-dimensional bridge structure. 

UTRAP provides a more rigorous analysis of curved box girders than traditional 

grid analysis approaches. Since UTRAP analyzes a girder as a 3-D finite element 

model, it can determine stresses and deformations throughout the cross-section of 

a girder. In addition, all bracing members are modeled explicitly so that no 

simplifying assumptions are required for determining member forces. 

Unlike currently available software, UTRAP has the capability to model 

the effects of semi-cured concrete. Therefore, the effect of pouring sequence on 

bracing forces, girder stresses, and deformations can be examined in a more 

realistic manner. 

 

1.5 REVIEW OF LITERATURE 

 

Steel trapezoidal box girders can be classified as thin-walled beams 

because the thickness of the elements is small compared to the height and width 

of the cross-section and the cross-section dimensions are small compared to the 

girder length. The first systematic study of the theory of thin-walled beams was 

conducted by Vlasov (1961). He explained the difference of behavior between 
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“thin-walled” and “thick-walled” beams under the same loading. In explaining 

torsional warping, Vlasov divided a torsional moment into pure and flexural 

components corresponding to the St. Venant and torsional warping shear stresses. 

Zbirohowski-Koscia (1967) tried to introduce the theory of open-section thin-

walled beams to design offices. For that purpose, he described the physical 

meaning of the forces and properties introduced by Vlasov and kept the 

mathematical proofs to a minimum. Kollbrunner and Basler (1969) presented a 

thorough analysis of torsion in both single-span and continuous members with 

solid, thin-walled, open, or closed cross-sections. In addition, they developed the 

Equivalent Plate Method (EPM) for the torsional analysis of a pseudo-closed box 

girder. 

Dabrowski (1968) was the first to derive the fundamental equations for 

deformable curved box girders subjected to non-uniform torsion. He presented 

sample calculations for determining cross-section properties of open, pseudo-

closed, and closed sections. Tables that give the expressions for bending moment, 

total torque, St. Venant torque (primary torque), secondary torque, and bimoment 

of a curved girder with several common boundary and loading conditions are 

shown in Dabrowski’s book. Wright, Abdel-Samad, and Robinson (1968) 

developed an analogy between the differential equation describing the response of 

a single-cell, straight trapezoidal box girder due to the distortional component of 

torsional loading and that of the beam on elastic foundation (BEF).  

 Oleinik and Heins (1974) developed design equations to predict the 

magnitude of induced distortional stresses due to dead and live loads for a single 

span curved box girder. Their empirical equations for determining the required 

internal diaphragm spacing were based on limiting the distortional normal stresses 

in the bottom flange. In addition, all cross-sections used in their parametric 

studies were rectangular box sections with the depth to width ratio smaller than 
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one. Heins (1978) examined the structural behavior of girders and provided 

design guidelines for economical box girder designs.  

Branco and Green (1981, 1984, 1985) tested scaled models of straight, 

simply supported, open and pseudo-closed trapezoidal box girders under torsional 

loadings to study the effects of construction loadings and bracing configurations 

on the overall stability and deformation of box girders. They studied the 

effectiveness of transverse web stiffeners and internal diaphragms in preventing 

distortional stresses. Siddiqui (1985) tested one-quarter scaled models of closed-

section rectangular and trapezoidal straight box girders under concentrated 

torsional loadings. The purpose of his studies was to confirm experimentally that 

deformation of the cross-section of a box girder induced warping and distortional 

stresses, and that inserting internal diaphragms can reduce these stresses. 

   Nakai and Yoo (1988) presented the formulation and solutions of the 

governing equations in curved box girders. They also discussed the design codes 

and specifications used in Japan, including the specifications for the internal 

diaphragms. Yabuki and Arizumi (1989) investigated the normal stress 

distribution and cross-sectional deformation in single-span curved box girders 

under symmetrical and eccentric uniform loads and under concentrated loads. 

They presented an internal diaphragm spacing provision based on parametric 

studies using the BEF analogy. All cross-sections used in their parametric studies 

were rectangular box sections without lattice walls.  

 Helwig and Fan (2000) developed design equations to evaluate the forces 

in the top lateral bracing and internal K-frames systems in pseudo-closed 

trapezoidal box girders during construction. Sennah and Kennedy (2001, 2002) 

summarized the most important references related to the development of current 

guide specifications for the design of straight and curved box girders in the form 

of single-cell, multiple spine, and multicell cross-sections. 
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1.6 PURPOSE AND SCOPE 

 

The work presented herein was part of TxDOT research project No.0-4307 

“Steel Trapezoidal Girders: State-of-the-Art”.  The research is intended to 

compile a state-of-the-art reference manual for the design of steel trapezoidal 

girders that will cover from the erection phase up to the hardening of the concrete 

deck. The purpose of this thesis is to present general behavior of a steel 

trapezoidal box girder during construction prior to the hardening of the concrete 

deck. Parametric studies were performed to examine the effects of different 

parameters on top lateral bracing forces, girder stresses and deformations. The 

UTRAP program was used to perform the studies. In order to aid understanding, 

available hand methods are presented to predict the top lateral bracing forces, 

bending and torsional stresses and deformations when possible. 

Most of the previous research to determine the required internal 

diaphragm spacing focused on a completely closed rectangular box girder. All 

parametric studies reported herein focus on a trapezoidal steel box girder with a 

top lateral bracing system, which forms a. pseudo-closed section. Unlike the basis 

of many recommendations for internal diaphragm spacing, this thesis uses the 

ratio of distortional to bending normal stress in the top flange, distortional 

rotation, and the change in diagonal lengths as a basis for determining diaphragm 

spacing. It is believed that the distortional normal stress in the top flange is more 

important than that in the bottom flange since the maximum bending normal 

stress in a typical pseudo-closed trapezoidal girder occurs in the top flanges which 

are much smaller than the bottom flange. 
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Moreover, guidelines are provided for determining the best top lateral 

bracing system and pouring sequence with regard to bracing forces, deformations, 

and normal stresses. Even though much research has been conducted on the 

behavior of box girders during construction, there has been no comprehensive 

examination of the effect of different top lateral bracing systems on girder 

behavior during a monolithic or a sequenced pour. This thesis presents the effects 

of using different top lateral bracing systems during a monolithic and a sequenced 

pour on bracing forces, girder deformations, and normal stresses. 

All parametric studies are performed using a single trapezoidal girder 

system with typical cross-section dimensions shown in Figure 1.5. The inclination 

of the web is not varied significantly and the width to depth ratio is about one. 

There are no web stiffeners or longitudinal stiffeners used in the modeling. The 

cross-section dimensions are constant along the length, whereas each plate 

thickness can be varied. All curved girders analyzed have constant radii of 

curvature and no superelevation. All supports are perpendicular to the girder; no 

skewed supports are used. 

The weight of wet concrete is represented by applying a symmetrical 

uniform load on a girder. Since there is no eccentric loading, the only torsional 

loading discussed herein results from the curvature. Helwig and Fan indicated that 

the force distribution from torsional loading due to eccentric loading is different 

than that due to curvature. Most of the previous research used eccentric loading to 

create torsional loadings, whereas torsional loading resulting from the curvature is 

considered herein. 
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Figure 1.5 Cross-section dimensions of trapezoidal box girder models 
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Four different top lateral bracing systems, shown in Figure 1.6, were 

examined. There has been no research conducted to study the behavior of girders 

with the Single-Diagonal system. The only type of internal diaphragm used in this 

study is the inverted K-frame, shown in Figure 1.7. This system is common in 

modern box girders because it has a large space between the two diagonals that 

provides easy access for workers and inspectors. 
 

Open section with struts  X-type system  

Alternating-Diagonal system  Single-Diagonal system  
 

Figure 1.6 Types of top lateral bracing system 

 

 

Figure 1.7 Inverted K-frame internal diaphragm 

1.7 ORGANIZATION 

 

Chapter two reviews the basic theory of thin-walled beams in bending and 

torsion. Chapter three discusses cross-sectional forces, including shear forces, 

support torque, and midspan bending moment, in a curved girder. Chapter four 

summarizes methods for calculating cross-section properties related to bending 
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and torsion of open and pseudo-closed sections. In chapter four, Dabwroski’s 

methods for calculating the cross-section properties of general open and pseudo-

closed sections are extended to a trapezoidal shape.  The closed-form solutions for 

cross-section properties of open and pseudo-closed sections of a trapezoidal box 

girder are derived and sample calculations are shown. 

Chapters five and six discuss the general behavior of straight and curved 

girders, respectively, focusing on deformations and total normal stresses. In a 

curved girder, there are additional normal stresses, the warping normal stress and 

the distortional normal stress. These types of normal stresses are discussed in 

chapters seven and eight, respectively. 

Chapters nine through eleven discuss forces in top lateral bracing 

members. In chapter nine, analytical methods for estimating the forces developed 

in the top lateral bracing system in simply-supported straight and curved 

trapezoidal box girders are presented. This chapter illustrates how the 

configuration of top lateral bracing members affects the force distribution in the 

members. Chapter ten focuses on the top lateral bracing forces in a continuous 

curved girder under a symmetric uniformly distributed load (i.e. a monolithic 

pour). The effect of using different top lateral bracing systems on the behavior of 

a continuous curved girder, including comparisons of the deformations and the 

total normal stresses, is presented in that chapter. As an extension of chapter ten, 

chapter eleven discusses the top lateral bracing forces in a continuous curved 

girder during a sequenced pour. Comparisons between forces, girder 

deformations, and total normal stresses due to a monolithic pour and those due to 

a sequenced pour are presented in chapter eleven. Recommendations regarding 

the pouring sequence are presented.  

Finally, chapter twelve summarizes the findings and recommendations and 

discusses future research needs for box girders. 
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CHAPTER 2 
Basic Theory of Thin-Walled Beams 

 
 

Steel trapezoidal box girders can be classified as thin-walled beams 

because the thickness of the elements are small compared to the height and width 

of the cross-section and the cross-section dimensions are small compared to the 

girder length. This chapter discusses the basic theory of thin-walled beam related 

to vertical bending, torsion, and distortion in general terms.  

 

2.1 VERTICAL BENDING 

 

Vertical bending occurs in a girder when it is subjected to transverse loads 

acting through the shear center, producing bending moment and shear force along 

the length of the girder. The general relationships between bending moment M 

and normal stresses σ, and between shear force V and shear stress τ are  

    ∫=
area

dAyM σ     (2.1) 

     ∫=
area

dAV τ      (2.2) 

where y is the distance of the fiber under consideration to the neutral axis and the 

integrations are evaluated over the cross-section area. Normal stresses and 

shearing stresses due to vertical bending are discussed in the following sections. 

The effect of vertical bending on a box girder can usually be analyzed using 

classical beam theory. 
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In general, the vertical bending behavior of a pseudo-closed section of a 

box girder is similar to that of an open section. The only difference is the fact that 

the bending moment of inertia of the pseudo-closed section is slightly higher due 

to the presence of a top lateral bracing system.   

 

2.1.1 Normal stress due to vertical bending 

Using the elastic behavior and plane sections remain plane (Navier 

hypothesis) assumptions, normal stresses due to vertical bending σB in a girder 

with a symmetric cross-section like a trapezoidal box girder can be calculated 

using  

x
B I

My
=σ     (2.3) 

where y is the distance from the neutral axis to the fiber under consideration along 

the y-axis and Ix is the moment of inertia about the x-axis.  

Variation of the bending normal stress on the cross-section is shown in 

Figure 2.1. It can be seen from Figure 2.1 that the shear center is located on the 

axis of symmetry (y-axis). Methods to determine the shear center location will be 

discussed in chapter 4.  
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y 

Centroid 

Shear center 

 

Figure 2.1 Normal stress distribution due to vertical bending 

2.1.2 Shear stresses due to vertical bending 

If the bending moment is not uniform along the length of a girder, shear 

stresses will be induced to satisfy equilibrium. For thin-walled cross-sections, the 

shear stress τ is assumed to be constant across the thickness of the wall. The 

magnitude of shear stress τ at any point in the cross-section at distance s from the 

free edge is  

tI
QV

x

xy=τ     (2.4) 

where Vy is the shear force in the y-direction, Qx is the first moment with respect 

to the bending neutral axis (x-axis in this case) of the cross-sectional area from 

s=0 to s=s, and t is the thickness at distance s from the free edge. The derivation 
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of this formula can be found in Gere and Timoshenko (1997).  The direction of 

shear stresses τ is along the centerline of the cross-section, and for the thin-walled 

cross-section, τ  is assumed to be constant across the thickness of the wall.  

The shear flow q at any point in the cross-section, which is defined as the 

product of the shear stress and the thickness at that point, is 

        
x

xy

I
QV

tq ==  τ     (2.5) 

The shear flow q is directly proportional to Qx. The shear flow is zero at the top 

and bottom edges of the cross-section and maximum at the neutral axis. Shear 

flow on a cross-section is constant even though the thickness of the section wall 

varies and it flows in a continuous direction. At the neutral axis, shear flow q has 

the same direction as the shear force V. 

Figure 2.2 shows the shear stress distribution on a trapezoidal box girder 

cross-section. The shear stress at points a and b, which are the free edges, are 

zero.  

 

 a b 

 

Figure 2.2 Shear stress distribution due to vertical bending 
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2.1.3 Shear lag effect  

Branco and Green (1985) indicated that warping displacements are 

induced in the cross-section due to the bending shear stress distribution shown in 

Figure 2.2. This warping displacement can induce a shear lag effect, which is a 

phenomenon that reduces the bending capacity of a thin-walled beam because it 

causes the bending normal stress to become non uniform across the width (i.e. 

maximum at the junction point of flanges and web plate). The variation of 

bending normal stress on the cross-section, obtained by taking the shear lag effect 

into consideration, is shown schematically in Figure 2.3.  
 

          : Bending normal stress 
            distribution due to shear lag 
 
          : Bending normal stress       
            distribution without shear lag 
 

  

Figure 2.3 Variation of bending normal stress including shear lag effect 

 

Branco and Green indicated that the shear lag effect is usually small in 

box girders, except at sections with large concentrated loads or in thin, wide 

flanges.  Box girders having a large width to depth ratio are prone to shear lag, 

and that the effect of shear lag can be minimized by using a relatively “square” 

cross-section (i.e. width dimension is approximately the same as depth dimension) 

(Helwig and Fan, 2000). 
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Finite element programs such as UTRAP that represent the cross-section 

can capture the shear lag effect directly, whereas grid type analysis programs that 

represent the cross-section by a single point cannot.   

 

2.2 TORSION 

 

Twisting of the cross-section occurs in a girder when it is subjected to 

transverse loads that do not act through the shear center and/or the member is 

curved. For a non-circular cross-section, twisting of cross-section is accompanied 

by warping (i.e.plane section do not remain plane). However, Boresi et.al. (1978) 

indicated that rectangular hollow cross-sections with a constant wall thickness or 

with the conditions shown in Figure 2.4 do not warp under torsional loading. 

 

t1 

t2 

t1 

t2 

b 

h 

Cross-section will not  
warp if: 
 
         b t1 = h t2 

 

Figure 2.4 Condition of rectangular hollow cross-section that does not warp 

under torsion (Boresi et.al, 1978) 

 

In general, the total torsional moment T resisted by the cross-section is the sum of 

pure torsion Tt (Saint-Venant torsion) and warping torsion Tw. In the following 

sections, these two contributions to torsional resistance will be explained.  

 



 22 

2.2.1 Pure torsion (Saint-Venant torsion) 

Generally, pure torsion occurs if a straight member is subjected only to 

torques at its ends (uniform torsion) and the warping (i.e. out-of-plane 

deformation of transverse sections do not remain plane) of the cross-section is not 

restrained. Thin-walled members subjected to pure torsion will only experience 

shear stresses (normal stress will not arise).  

At any point along the length of members subjected to a torsional moment 

Tt, the cross-section will rotate through an angle θ. The relationship between 

torsional moment Tt and rotation angle θ is 

   
dz
dGJTt
θ

=       (2.6) 

where G is the shear modulus of elasticity, J is the pure torsional constant of the 

cross-section, and 
dz
dθ is the rotation angle per unit length (first derivative of θ 

with respect to z measured along the length of member).  

The pure torsional constant J is used to quantify the torsional stiffness of 

the element. The pure torsional constant for open sections, Jopen, comprised of n 

narrow rectangular sections can be approximated by  

         3

13
1

i

n

i
iopen tbJ ∑

=

=     (2.7) 

where bi and ti are the width and thickness of each section i, respectively. For 

closed sections, the pure torsional constant, Jclosed, is  

         

∫
=

)(

24

s

o
closed

t
ds
A

J      (2.8) 

where Ao is the area enclosed by the centerline of the walls and t(s) is the wall 

thickness along the member arc length s. If the hollow cross section is made up of 
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n rectangular components, each of thickness ti and width bi, then the contour 

integral can be replaced with the following expression: 

               ∑∫
=

=
n

i i

i

s t
b

t
ds

1)(

     (2.9) 

Therefore the closed section pure torsional constant, Jclosed, can be written as 

follows: 

 

                                           (2.10) 

 

Unlike the behavior due to vertical bending, the behavior of thin-walled 

open sections and the behavior of closed sections under pure torsion is not the 

same. In general, the pure torsional constant for a closed section is much higher 

than it is for an open-section, so under the same torsional loading, the rotation 

angle of a closed section will be much smaller than the rotation angle of an open 

section. For tosional loading, the shear stress distributions on thin-walled open 

and closed sections are different as shown in Figure 2.5(a) and (b).  

Figure 2.5(a) shows that there is an anti-symmetrical linear distribution 

across the wall thickness of the shear stress on the open section. The shear stress 

at the center-line of the wall is zero and the shear stresses at the both edges of the 

wall are maximum. Because of the anti-symmetrical linear distribution of shear 

stress, the torsional moment Tti for each narrow rectangular section i with 

thickness ti and width bi, can be expressed in Eq. 2.11 as follows: 

iiiti tbT max
2

3
1 τ=     (2.11) 

where τmax,i is the maximum shear stress at each narrow rectangular section i. 

∑
=

= n

i i

i

o
closed

t
b

A
J

1

24
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Shear center 

Tt 

τmax,i 

ti 

(a) 

Tt 
Shear center 

Shear flow, q  

ρS.C 

ti 

τi 

(b) 
 

Figure 2.5 Shear stress distribution on open and closed sections due to pure 

torsional moment Tt 

The total torsional moment Tt of the entire open-section consisting of n narrow 

rectangular elements is 

    ∑
=

=

=
ni

i
tit TT

1
     (2.12) 
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Figure 2.5(b) shows that the shear stress τ is uniformly distributed across 

the wall thickness of a thin-walled closed section. The shear flow (shear stress 

multiplied by thickness) in a thin-walled closed section is constant along the 

contour. Using equilibrium, the relation between shear flow q and torsional 

moment Tt can be expressed as  

    dsqrTt   ∫=      (2.13) 

where r is the lever arm, measured from the shear center. Since the integral ∫ dsr  

is equal to twice the area enclosed by the shear flow, the torsional moment Tt can 

be expressed as follows: 

    qAT ot   2=      (2.14) 

The shear flow q that develops along the contour of the box can be determined by 

using Eq. 2.15, also known as Bredt’s equation. 

                 
oA 2

tT
q =      (2.15) 

Having determined the shear flow q using Eq. 2.15, the shear stress τi in each 

element i whose wall thickness is ti can be calculated from 

       
i

i t
q

=τ      (2.16) 

 For most torsional applications, the pseudo-closed section can be treated 

as a closed section, rather than as an open-section (Kollbrunner and Basler, 1969). 

2.2.2 Warping torsion 

Twisting of a girder with a non-circular cross-section that does not satisfy 

the conditions shown in Figure 2.4 will be accompanied by warping. Figure 
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2.6(a), which is similar to the one shown in Zbirohowski-Koscia (1967), shows a 

view of the warped cross-section of a rectangular hollow girder. Both end 

surfaces of the girder do not remain plane but become warped. Because the girder 

shown in Figure 2.6(a) is free to warp, there will not be any warping normal stress 

induced. Figure 2.6(b) shows the same girder but with the warping displacement 

at the right end restrained. In this case, the flange bends and warping normal 

stresses will be induced. Warping normal stress will arise in a girder when any 

cross-section along the length is not free to warp when a torque is applied. In a 

simply supported girder, usually warping displacements are prevented at midspan 

due to symmetry.  

In order to satisfy equilibrium, warping normal stress will induce warping 

shear stress. Warping normal stress will be additive with vertical bending normal 

stress, increasing or decreasing the vertical bending normal stress depending on 

the location on the cross-section.  The warping shear stress will form a warping 

torsional moment, which combines with the pure torsional moment to resist the 

applied torsional loading.  

In order to illustrate the state of warping normal stress, Figure 2.7 shows a 

curved thin-walled member with a completely free end cross-section subjected to 

a self-equilibrating set of forces applied at its end. The top width and girder depth 

are denoted by a and d, respectively. The set of self-equilibrating forces produces 

an end bimoment, which gives rise to normal stress, known as the warping normal 

stress. The general definition of a bimoment is a pair of equal but opposite 

bending moments acting in two parallel planes, which are the top and bottom 

flanges in this case. The numerical value of a bimoment is given by the product of 

the distance of these parallel planes, times the moment on one of them. For 

example, the numerical value of a bimoment shown in Figure 2.7 can be 

calculated as F(a)(d).   
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End surface 

End surface 

Fixed wall  
prevents 
warping 
displacements 

(a) 

(b)  

Figure 2.6 Warping deformation 

Analytically, warping normal stress is  

)(sw
I
B

w
W =σ     (2.17) 

where B is the torsional warping moment or simply the bimoment, w(s) is the 

torsional warping function, and Iw is the torsional warping constant. Dabrowski 

(1968) derived bimoment expressions for a curved girder with different boundary 

conditions and loading conditions. 
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Figure 2.7 End bimoment and warping normal stress 

For a simply supported curved girder under a symmetric uniformly-distributed 

load w, the bimoment is 

    ( ) ( )
( ) ( ) 
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where:  

 µ  = Warping shear parameter for closed and pseudo-closed sections 

           For an open section, µ=0 

           For a closed section, 
c

closed

I
J

−= 1µ   

     where: ∫=
A

c dArI 2    (Ic: central second moment of area) 

   r : distance from contour tangent to the shear center 

 η = Dimensionless parameter     
( )21
1
kR+

=η     
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 k  = Decay coefficient for warping torsion    
wEI

GJk µ
=  

 w = Uniformly distributed load (load per unit length).  

     Downward load is positive 

 R = Radius of curvature 

  l  = Span length, measured along the curved centroidal axis 

  z = Ordinate of curved centroidal axis, measured from left support 

  z′= Ordinate of curved centroidal axis, measured from right support 

  φ = Angular ordinates, measured from left support 

  φ′= Angular ordinates, measured from right support 

 Φ = Central angle 

 

 The torsional warping function w(s) is the geometric function that is 

linearly proportional to warping axial displacement. The torsional warping 

functions for an open section w(s)open and for a closed section w(s)closed that is 

comprised of n narrow rectangular sections are expressed in Eqs. 2.19 and 2.20, 

respectively. 

     ∫=
s

open rdssw
0

)(     (2.19) 

    ∫
∑
=

−=
s

n

i i

i

o
openclosed t

ds

t
b

A
swsw

0

1

2
)()(    (2.20) 

where s is the coordinate system along the contour of the beam, r is the 

perpendicular distance from the contour of each section to the shear center, Ao is 

the area enclosed by the shear flow, and bi and ti are the width and thickness of 

each section. Eqs. 2.19 and 2.20 assume that the origin s=0 is located on the axis 

passing through the shear center and the section is traversed in clockwise 
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direction about the shear center. The right hand side of Eqs. 2.19 and 2.20 are 

called the sectorial area and the reduced sectorial area with respect to the shear 

center, respectively.  

 The torsional warping constant Iw that represents the geometric moment of 

inertia with respect to the warping function is  

             ∫=
A

w dAswI 2)(  where   dA = t ds  (2.21) 

The torsional warping constant is also called the warping moment of inertia. 

Warping normal stress will be accompanied by shear stresses in the plane of the 

cross section. These shear stresses will form a warping torsional moment Tw in 

addition to the pure torsional moment, which is given by 

3

3

dz
dEIT ww
θ

−=     (2.22) 

where θ is the rotational angle, and z is the coordinate axis along the beam length.  

2.2.3 Total resistance to a torsional moment 

The torsional moment applied to a cross-section T will be resisted by pure 

torsional moment Tt (St. Venant torsion) and warping torsional moment Tw. 

           T = Tt + Tw    (2.23) 

The pure torsional moment is always present in cross sections subjected to torque, 

whereas the warping torsional moment is only present when warping 

displacements of cross sections are restrained. 

The relative proportion of each type of torsion present in a member 

depends on the length and cross-section dimensions. The parameter Χ, given in 

Eq. 2.24, is used to determine whether pure torsion or warping torsion dominates.  

                
wEI

GJlX =     (2.24) 
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where l is the length of member. The term inside the square root is the ratio of the 

pure torsional rigidity (GJ) to the warping torsional rigidity (EIw). A larger 

parameter X indicates the dominance of pure torsion in the torsional resisting 

moment component. The torsional predominance of a member based on the value 

of parameter X is given in Table 2-1 (Chen, 1999). 

Table 2-1 Pure and Warping Torsional Predominance 

Torsional Predominance X 

Pure warping < 0.3 

Dominating Warping 0.3 – 2 

Mixed 2 – 5 

Dominating Saint-Venant 5 – 10 

Pure Saint-Venant > 10 

  

Members dominated by one type of torsion can be analyzed approximately 

by neglecting the other type of torsion. In general, warping torsion is very small 

compared to the pure torsion in thin-walled closed-sections. For thin-walled open 

sections, pure torsion dominates in long members while warping torsion 

dominates in short ones (Chen, 1999). 

2.3 DISTORTION 

 
Box girder distortion is caused by torsional loads that are not distributed in 

proportion to the Saint-Venant shear flow on the cross-section of the girder 

(Helwig and Fan, 2000). Torsional loading on box girders can results from 

applied loads that do not act through the shear center (eccentric loading) and/or 

the girder geometry (curved member). Helwig and Fan indicated that the torsional 

loading due to eccentric gravity loading can be represented by a pair of vertical 

forces, whereas that due to the girder curvature is applied by a pair of horizontal 
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forces of M/(hR), where h and R are the girder depth and the radius of curvature, 

respectively. The torsional loading due to the eccentric loading are generally very 

small and will not be considered in this research. Saint-Venant torsional and 

distortional components due to curvature effect are shown in Figure 2.8. The 

magnitude of the Saint-Venant torsional and distortional components are given in 

Helwig and Fan.  

 

Saint-Venant torsional  
component Distortional component 

 

Figure 2.8 Saint-Venant torsional and distortional components due to 

curvature effect 

 

 In general, the cross-sections of thin-walled beams will distort from the 

original shape due to the distortional component. Helwig and Fan indicated that 

thin-walled beam distortion results in additional longitudinal normal stress, called 

distortional normal stress, and local plate bending moment. Figure 2.9 shows the 

distribution of distortional normal stress on the cross-section. More detailed 

discussions of the source of distortional normal stress are presented in chapter 11.  

shows the distortional deformation of a rectangular box girder under distortional 

load and the distribution of local plate bending moment on the cross-section 

produced by frame action of the box.  
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Nakai and Yoo (1988) derived a general equation for the local plate 

bending moment in a rectangular box section due to distortion. The expression is 

fairly complex since properties of top and bottom flanges are different. The 

distortion of a simpler model considering an open section (i.e. equivalent plate 

thickness taken as zero) is derived in Appendix A. It is shown in Appendix A that 

the local plate bending stress is so small that it can be ignored. Nakai and Yoo 

also concluded that the local plate bending stress is negligible. Therefore, it will 

not be discussed herein.   
 

Center of curvature 

σC 

σT 

σC : Compressive stress 

σT: Tensile stress 

σT 

 

Figure 2.9 Distribution of distortional normal stress 
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Figure 2.10 Distortional deformation and local plate bending moment 
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CHAPTER 3 
Cross-sectional Forces 

 

This chapter presents methods for calculating cross-sectional forces, 

including shear forces, support torque, and midspan bending moment, for straight 

and curved girders under a symmetrical uniform load. All methods presented in 

the first two sections in this chapter are limited to girders with the following 

characteristics: 

• Simply supported for bending  

• Pinned supports for torsion (i.e. warping deformation is permitted at the 

supports) 

• Horizontal plane (i.e. no superelevation)  

• Constant radius of curvature along the length 

In addition to the exact method, which involves quite complicated 

expressions, this chapter presents an approximate method to calculate cross-

sectional forces for a simply supported curved girder under uniform load. At the 

end of this chapter, the approximate method for estimating cross-sectional forces 

in a continuous girder is discussed briefly. In order to verify the approximate 

solutions, the results from UTRAP solutions were compared with the results 

obtained from the approximate methods.   

 

3.1 STRAIGHT GIRDERS 

 

Classical beam theory for a simply supported beam can be applied to 

analyze cross-sectional forces in a straight girder. In a straight girder, self-weight 
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of the girder and concrete weight, assuming the concrete pour is symmetric about 

the centerline of the girder, will not induce any torsional forces on the girder. The 

only possible source of torsional loading in a straight girder is the application of 

eccentric loading with respect to the girder centerline. The equivalent torsional 

loading MT, due to load P, applied with an eccentricity e with respect to the girder 

centerline, can be expressed in Eq. 3.1. 

MT = P e    (3.1) 

Figure 3.1 shows a torsional moment diagram T of a straight girder with a 

length l, under the torsional load MT that is applied at a distance l1 from the left 

end support (or at a distance l2 from the right support). In general, boundary 

condition for torsional loading in a simply-supported girder can be assumed as a 

pinned-support in torsion (i.e. twisting is not permitted but warping deformation 

is permitted). Figure 3.1 shows that the left and the right end support torques are 

(MT l2) / l and (MT l1) / l, respectively.  

 l1 l2 

MT 

l 

l
lMT 2 

l
lMT 1 

x 

T 

l
lMT 2 

l
lMT 1 

 

Figure 3.1 Torsional force diagram of a straight girder under a concentrated 

torsional loading 
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3.2 CURVED GIRDERS 

 

In a curved girder, as shown in Figure 3.2, no matter where the gravity 

load is placed, there is always a component of torsional loading due to curvature. 

Before any external loads are applied to a curved girder, the dead weight of the 

girder itself produces a torsional loading. Primarily due to interaction between 

bending and torsion, the analysis for cross-sectional forces of a curved girder is, 

in general, more complicated than the analysis of a straight girder. 

For a relatively small central angle Φ, Helwig and Fan (2000) indicated 

that the effect of curvature on bending behavior of a curved girder is negligible. 

Therefore, the cross-sectional force analysis of a curved girder can be 

approximated by a slight modification of the cross-sectional analysis of a straight 

girder. The most popular approximate method for the analysis of curved girders is 

the M/R method developed by Tung and Fountain (1970). 

 

 

Rout 
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Left Support Right Support p 
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Figure 3.2 Simply supported curved girder under a uniformly distributed load p 

 



 37 

Before the cross-sectional analysis of a curved girder is presented, it is 

important to understand the difference between torsional loading and torsional 

moment. In general, torsional loading refers to the externally applied torque while 

torsional moment, also known as internal torque, refers to the internal resistance 

forces developed in the structure due to torsional loading. 

Section 3.2 presents the cross-sectional force analysis of a curved girder. 

Exact solutions from Nakai and Yoo (1988) were used to obtain the variation of 

shear force, bending moment, and total torsional moment along the length of the 

curved girder and equilibrium was used in order to find the support torque and 

midspan moment. Approximate solutions (section 3.2.2) using a modified straight 

girder approach are presented. The results from UTRAP solutions were compared 

with the results obtained from both the exact solutions and the approximate 

solutions (section 3.2.3). 

3.2.1 Exact solution 

Nakai and Yoo (1988) presented the closed form solutions for shear force, 

bending moment, and total torsional moment along the length of a simply-

supported curved girder under a uniformly distributed load p over the girder 

surface shown in Figure 3.2 (Note: p is load per unit area). The curved girder has 

the radius of curvature R, and the radius of inside and outside edges of the 

uniformly distributed load Rin and Rout, respectively. The angle to define a 

position along the curved length, measured from the left support, is denoted as φ.  

In deriving the solutions of cross-sectional forces, Nakai and Yoo used the 

following notations: 

           ( )33
1 3

1
inout RRL −=     (3.2) 

           ( )22
2 2 inout

s RR
R

L −=     (3.3) 
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The shear force due to bending V(φ), bending moment M(φ), and total 

torsional moment TT(φ), along the length of curved girder, are expressed in Eqs. 

3.4, 3.5, and 3.6, respectively. 
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where L1 and L2 are the notations introduced in Eqs.3.2 and 3.3, respectively. The 

total torsional moment TT(φ) expressed by Eq.3.6 is the sum of the pure torsional 

moment and the warping torsional moment.  

A simply supported curved girder defined by Model 1 shown in Figure 

1.5, with a uniform load of 0.8 k/ft, was used as a case study to compare the exact 

calculation of shear force, bending moment, and total torsional moment along the 

length – Eqs.3.4, 3.5, and 3.6, respectively – to the results from UTRAP solutions. 

In order to study whether the accuracy of the closed-form solutions was sensitive 

to the variation in central angle, two different central angles were used in case 

studies. One case study used a 180-ft curved girder with a radius of 750 ft (central 

angle of 0.24 radian), and other used a 180-ft curved girder with a radius of 200 ft 

(central angle of 0.9 radian). The comparisons of shear forces, bending moment, 

and total torsional moment for those two case studies between the closed-form 

solutions and UTRAP outputs are shown in Figure 3.3, Figure 3.4, and Figure 3.5, 

respectively.  

Figure 3.3 through Figure 3.5 show that the closed-form solutions from 

Nakai and Yoo can predict exactly the UTRAP solutions for shear forces, bending 

moment, and total torsional moment along the length. Herein, the closed form 
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solutions from Nakai and Yoo are called the exact solutions. In addition, the 

closed form solutions do not depend on the central angle. Figure 3.3 through 

Figure 3.5 show that the accuracy of the closed form solutions for a relatively 

small central angle (0.24 radian) is the same as that for a relatively large central 

angle (0.9 radian).  

Figure 3.4 and Figure 3.5 shows that the maximum bending moment in a 

simply supported curved girder occurs at the midspan, and the maximum total 

torsional moment occurs at the supports. For the design process, it will be more 

convenient to estimate the maximum value using a simpler form of equation. The 

next discussion will present the derivation of maximum bending moment 

(midspan bending moment) and the support torque for a curved girder by using 

equilibrium, geometric relation, and integration processes.    
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Figure 3.3 Comparison of shear force between UTRAP and closed-form 

solutions  
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Figure 3.4 Comparison of bending moment between UTRAP and closed-form 

solutions 
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Figure 3.5 Comparison of total torsional moment between UTRAP and closed-

form solutions  
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  Figure 3.6 shows a simply supported curved girder under a uniform load 

per unit length w. By taking the sum of force in vertical direction, the reaction 

force on both ends can be derived as 
2
wl , where l is the curved length. A straight 

dashed line that connects the two ends of a curved girder is called the chord c. 
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Figure 3.6 Simply supported curved girder under the uniform load 

The box in Figure 3.6 shows that for a non-skewed support with respect to 

the girder centerline (support that is perpendicular to the girder centerline), the 

support torque TR can be resolved into two components. The first component is T, 

which is parallel to the chord of curved girder, and the second component is TM, 

which is perpendicular to the chord of the curved girder. TM is the support torque 

component that is in the same direction (i.e. additive) with the midspan bending 

moment.   
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The first component of torque, T, can be obtained by taking the sum of 

torques at midspan. From torque equilibrium, the midspan torque is known to be 

zero, and therefore T can be expressed as in Eq.3.7. Refer to the Appendix C for a 

complete derivation of T.   
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Having calculated the first component of torque T from Eq.3.7, the support 

torque TR can be determined using geometry as expressed in Eq.3.8. It should be 

noted that TR is the support torque given in the UTRAP output.  
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The second component of the torque, TM, can be calculated from 

geometry.  As shown in the detailed view in Figure 3.6, TM is the component of 

the support torque that is perpendicular to the chord and is expressed as follows:  
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Maximum bending moment in a simply supported curved girder under a 

uniform load occurs at the midspan. Midspan bending moment Mmid in a simply 

supported curved girder can be derived by taking the moment equilibrium about 

Reaction Torque arm Torque from 
uniform load 

Torque arm 

Reaction  
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midspan, as expressed in Eq.3.10. In order to correctly calculate the midspan 

bending moment, the second component of the support torque, TM, needs to be 

added in our moment equilibrium equation. Refer to Appendix C for a complete 

derivation of midspan bending moment.  
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As the radius of curvature R becomes infinity (i.e straight girder), the midspan 

bending moment expression shown in Eq.3.10 will become 
8

2wl , which is the 

well-known midspan bending moment for a straight girder under a uniform load 

w.  

The support torque calculated in Eq.3.8 is exactly the same as the one 

calculated using Nakai and Yoo’s exact formula (by substituting φ = 0 (at left 

support) or φ = Φ (at right support), as expressed in Eq.3.6). The midspan bending 

moment calculated in Eq.3.10 is also identical to the one calculated using Nakai 

and Yoo’s exact formula (by substituting φ = Φ/2 (at midspan), as expressed in 

Eq.3.5). 

 

Moment arm Moment from 

uniform load 

Moment arm 

Reaction  
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3.2.2 Approximate solutions 

Figure 3.3, Figure 3.4, and Figure 3.5 show that the maximum shear force 

due to bending in a simply-supported curved girder occurs at the support, the 

maximum bending moment occurs at the midspan, and the maximum total 

torsional moment occurs at the support. In the design process, predicting the 

maximum values by using the approximate method is convenient. This section 

will present an approximate solution for estimating the maximum shear force, 

midspan bending moment, and support torque.  

3.2.2.1 Shear force 

By taking the sum of forces in the vertical direction, the maximum shear 

force due to bending can be determined as 
2
wl , where w is the uniform load along 

the length and l is the arc length of the curved girder. In the example presented 

earlier (180-ft simply supported curved girder with 0.8 k/ft uniform load placed 

on it), the maximum shear force is 72 kip. This maximum shear force depends 

only on the magnitude of uniform load and the length of the curved girder.  

3.2.2.2 Midspan bending moment 

Midspan bending moment in non-skewed curved girder is not the same as 

that predicted by simply using classical beam theory for a straight girder, which is 

8

2wl . One of the reasons is because in a curved girder, there is an interaction 

between support torque and midspan bending moment. From Figure 3.6, it can be 

observed that there is a component of support torque that is in the same direction 

and thus is additive with the midspan bending moment. This component of 

support torque is shown inside the box in Figure 3.6 and called TM. Since the only 
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possible support condition in the UTRAP program is a non-skewed support, the 

effect of a skewed support is beyond the scope of this thesis.  

Therefore, as long as the component of support torque TM is added, the 

midspan bending moment can be estimated using a classical beam theory for a 

straight girder, which is 
8

2wc . Instead of using the curved length, the length used 

in predicting midspan bending moment using classical beam theory for a straight 

girder is the chord length c. The approximate method to calculate midspan 

bending moment is 

            Mapproxmid TwcM +=
8

2

.,     (3.11) 

where:   c = chord length = 
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2
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TM = Support torque component that is in the direction of midspan  

bending moment 
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R = radius of curvature 

Φ= central angle = l/R , where l is the curved length 

 

In addition to the Eq.3.11, Oleinik and Heins (1974, 1975) presented an 

approximate method to calculate midspan bending moment for curved girders 

with a ratio of the curved length to the radius of curvature (i.e central angle) 

smaller than or equal to 1.0 (l/R ≤ 1.0).  Their equation is expressed in Eq.3.12.  
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8

  
2wlKM curved ×=     (3.12) 

where w is uniform load along the length, l is the curved length, and K is a 

constant that depends on the type of loading. Constant for the uniform dead load, 

KD is expressed in Eq.3.13.  
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3.2.2.3 Support torque 

Memberg (2002) presented an approximate method for dealing with 

torsion in curved girders. As discussed earlier, in curved girders, no matter where 

the load is placed, there is always a component of torsional loading due to 

curvature. Figure 3.7 shows a plan view of a curved girder.  

d0d

L

L
  

Figure 3.7 Plan view of curved girder (Memberg 2002) 

 

In Figure 3.7, the straight perpendicular distance from any point on the 

chord to the curved girder is denoted by d. The maximum d occurs at the center of 

the arc--where it is denoted d0 -- and it is expressed in Eq.3.14.  

   













 Φ−=

2
cos10 Rd     (3.14) 

where R is the radius of curvature and Φ is the central angle. 
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Assuming there is no eccentric load, the applied torque at any point along 

the girder is equivalent to the load at that point multiplied by d at that point. From 

a torsional point of view, the symmetrical loading on a curved girder whose 

curved length is l can be approximated with a parabolic torque distribution on a 

straight girder whose length is l. Figure 3.8 shows how the torsion due to 

curvature is applied to a straight girder of equal length.  

 
 

w 

l 

l 

3
0lwd  3

0lwd  
T(x) 

x  

Figure 3.8 Approximating a curved girder with a straight girder from a 

torsional point of view 

 

The torque at any point is calculated by multiplying the value of the 

distributed load w by d at that point, where d is defined as a parabolic function. 

Applied torque at any point along the straight line T(x) is    

   2
2

00
)(

44
x

l
wd

x
l

wd
T x −=    (3.15) 

    for 






≤≤

2
0 lx  symmetric 

Each support must resist half of the total applied torque. Since T(x) is 

symmetric with respect to the midspan, the approximate support torque in the 

direction of chord Tapprox. shown in Figure 3.8 can be found as follows:  
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This expression of support torque in the direction of the chord is roughly 

equivalent to T, derived using equilibrium method (as expressed in Eq.3.7).  Since 

the approximate support torque in the direction of chord is known, the 

approximation of real support torque TR,approx., which estimates UTRAP support 

torque, can be stated in as follows: 
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lwdT
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3.2.2.4 M/R Method 

Tung and Fountain (1970) indicated that for a curved girder that has a 

central angle less than 30° (≈ 0.5 radian), the bending and torsional analysis of 

that curved girder can be uncoupled and investigated independently. This means 

that the bending moment of a curved girder can be found by straightening the 

curved girder to its full developed length (i.e. its arc length), and calculating the 

bending moment M using classical beam theory. Using the M/R Method, the 

midspan bending moment of a curved girder under a symmetrical uniform load is 

   
8

2

.,
wlM approxmid =     (3.18) 

where l is the arc length of a curved girder. Eq.3.18 is different than Eq.3.11 in 

two aspects. First, the length used in Eq.3.18 is the arc length, whereas the length 

used in Eq.3.11 is the chord length. Second, Eq.3.18 does not consider the support 

torque component that is in the same direction as the midspan bending moment, 

whereas Eq.3.11 does.      
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The torsional analysis of a curved girder under a symmetrical uniform 

load using the M/R Method can then be performed by applying a distributed 

torsional loading of M/R to the straightened curved girder whose length is equal 

to its arc length. This analysis can be illustrated with a figure similar to Figure 

3.9, except that the applied torque at any point along the straight line T(x) is   
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−
== 2)(

)(          (3.19) 

where w is the uniform load, x is the location along the length, measured from the 

left support, l is the arc length, and R is the radius of curvature. The approximate 

support torque in the direction of the chord, Tapprox., is  
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The approximation of real support torque TR,approx., is 
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3.2.3 Comparisons between approximate solution and exact solution 

In order to examine the accuracy of the approximate solutions for different 

lengths and radii of curvature, the approximate solutions were compared to the 

exact solution. 

The maximum shear force due to bending, which corresponds to the 

reaction force, can be predicted using 
2
wl . This maximum shear force exactly 
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matches the exact solution.  As was discussed earlier, this maximum shear force 

depends only on the magnitude of the uniform load and the curved length.   

The approximate method for calculating midspan bending moment for a 

relatively small central angle gives a reasonable prediction of the actual midspan 

bending moment. Table 3-1 compares result from UTRAP, the exact method 

(Eq.3.10) and the approximate methods (Eqs.3.11, 3.12 and 3.18). Table 3-1 

shows that the percentages of error of the approximate methods depend only on 

the central angle. Figure 3.9 shows the percent error of the midspan bending 

moment obtained from approximate methods with respect to UTRAP solutions as 

a function of the central angle.      
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Figure 3.9 Percentage of error of the midspan bending moment obtained from 

approximate method  
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Table 3-1 Comparison of UTRAP results with exact and approximate method to estimate midspan bending 

moment 

 Central EXACT
Angle Integration

Midspan moment (Eqn.(3.10)) (Eqn.(3.11)) (Eqn.(3.12)) (Eqn.(3.18))
(K/ft) ft ft rad K.ft K.ft K.ft K.ft K.ft
1.5 120 100 1.20 3174.4 3174.4 3103.8 -2.2 3088.8 -2.7 2700 -14.94
1.5 120 200 0.60 2805.1 2805.1 2785.5 -0.7 2797.2 -0.3 2700 -3.75
1.5 120 300 0.40 2745.7 2745.7 2736.9 -0.3 2743.2 -0.1 2700 -1.66
1.5 120 400 0.30 2725.5 2725.5 2720.5 -0.2 2724.3 0.0 2700 -0.94
1.5 120 500 0.24 2716.3 2716.3 2713.1 -0.1 2715.6 0.0 2700 -0.60
1.5 120 1000 0.12 2704.1 2704.1 2703.2 0.0 2703.9 0.0 2700 -0.15

0.8 180 120 1.50 4224.3 4224.4 4102.3 -2.9 3969.0 -6.0 3240 -23.30
0.8 180 140 1.29 3910.5 3910.5 3815.2 -2.4 3775.6 -3.4 3240 -17.15
0.8 180 160 1.13 3730.2 3730.2 3654.4 -2.0 3650.1 -2.1 3240 -13.14
0.8 180 200 0.90 3537.9 3537.9 3487.2 -1.4 3502.4 -1.0 3240 -8.42
0.8 180 300 0.60 3366.1 3366.1 3342.6 -0.7 3356.6 -0.3 3240 -3.75
0.8 180 400 0.45 3309.8 3309.8 3296.4 -0.4 3305.6 -0.1 3240 -2.11
0.8 180 500 0.36 3284.3 3284.3 3275.7 -0.3 3282.0 -0.1 3240 -1.35
0.8 180 1000 0.18 3251 3251.0 3248.8 -0.1 3250.5 0.0 3240 -0.34
0.8 180 2000 0.09 3242.7 3242.7 3242.2 0.0 3242.6 0.0 3240 -0.08
0.8 180 3000 0.06 3241.2 3241.2 3241.0 0.0 3241.2 0.0 3240 -0.04
0.8 180 4000 0.05 3240.7 3240.7 3240.5 0.0 3240.7 0.0 3240 -0.02
0.8 180 5000 0.04 3240.4 3240.4 3240.3 0.0 3240.4 0.0 3240 -0.01
0.8 180 10000 0.02 3240.1 3240.1 3240.1 0.0 3240.1 0.0 3240 0.00

3 80 100 0.80 2571.1 2571.1 2541.0 -1.2 2553.6 -0.7 2400 -6.65
3 80 200 0.40 2440.7 2440.7 2432.8 -0.3 2438.4 -0.1 2400 -1.67
3 80 300 0.27 2417.9 2417.9 2414.4 -0.1 2417.1 0.0 2400 -0.74
3 80 400 0.20 2410 2410.0 2408.0 -0.1 2409.6 0.0 2400 -0.41
3 80 500 0.16 2406.4 2406.4 2405.1 -0.1 2406.1 0.0 2400 -0.27
3 80 1000 0.08 2401.6 2401.6 2401.3 0.0 2401.5 0.0 2400 -0.07

w l R UTRAP M/R Method

% Error

APPROXIMATE METHOD
Oleinik, Heins 

% Error

Straight girder approx.

% Error

*: Central angle is greater than 1 radian. Oleinik and Heins indicated that their method can only be used for the girder that has a central angle less 
than 1 radian. 
**: Central angle is greater than 0.5 radian. Tung and Fountain indicated that the M/R method can only be used for the girder than has a central 
angle less than 0.5 radian.  

* 

* 
* 
* 

** 
** 

** 
** 
** 
** 
** 

** 
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Examining the percentage of error in Figure 3.9, it can be summarized that 

all three approximate methods underestimate the actual midspan bending moment. 

However, for a relatively small central angle (less than 1.2 radian), the percentage 

of error of Oleinik and Heins and the straight girder approximation methods are 

small (less than 3%). In general, for a central angle less than 1 radian, the Oleinik 

and Heins’ method gives a smaller percentage of error than the straight girder 

approximation. However, its percentage of error increases dramatically for a 

central angle larger than 1 radian. Therefore, it is clear that as Oleinik and Heins 

recommended, their methods can only be used for the curved girder that has a 

central angle less than 1 radian. Among the three approximate methods, the 

percentage of error of the M/R method is the largest. However, as Tung and 

Fountain indicated, the M/R method is only appropriate for a curved girder that 

has a central angle less than 0.5 radians. For a central angle less than 0.5 radians, 

the percentage of error of the M/R method is less than 2.5%.     

The approximate method for calculating support torque gives a good 

prediction of the actual support torque. Table 3-2 shows the results for UTRAP, 

the exact method (Eq.3.8) and the approximate methods (Eqs.3.17 and 3.21). 

Since UTRAP gives the torque at a location 2 feet away from the support, the 

UTRAP solution and the exact solution are slightly different. The percentages of 

error of the approximate methods also depend only on the central angle. 

Table 3-2 shows that both approximate methods to predict the support 

torque slightly overestimate the actual support torque. However, the percentage of 

error is small (less than 1%). In general, the percentage of error of the M/R 

method is larger than the approximate method expressed in Eq.3.17. Tung and 

Fountain indicated that the M/R method is only appropriate for a curved girder 

that has a central angle less than 0.5 radians. For a central angle less than 0.5 

radians, the percentage of error of the M/R method is less than 1%. 
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Table 3-2 Comparison of UTRAP results with exact and approximate method to estimate support torque 

 Central UTRAP
Angle Torque at 2 ft T T M Support Torque (TR )

from support (Eqn.(3.7)) (Eqn.(3.9)) (Eqn.(3.8)) (Eqn.(3.17)) (Eqn.(3.21))
(K/ft) ft ft rad K.ft K.ft K.ft K.ft K.ft K.ft
1.5 120 100 1.20 1260 1041.6 712.6 1262.1 1269.77 0.61 1308.56 3.68
1.5 120 200 0.60 559.3 535.2 165.5 560.2 561.02 0.15 565.25 0.91
1.5 120 300 0.40 365.3 358.6 72.7 365.9 366.10 0.07 367.32 0.40
1.5 120 400 0.30 272 269.4 40.7 272.5 272.55 0.04 273.07 0.23
1.5 120 500 0.24 216.9 215.7 26.0 217.3 217.30 0.02 217.56 0.14
1.5 120 1000 0.12 108 108.0 6.5 108.2 108.16 0.01 108.19 0.04

0.8 180 120 1.50 2090.6 1530.7 1426.0 2092.0 2112.20 0.97 2214.06 5.83
0.8 180 140 1.29 1663.1 1332.0 997.7 1664.2 1675.95 0.70 1734.88 4.24
0.8 180 160 1.13 1390.4 1177.0 742.0 1391.4 1398.82 0.54 1436.30 3.23
0.8 180 200 0.90 1057 952.5 460.1 1057.8 1061.37 0.34 1079.46 2.05
0.8 180 300 0.60 671.7 642.2 198.7 672.2 673.22 0.15 678.30 0.91
0.8 180 400 0.45 495.7 483.5 110.7 496.0 496.47 0.08 498.57 0.51
0.8 180 500 0.36 393.6 387.5 70.5 393.9 394.12 0.05 395.18 0.32
0.8 180 1000 0.18 194.9 194.2 17.5 195.0 195.06 0.01 195.19 0.08
0.8 180 2000 0.09 97.2 97.2 4.4 97.3 97.28 0.00 97.30 0.02
0.8 180 3000 0.06 64.8 64.8 1.9 64.8 64.82 0.00 64.83 0.01
0.8 180 4000 0.05 48.6 48.6 1.1 48.6 48.61 0.00 48.61 0.01
0.8 180 5000 0.04 38.9 38.9 0.7 38.9 38.89 0.00 38.89 0.00

3 80 100 0.80 681.3 629.8 266.3 683.8 685.64 0.27 694.85 1.62
3 80 200 0.40 324 318.7 64.6 325.2 325.42 0.07 326.51 0.40
3 80 300 0.27 214.1 213.0 28.6 214.9 214.93 0.03 215.24 0.18
3 80 400 0.20 160.1 159.8 16.0 160.6 160.67 0.02 160.80 0.10
3 80 500 0.16 127.9 127.9 10.3 128.3 128.34 0.01 128.41 0.06
3 80 1000 0.08 63.8 64.0 2.6 64.0 64.04 0.00 64.05 0.02

w l R
Exact (using force equilibirum method)

T R,approx. (Use M/R Method)

% error

Approximate Method
T R,approx.

% error

**: Central angle is greater than 0.5 radian. Tung and Fountain indicated that the M/R method can only be used for the girder than has a central angle 
less than 0.5 radian.  

** 
** 

** 
** 
** 
** 
** 

** 
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3.3 CONTINUOUS GIRDER 

 

Predicting cross-sectional forces in a continuous girder is more 

complicated than that for a simply-supported girder, because a continuous girder 

is a statically indeterminate. In order to determine the cross-sectional forces in a 

continuous straight girder, one must use one of the methods of indeterminate 

analysis (i.e. stiffness method, flexibility method, moment distribution, etc). The 

problem in a continuous curved girder is much more complicated than in a 

continuous straight girder due to interaction between bending and torsion in 

curved girders. All simple formulas presented in sections 3.1 and 3.2 cannot be 

used for analysis of continuous girders. However, Tung and Fountain indicated 

that the M/R method can be applied to the analysis of continuous curved girders 

that satisfy the following limitations: 

• The central angle of each span should not exceed 25° (0.44 radian) and the 

weighted average of ratio of bending rigidity to torsional rigidity EI/GJ in 

each span should not exceed 4.0, where G is the shear modulus of 

elasticity and J is the pure torsional constant.   

• If all the supports are torsionally fixed, the central angle of the entire 

length of girder should not exceed 90° (1.6 radian).  

Those limitations are based on a parametric study and subject to personal 

judgment about the acceptable accuracy of the approximate solutions.  

This section presents cross-sectional forces of a three-span continuous 

girder based on UTRAP solutions and the effect of changing the central angle and 

the equivalent plate thickness on the cross-sectional forces. In addition, the effects 

of the central angle and the ratio of EI/GJ on the accuracy of the M/R method in 

predicting bending moment are discussed. The example of a continuous girder 
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presented in this section is the three-equal-span continuous girder that has a 

constant radius of curvature R and a centerline arc length of 480 ft under a 

symmetrical uniformly distributed load of 3.3 k/ft. That model is known as Model 

2 and its cross-section dimensions are shown in Figure 1.5. An Alternating-

Diagonal top lateral bracing system with a 10-ft panel length is used to represent a 

pseudo-closed section. 

Different radii of curvature are used to examine the sensitivity of the 

cross-sectional forces to the central angle in a continuous girder. In addition, both 

the open-section and the pseudo-closed sections with the different equivalent plate 

thicknesses of Model 2 are used. Tables 3-3 and 3-4 shows the analysis cases 

studying the effect of the central angle and the ratio of EI/GJ, respectively, on the 

cross-sectional forces in a continuous girder. “Open” in Table 3-4 indicates that 

there is no lateral bracing system. 

 

Table 3-3 Analysis cases to study the effect of the central angle on the cross-

sectional forces  

Radius of curvature, R Total central angle Central angle of each span 

Straight - - 

450 ft 61° (1.07 radian) 20.4° (0.356 radian) 

225 ft 122° (2.13 radian) 40.7° (0.711 radian) 
NOTE: Total length = 480 ft, each span length = 160 ft  

 



 56 

Table 3-4 Analysis cases to study the effect of the ratio of EI/GJ on the cross-

sectional forces  

Equivalent 
plate thickness teq 

Diagonal 
area Moment of inertia, I Pure torsional 

Constant, J Ratio of EI/GJ 

0.08 in 14.2 in2 182198 in4 121263 in4 3.97 

0.04 in 5.96 in2 170104 in4 67848 in4 6.63 

0.02 in 2.76 in2 163804 in4 36070 in4 12 

Open - 157328 in4 34.8 in4 11948 
NOTE: E=29600 ksi and G=11200 ksi  

3.3.1 Shear force 

Figure 3.10 shows the UTRAP solution for the shear force diagram for 

both straight and curved Model 2 girders. The shear force diagram is anti-

symmetrical about midspan. Figure 3.10 shows that the shear forces along the 

length for both open sections and pseudo-closed sections in a continuous straight 

girder are the same. The shear force diagram for a curved girder that has a teq of 

0.08 inches is the same as that for a straight girder. However, there will be slight 

discrepancies between the shear force diagram for the open-section curved girder 

and that for the straight girder. 

3.3.2 Bending moment 

Figure 3.11 shows the bending moment diagram for an open-section and 

pseudo-closed section continuous straight girder. Figure 3.11 shows that the 

bending moments along the length for both the open-section and the pseudo-

closed section continuous straight girder are the same. The bending moment 

diagram is symmetrical about midspan, since the continuous girder is itself 

symmetric about midspan.  
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Figure 3.10 Shear force diagram of three-span continuous girder 

 
Straight 

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

0 100 200 300 400

Distance to the first left support (ft)

M
om

en
t (

K.
ft) Open

teq=0.08"

Midspan 

 

Figure 3.11 Bending moment diagram of a straight continuous girder 
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Tung and Fountain indicated that the M/R method can be applied to a 

continuous girder. Using the M/R method, the bending moment diagram for a 

continuous curved girder can be approximated with that of a continuous straight 

girder whose length is equal to the arc length of the curved girder. The accuracy 

of the approximate solution depends on the central angle of the span and the entire 

bridge and on the ratio of EI/GJ. In order to examine the effect of the central 

angle on the accuracy of approximate solutions, Figure 3.12 and Figure 3.13 show 

the comparison between the approximate and the exact bending moment diagrams 

for EI/GJ ratios of 3.96 and 12, respectively. Since the bending moment diagram 

is symmetric about midspan, the bending moment diagrams are shown for only 

half the girder length. 

Figure 3.12 and Figure 3.13 show that the accuracy of representing 

bending moment diagram of a continuous curved girder with that of a continuous 

straight girder decreases as the central angle increases. The M/R method 

overestimates positive bending moment (i.e. compression on the top fiber) and 

underestimates negative bending moment (i.e. compression on the bottom fiber). 

Figure 3.12 and Figure 3.13 show that the accuracy of the approximate solution 

does not significantly change for different ratios of EI/GJ. 

However, in order to examine the effect of the ratio of EI/GJ on the 

accuracy of approximate solutions in more detail, Figure 3.14 and Figure 3.15 

show the comparisons between the approximate bending moment diagram and the 

bending moment diagram of a continuous curved girder for the central angle of 

61° and 122°, respectively. Figure 3.14 and Figure 3.15 show that the accuracy of 

the approximate solutions is not significantly affected by the change in the ratio of 

EI/GJ, as long as that ratio is kept within the same order of magnitude. Certainly, 

the approximate method is not accurate for the girder that has a very large ratio of 
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EI/GJ (i.e. an open section). In general, it is easy to satisfy the limiting ratio of 

EI/GJ of around 10 by using a reasonable amount of top lateral bracing system.  

EI / GJ = 3.96
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Figure 3.12 Bending moment diagram with EI/GJ=3.96 

EI / GJ = 12
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Figure 3.13 Bending moment with EI/GJ=12 
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Central angle = 61 degrees 
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Figure 3.14 Bending moment diagram with central angle of 61° 

Central angle = 122 degrees 
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Figure 3.15 Bending moment diagram with central angle of 122° 
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Unlike the accuracy of the M/R method in predicting bending moment for 

a simply-supported curved girder, the accuracy of the M/R method in predicting 

bending moment for a continuous curved girder depends not only on the central 

angle, but also on the ratio of EI/GJ. The explanation for this is that the analysis 

of a continuous girder is a statically indeterminate. In a continuous curved girder, 

in addition to the static indeterminacy, there is an interaction between bending 

moment and torsional moment. Therefore, changes in the relative ratio between 

the bending rigidity and the torsional rigidity will definitely alter the cross-

sectional force distribution, hence changing the bending moment diagram. It 

should be noted that for a simply supported curved girder, the accuracy of the 

M/R method to predict the bending moment of open-sections and pseudo-closed 

sections that have similar central angles is the same. Tung and Fountain stated 

that M/R method is applicable to a girder that has a total central angle of less than 

90° and a ratio of EI/GJ of less than 4.0. However, Figures 13.12 through 13.15 

show that the accuracy of the M/R method is much more sensitive to the total 

central angle than to the ratio of EI/GJ.  

 

3.3.3 Torsional moment 

Unlike the bending moment diagram, the torsional moment diagram is 

anti-symmetrical about midspan (like the shear diagram) even though the 

continuous girder is symmetrical about midspan. Figure 3.16 shows the torsional 

moment diagram for the three-equal-span continuous curved girder with a central 

angle of 122 degrees and an EI/GJ ratio of 3.96. Since the girder is symmetrical 

about midspan, the torsional moment diagram is shown for only half the girder 

length. 
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In order to study the effect of the central angle and the ratio of EI/GJ on 

the torsional moment diagram, Figures 3.17 and 3.18 show torsional moment 

diagrams for an open-section (corresponding to an EI/GJ ratio of 11948) and a 

pseudo-closed section of continuous curved girders with total central angles of 61 

degrees and 122 degrees, respectively. 

Figures 3.17 and 3.18 show that torsional moment diagrams are very 

sensitive to the central angle. Unlike the torsional moment diagram for a simply-

supported curved girder that depends only on the central angle, torsional moment 

diagram for a continuous curved girder depends not only on the central angle, but 

also on the ratio of EI/GJ. The torsional moment diagram for the open-section 

(EI/GJ = 11948) is significantly different than that for the pseudo-closed sections. 

However, the torsional moment diagrams for pseudo-closed sections that have the 

same orders of magnitude of EI/GJ are not significantly different. 
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Figure 3.16 Torsional moment diagram  
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Central angle = 61 degrees 
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Figure 3.17 Torsional moment diagram with central angle of 61° 
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Figure 3.18 Torsional moment diagram with central angle of 122° 
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Tung and Fountain indicated that by using the M/R method, the torsional 

moment diagram for a continuous curved girder can be found by the following 

procedures: 

• Determining bending moments M for the straightened girder. 

• Applying the distributed torsional loading of M/R to each span of the 

straightened curved girder with the proper torsional boundary condition 

and determining the torsional moment in each span.  

Figure 3.19 compares torsional moment for the three-equal-span of a 

Model 2 continuous girder with an equivalent plate thickness of 0.08 inches from 

the UTRAP solutions and the M/R method.  
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Figure 3.19 Approximate and real torsional moment diagram  

 

Figure 3.19 shows that the M/R method can predict a torsional moment in a 

continuous curved girder well. The discrepancies of the torsional moments are 
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largest at the supports and reduce progressively toward the midspan. In addition, 

unlike the exact solutions for UTRAP, the predicted torsional moment at the 

interior support (at 160-ft from the left support) is smooth. The M/R method 

cannot capture the difference in torsional moments at both sides of the interior 

support. For a continuous girder with constant radius of curvature and bending 

rigidity, the M/R method gives only one set of torsional moments at an 

intermediate support, irrespective of the degrees of torsional restrains provided at 

the support. The algebraic difference of the two end torsional moments adjacent 

to an intermediate support is the torsional moment reaction at the support. 

Therefore, the M/R method cannot provide the torsional moment reactions at the 

intermediate support. The intermediate steps to determine torsional moments in a 

continuous curved girder using the M/R method are presented in Appendix C.    

 

3.4 SUMMARY 

 

Classical beam theory can be used to analyze the cross-sectional forces in 

a simply supported straight girder. The second section presented the exact method 

from Nakai and Yoo and approximate methods to analyze the cross-sectional 

forces in a simply supported curved girder. The exact method from Nakai and 

Yoo can predict the variation of cross-sectional forces along the length of a 

simply supported curved girder obtained from UTRAP solution exactly. By 

considering the interaction between bending moment and torsional moment, the 

exact-formulas to predict the midspan bending moment and the support torque 

can be derived using equilibrium and geometry.   

In addition to the exact method, the approximate methods to calculate 

support torque and midspan bending moment were presented: the first one was 
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derived using the modification of classical beam theory for a straight girder and 

the second one using the M/R method, derived by Tung and Fountain. The 

accuracy of the approximate solutions depends only on the central angle. For a 

relatively small central angle, both approximate methods can predict the support 

torque and the midspan bending moment of a simply supported curved girder 

well. However, as the central angle becomes larger, the accuracies of the 

approximate solutions become smaller. It was shown that the closed-form 

formulas to predict the midspan bending moment by modifying classical beam 

theory (Eq.3.11) and derived by Oleinik and Heins (Eq.3.12) are slightly better 

than the M/R Method. In addition, the closed-form formula to predict the support 

torque by approximating a curved girder as a straight girder (Eq.3.17) is slightly 

better than the M/R Method.  

The third section presented the cross-sectional forces in continuous 

straight and curved girders. Because of the static indeterminacy and an interaction 

between bending moment and torsional moment, the cross-sectional forces in a 

continuous curved girder depend not only on the central angle, but also on the 

ratio of bending rigidity to torsional rigidity (EI/GJ). However, the change of 

cross-sectional forces in a continuous is much more sensitive to the total central 

angle than to the ratio of EI/GJ. It can be concluded that the M/R method can 

predict the variation of bending moment and torsional moment in a continuous 

girder well, provided the girder satisfies the limitations recommended by Tung 

and Fountain. However, the M/R method cannot provide the torsional moment 

reactions at the intermediate support because it gives only one set of torsional 

moments at an intermediate support, irrespective of the degrees of torsional 

restrains provided at the support. 
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CHAPTER 4 
Cross-section Properties 

 
 

In general, trapezoidal box girders can be classified into three categories:  

• open-sections (without any top lateral bracing system) 

• pseudo-closed sections (with a top lateral bracing system) 

• closed-sections (after concrete deck has hardened) 

Because the scope is limited to the behavior of trapezoidal steel box girders 

during the construction phase, behavior of the closed-section during the 

serviceability phase will not be considered. Also, only trapezoidal cross-sections 

symmetric about a vertical axis passing through a centroid subjected to bending 

and torsion will be discussed. 

The bending and torsional cross-section properties of an open section and 

a pseudo-closed section are discussed in this chapter. Procedures for determining 

some of the torsional properties are not well known so methods for determining 

those properties are presented. Figure 4.1 gives the notation used for the cross-

section properties calculations. 

 

4.1 FLEXURAL PROPERTIES 

 

The location of the horizontal centroidal axis below the centroid of top 

flange , yC, for an open section is 

( )( )
A

rttrdtb
y dtfwbwbfbf

C

5.05.02 ++
=   (4.1) 

 

Construction phase 

Serviceability phase 
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ttf 
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tbf 
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a 

Notations: 
 
a     : Girder top width 
btf : Top flange width 
ttf : Top flange thickness 
s : Slope of web 
bw : Sloping web width, measured from centroid of top flange to centroid of bottom flange  
tw : Sloping web thickness 
bbf : Bottom flange width 
tbf : Bottom flange thickness 
d : Girder depth, measured from centroid of top flange to centroid of bottom flange 
Atf  : Area of top flange  
Aw : Area of web 
Abf : Area of bottom flange  

Figure 4.1 Notations for a trapezoidal box girder 

where   rd    : vertical web depth (measured from the bottom fiber of the top flange 

to the top fiber of the bottom flange) 

                   =   d – 0.5 ttf – 0.5 tbf 

 rbw   : width of the sloping web plate 
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(4.2) 

(4.3) 

    A  : total cross-sectional area  

          =   2 btf ttf  + 2 rbw tw + bbf tbf 

 

The moments of inertia with respect to the horizontal and vertical 

centroidal axes, IXC and IYC, respectively, for the open section shown in Figure 4.1 

are 
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For a pseudo-closed section, cross-section properties related to bending 

about the horizontal centroidal axis can be calculated either by considering or by 

neglecting the contribution of the top lateral bracing system into total bending 

stiffness.  

Helwig and Fan (2000) proposed a simplified method for considering the 

contribution of the top lateral bracing system into the overall girder bending 

stiffness by adding the term Aadd to the sum of the areas of the two top flanges. 

Aadd depends on the geometry and member size of the top lateral system. Sample 

calculations for Aadd are given later in this chapter. Including the contribution of 

the top lateral bracing system, yC and IXC for a pseudo-closed section are 
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(4.6) 
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where A = 2 btf ttf  + 2 rbw tw + bbf tbf + Aadd     (4.5) 
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It is conservative and easier to neglect the contribution of the top lateral bracing 

system for determining stress in the steel girder. 

 

4.2 SHEAR CENTER 

 

The shear center is the point through which the applied loads must pass to 

produce bending without twisting. Under torsion, the shear center is center of 

rotation). Generally, the location of the shear center can be found by two 

techniques: the force method and the numerical method. The force method 

considers the resultant of the shear flow and equilibrium, and the numerical 

method directly employs numerical equations and uses the finite difference 

approach to locate a shear center. In the following sections, both methods will be 

used and the results will be compared. 
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4.2.1 Force method  

The shear center of a singly symmetric section like a trapezoidal box 

girder is located on the y-axis (axis of symmetry). In order to determine location 

of the shear center along the y-axis, a shear force Vx is applied in the x-direction 

through the shear center at a distance ey below bottom flange and the shear stress 

distribution is determined as shown in Figure 4.2. From the shear stress 

distribution, the equivalent shear force on each element is calculated. A complete 

derivation of the closed-form solution is given in section E.1 of Appendix E. 

All seven equivalent shear forces (F1 through F7) shown in Figure 4.2(b) 

must be statically equivalent to the resultant force Vx acting through the shear 

center. Therefore, the moment of the shear force Vx about any point in the cross-

section is equal to the moment of all seven equivalent shear force (F1 through F7) 

about that point. This moment relationship provides an equation from which the 

distance ey to the shear center can be found. It is usually convenient to take the 

moment about the shear center, where the moment produced by Vx is zero. 

The closed-form solution for ey of an open-section trapezoidal box girder 

as measured from the centroidal axis of the bottom flange is  
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   (4.7) 

where all cross-section dimensions are shown in Figure 4.1. A negative value of 

ey indicates that the shear center is located below the centroidal axis of bottom 

flange. 
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Figure 4.2 Shear stress distribution and shear flow in an open-section 

trapezoidal girder 
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4.2.2 Numerical method  

Heins (1975) presented a numerical method using a finite difference 

approach. The y-coordinates of the shear center location relative to the centroid of 

the cross section is 

            
y

wx

I
I

y −=0     (4.8) 

where Iwx is a geometric property.  

( ) ( ) ijijijjiijijjjiiwx LtxwxwLtxwxwI  
6
1 

3
1

+Σ++Σ=   (4.9) 

where xi and xj are the x-coordinates of points i and j of each straight line element 

on the cross-section, tij and Lij are the thickness and length of element ij, and wi , 

wj are the absolute values of w at point i and j, respectively.  

The wij between each point i and j is defined as ρij Lij , where ρij is the 

perpendicular distance from centroid of the cross-section to a straight line through 

the end points of an element ij. The sign of ρij is defined as positive if the centroid 

of cross-section is on the left side of the ij vector. The absolute value of w at each 

point is computed by summing the ρL starting from w1 = 0 (where point 1 is 

called a reference point, which is the starting point of the element’s flow vector 

for the entire cross-section). The choice and value of the reference point can be 

arbitrary, though the choice of zero is most convenient.   

Section E.2 of Appendix E gives an example of how to apply this 

numerical method to locate shear center of an open-section trapezoidal box girder.  

 

4.2.3 Comparison between force method and numerical method results 

The shear center location for Model 1 was evaluated using both methods. 

From the force method (i.e. Eq.4.7)), the shear center location of Model 1 is 26.9 
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inches below the centroidal axis of the bottom flange, whereas the numerical 

method gave 26.8 inches. The difference between the two results is only about 0.4 

%. In general, there is good agreement between the two methods.  

 

4.2.4 Shear center location of thin-walled closed section 

Determining the shear center location of a thin-walled closed section is not 

as easy as it is for an open section. Part of the reason is because in a closed 

section, the shear flow and shear stress are generally not known at any location, 

whereas in an open section, the values of the shear flow and shear stress at all 

edges of the cross section are zero. So, determining the shear flow in a closed 

section can be viewed as a statically indeterminate problem. 

There are numerous methods available for determining the shear center of 

a thin-walled closed section. Heins (1975) describes a numerical method for 

locating the shear center of a thin-walled closed section. Bickford (1998) and 

Megson (1999) use a method similar to the force method to locate the shear center 

of a thin-walled closed section. Barber (2001) used an energy-based approach to 

locate the shear center of a thin-walled closed section. None of those methods 

considered a closed section that has a truss or some other lattice structure as part 

of the wall (i.e. pseudo-closed section).  

However, Dabrowski (1968) presented a method for locating the shear 

center of a pseudo-closed section. The Dabrowski method will be used as a 

reference to locate the shear center of a pseudo-closed section. But, because his 

method involved integration of the torsional warping function, further discussion 

of shear centers of pseudo-closed sections will be presented when the torsional 

warping function is discussed later in this chapter. 
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4.3 PURE TORSIONAL CONSTANT 

 

The pure torsional constant for open sections comprised of n narrow 

rectangular sections, Jopen, can be approximated by: 

3

13
1

i

n

i
iopen tbJ ∑

=

=     (4.10) 

where bi and ti are the width and thickness of each element i, respectively.  

For closed sections made up of n rectangular components, the pure 

torsional constant, Jclosed, can be determined by:  
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where Ao is the area enclosed by the centerline of the walls.  

 

4.4 TORSIONAL WARPING FUNCTION 

 

The torsional warping function for an open section w(s)open, with origin s = 

0 taken on the vertical axis that passes through shear center is 

     ∫−=
s

open rdssw
0

)(       (4.12) 

where r is the perpendicular distance from the ds element to the shear center. For 

the sign shown, it is assumed that the section is traversed in a counter-clockwise 

direction. It should be noted that r is positive whenever the shear center is located 

on the left side of an element when traversing from the beginning point to the 

ending point of that element. The advantage of taking s = 0 at the vertical axis that 

passes through shear center is that the torsional warping function diagram will be 
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anti-symmetrical about that axis. Therefore, only half of cross-section needs be 

considered. Table 4-1 illustrates how to use Eq.4.12 to construct the torsional 

warping function diagram for the open-section vertical web girder shown in 

Figure 4.3.  

Figure 4.4 shows the torsional warping function diagram for the open 

section w(s)open. which is anti-symmetrical with respect to the vertical axis that 

passes through the shear center. Using the same procedure, the torsional warping 

function diagram for an open-section trapezoidal box girder is shown in Figure 

4.5. 

In order to construct the torsional warping function diagram for a pseudo-

closed section of trapezoidal box girder, its shear center location must first be 

determined. From Dabrowski (1968), the vertical distance eyA between the initial 

pole A and the shear center S.C for a pseudo-closed section is 

    ∫=
A

A
YC

yA xdA
I

e ^1 ω     (4.13) 

where ω^
A is the reduced sectorial area with respect to an arbitrary pole A and x is 

the horizontal distance measured from the initial pole A. ω^
A defined by Eq.4.14 is 

basically a modified sectorial area to account for the fact that in a pseudo-closed 

section, the shear stress on the median surface is not zero. 
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where ωA is the sectorial area for an open section and Ao is the area enclosed by 

the shear flow. 



 77 

 

Y 

C.L (Center Line) 
2
 tb

 
3 2 4 

h 

b 

X 

ey 

o 1 
 

S.C (Shear Center) 

Vertical axis that passes through shear 
 

  
Figure 4.3 Representation of an open-section vertical web girder 

Table 4-1 Tabular method for making the torsional warping function diagram  
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With the pole A taken on the axis of symmetry and assuming the section is 

traversed in a clockwise direction from the pole A, ωA is  

          ∫=
s

AA dsr
0

ω     (4.15) 

where rA is the perpendicular distance from the contour tangent to the pole A. 

Figure 4.6 shows a simplified pseudo-closed section of a trapezoidal box 

girder with the pole A located on the y-axis, in the plane of the top lateral system. 

The perpendicular distance from web to the pole A is denoted rwA. For 

simplification, the top flanges are assumed to only have areas (not length). 
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Figure 4.6 Simplified pseudo-closed section of trapezoidal box girder with  

pole A 

An imaginary cut is assumed between pole A and point 5. Because of that 

cut, the section can be treated as an open section and ωA is calculated with a 

procedure similar to the one shown in Table 4-1. The only differences are the 

procedure to calculate w(s)open shown in Table 4-1 is made with respect to the 



 81 

shear center and the calculations are made proceeding counter-clockwise from 

point o at the center of the bottom flange.  

Figure 4.7 shows the ωA diagram. The section is traversed in a clockwise 

direction from the reference pole A. Using the ωA diagram, the ω^
A diagram can be 

constructed using Eq.4.14, and is shown in Figure 4.8. Having both the ω^
A and x 

diagrams, ∫
A

A xdA^ω  can be readily calculated. For convenience, the area 

integration will be performed using visual integration with the aid of Table F-1 in 

Appendix F. Table 4-2 gives the integration details. Because both the ω^
A and x 

diagrams are anti-symmetric, only half of the cross section is considered. 
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Figure 4.7 ωA diagram for a pseudo-closed section 

The shear center for a pseudo-closed trapezoidal box girder, expressed in 

Eq.4.13, can then be written as 
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Figure 4.8 ω^A diagram and x diagram of pseudo-closed trapezoidal box girder 
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Table 4-2 Visual integration technique for ∫
A

A xdA^ω  
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where ω^
A1 and ω^

A2 are the reduced sectorial areas with respect to pole A defined 

in Figure 4.8. Negative value of eyA indicates that the shear center is located below 

pole A. 

With the ω^
A diagram and shear center location having been determined, 

the torsional warping function w(s)pseudo-closed can be constructed. It should be 

pointed out that the torsional warping function for a pseudo-closed section is the 

same as the reduced sectorial area with respect to the shear center ω^
S.C.. 

Dabrowski derived a relationship between the sectorial areas ω with respect to 

two different poles A and S.C. For a singly-symmetrical section, ω^
S.C. can be 

related to ω^
A as follows: 
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  xeyAACS −= ^
..

^ ωω     (4.17)  

 Figure 4.9 shows the reduced sectorial area of a pseudo-closed trapezoidal 

box girder with respect to its shear center ω^
S.C. diagram, which is exactly the 

same as the torsional warping function for a pseudo-closed section of a 

trapezoidal box girder w(s)pseudo-closed. In order to simplify notation, ω^
S.C is 

denoted w^. 
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Because w^ diagram is anti-symmetrical with respect to the center-line, 
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Figure 4.9 Torsional warping function of pseudo-closed section 

 

4.5 WARPING MOMENT OF INERTIA 

 

The warping moment of inertia Iw, also known as the torsional warping 

constant, is determined from       
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( )∫=
A

w dAswI 2)(     (4.18) 

for both open and pseudo-closed sections. Table 4-3 illustrates the computation of 

Iw for an open-section trapezoidal box girder based on its w(s)open diagram shown 

in Figure 4.5. Because the w(s)open diagram is anti-symmetric, the integration only 

has to be performed over half the cross-section.  

Based on the integration, the warping moment of inertia of an open-

section trapezoidal box girder Iw,open is 
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where w1 through w4 are defined in Figure 4.5. 

 Table 4-4 illustrates the computation of the warping moment of inertia of a 

pseudo-closed trapezoidal box girder based on its w(s)pseudo-closed diagram, shown 

in Figure 4.9. Again, because w(s)pseudo-closed diagram is anti-symmetric, only half 

of the cross section is integrated.  

Based on the results of the integration, the warping moment of inertia of a 

pseudo-closed trapezoidal box girder Iw,pseudo-closed is 
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where w^
1 and w^

2 are defined in Figure 4.9. 
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Table 4-3 Integration for ( )∫
A

open dAsw 2)(  
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Table 4-4 Integration for ( )∫ −
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4.6 WARPING SHEAR PARAMETER AND CENTRAL SECOND MOMENT OF AREA 

 

The warping shear parameter µ is one of the required parameters for 

determining the bimoment derived by Dabrowski. For an open-section, µopen = 

1.0, and for a closed section, µclosed is  

    
c

closed
closed I

J
−= 1µ     (4.21) 

where Ic is the central second moment of area defined as  

                ( ) dArI
A

CSc ∫= 2
.     (4.22) 

where rS.C. is the perpendicular distance from the contour tangent of each cross-

section element to the shear center as shown in Figure 4.10.  For the pseudo-

closed trapezoidal girder Ic becomes 

( ) ( ) ( ) ( ) ( ) ( )bfbfyAwwwebCSeqyAclosedpseudoc tbdetbrateI 22
..

2
, 2 −++= −−  (4.23) 

Dabrowski indicated that the flange area Af should not be included in the Ic,pseudo-

closed calculation.  

Generally, the warping shear parameter can be seen as a reduction factor 

to warping bimoment due to the presence of pure torsion. For an open section, 

because the pure torsion component is very small compared to warping torsion, 

µopen can be taken as 1. In pseudo-closed and closed sections, pure torsion starts to 

dominate over warping torsion, and µclosed will become smaller than 1. 
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Figure 4.10 Perpendicular distance from a shear center to each element 

 

4.7 SAMPLE CALCULATIONS OF CROSS-SECTION PROPERTIES 

 

Sample calculations for the cross-section properties of Model 1, shown in 

Figure 4.11, are presented.  Figure 4.11 also shows the dimensions of the pseudo-

closed section of Model 1 and the configuration of the top lateral bracing system 

used in the pseudo-closed section. 

From the dimensions of the open-section of the Model 1 girder shown in 

Figure 4.11, the vertical web depth rd, the width of the sloping web plate rbw, and 

the total cross-sectional area A are 

        rd = d – 0.5 ttf – 0.5 tbf = 60 – 0.5(1.5) – 0.5(1.5) = 58.5 in 

      ( ) ( ) 86.59
615.4

5.585.58
2

2
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2 =





+=






+=

s
r

rr d
dbw  in 
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        A = 2 btf ttf  + 2 rbw tw + bbf tbf  

           = 2(10)(1.5) + 2(59.86)(0.5) + (50)(1.5) = 164.86 in2 
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Figure 4.11 Top lateral bracing system configuration and dimensions Model 1  

 

For a pseudo-closed section, cross-section properties related to the 

bending about the horizontal centroidal axis (i.e. the X-X axis) can be calculated 

either by considering or by neglecting the contribution of the top lateral bracing 

system. By ignoring the contribution of top lateral bracing system, the properties 
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of a pseudo-closed section are exactly the same as those of an open-section. 

However, if the contribution of the top lateral bracing system is included, an area 

Aadd,each is added to each top flange area, as derived by Helwig and Fan (2000). 

For the top lateral bracing system shown in Figure 4.11, Aadd,each can be calculated 

as follows: 
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1 33 === tftftf btI  in3 

Using this simplified method, the total cross-sectional area A can be 

calculated as follows: 

        A = Aopen + Aadd  

      = 164.86 + 2(0.128) = 165.1 in2 

More detailed discussions of the additional area calculation to account for the 

contribution of the top lateral bracing system will be presented in Chapter 9.  

 

4.7.1 Centroidal axis and moment of inertia 

From Eq.4.1, the location of the horizontal centroidal axis of the open-

section Model 1 girder below the centroid of top flange is 
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     ( )( )( ) ( )( ) ( )( ) ( )[ ]
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5.585.05.15.05.086.592605.150 ++
=  

       = 38.19 in 

The moment of inertia with respect to the horizontal and vertical centroidal axes, 

IXC and IYC, respectively, are calculated using Eqs.4.2 and 4.3 as shown in Insert 

4.1.  

By including the contribution of the top lateral bracing system, yC from 

Eq.4.4 is: 
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and IXC from Eq.4.6 is  
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By including the contribution of the top lateral bracing system, the IXC increases 

from 100535 in4 to 100900 in4, or only about 0.4 percent.  
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Insert 4.1 Calculations of flexural properties of Model 1 
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4.7.2 Shear center location 

The shear center location measured from the centroid of the bottom flange 

of an open-section trapezoidal box girder is given by Eq.4.7 [see Insert 4.2]. So 

the shear center of an open-section Model 1 girder is located 26.9 inches below 

the centroidal axis of the bottom flange. 

In order to determine the shear center location of a pseudo-closed section, 

the ω^ diagram of a pseudo-closed section must first be determined. Before the ω^ 

diagram can be constructed, the sectorial area diagram of an open-section must be 

constructed. It should be noted that in constructing both sectorial area and reduced 

sectorial area for a pseudo-closed section, top flanges are assumed to only have 

areas (not length).  The shear center location of a pseudo-closed section is 

determined using the following procedures: 

1. Construct a sectorial area diagram with respect to an arbitrary pole A (ωA 

diagram) for an open-section. It should be noted that Dabrowski indicated that 

for a singly-symmetric section, an arbitrary pole A can be advantageously 

located on the y-axis. Figure 4.12 shows the ωA diagram of an open-section of 

Model 1 girder. 

2. Calculate the area enclosed by the wall Ao and the value of 
∑
=

n

i i

i

o

t
b

A

1

2
 , then 

construct a reduced sectorial area diagram with respect to the pole A (ω^
A 

diagram) and x diagram where x is the horizontal distance from the pole A.  
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Insert 4.2 Shear center of an open-section Model 1 girder
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Figure 4.12 Sectorial area diagram for the open-section  
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Figure 4.13 shows both the ω^
A diagram and the x diagram for a pseudo-closed 

section. 
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Figure 4.13 Reduced sectorial area diagram and x diagram for the pseudo-

closed section  

3. Determine the shear center location measured from the pole A, as follows: 
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So the shear center of the pseudo-closed section is located 76.4 inches below the 

pole A or 16.4 inches below the centroidal axis of the bottom flange. The shear 

center of the open section is located 26.9 inches below the centroidal axis of the 

bottom flange. In general, the shear center location of an open-section trapezoidal 

box girder is located below its bottom flange and is located inside the box for a 

closed section. As the equivalent plate thickness increases, the shear center 

location moves upward closer to the inside box. 

 

4.7.3 Pure torsional constant 

The pure torsional constant of the open-section Model 1 girder comprised 

of 5 narrow rectangular sections, Jopen, is 

3
5

13
1

i
i

iopen tbJ ∑
=

=   

( )( )[ ] ( )( )[ ] ( )( ){ } 74.835.1505.086.5925.1102
3
1 333 =++=openJ  in4  

   

The pure torsional constant of the pseudo-closed section can be calculated 

as a closed section. Jpseudo-closed of Model 1 is 
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The pure torsional constant of the pseudo-closed section is 210 times greater than 

that of the open section. 

 

4.7.4 Torsional warping function 

Figure 4.14 shows the torsional warping function of the open section. 

Figure 4.15 shows the torsional warping function of the pseudo-closed Model 1 

girder. In order to construct the torsional warping function, the value of the 

reduced sectorial area at each point (ω^) must first be calculated as shown in 

Figure 4.13. 

 

4.7.5 Warping moment of inertia 

The Iw,open from Eq.4.19 is 
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= 2.74 x 107 in6. 

It should be noted that w1 through w4 are the torsional warping functions of the 

open section shown in Figure 4.14. 
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Figure 4.14 Torsional warping function of the open-section  
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Figure 4.15 Torsional warping function of the pseudo-closed  

The Iw,pseudo-closed from Eq.4.20 is 
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= 1.19 x 107 in6 

The w^
1 and w^

2 values were determined in Figure 4.15.  

Clearly, Iw,pseudo-closed is smaller than Iw,open. This indicates that under the 

same total torsional moment, the pseudo-closed section torsional warping resists a 

smaller portion of the total torsional moment than that in the open-section.  

 

4.7.6 Warping shear parameter and central second moment of area 

The warping shear parameter for an open-section µopen is 1.0.  The 

warping shear parameter for the pseudo-closed Model 1 girder µpseudo-closed is 

calculated using the following procedures: 

1. Calculate the perpendicular distance from the shear center to the web  

rS.C.-web (see Figure 4.10) 
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w

bf
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dba
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ear 
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−−=   = 21.0 in 

2. Calculate the central second moment of area for the pseudo-closed section  

Ic,pseudo-closed using Eq.4.23. 

( ) ( ) ( ) ( ) ( ) ( )bfbfywwwebCSeqyclosedpseudoc tbdetbrateI 22
..

2
, 2 −++= −−  

                      ( ) ( )( ) ( ) ( )( ) ( ) ( )( )5.150604.765.039.610.21205.0764.76 222 −++=  

           = 69360 in4 

3. Calculate the warping shear parameter for the pseudo-closed section of 

Model 1 girder using Eq.4.21  
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c

closedpseudo
closedpseudo I

J −
− −= 1µ  

                   
69360
317721−=  = 0.542       

4.7.7 Parameter X 

Parameter X was presented in Chapter 2. It does not only depend on the 

cross-section dimension, but also on the girder length. Having calculated both the 

pure torsional constant J and the warping moment of inertia Iw, the parameter X, 

which indicates whether pure torsion or warping torsion is dominant, can be 

calculated.  For the open-section 180-ft Model 1 girder, the parameter X is 

  
wEI

GJlX =  

  ( ) ( )( )
( )( ) 32.2

1074.229600
74.831120012180 7 ==
x

xX  

and for the pseudo-closed Model 1 girder  

  ( ) ( )( )
( )( ) 7.68

1019.129600
317721120012180 7 ==

x
xX  

As Chen (1999) indicated, the parameter X of 2.32 indicates that both pure 

torsion and warping torsion resist the total torsional moment (i.e. mixed torsion), 

while a value of 68.7 indicates that almost all torsional moment is resisted by pure 

torsion (i.e. only pure torsion is present). It can be concluded that in order to 

analyze the behavior of the open section properly, the contribution of both pure 

torsion and warping torsion must be considered, whereas for the pseudo-closed 

section, warping torsion can be ignored. 
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CHAPTER 5 
Behavior of a straight girder 

 
 

This chapter discusses the general behavior of an open-section and a 

pseudo-closed section straight girder under uniform symmetrical loading. The 

first section discusses the application of classical beam theory to predict the 

vertical deflection of a straight girder. The second and third sections present the 

general behavior of an open section and a pseudo-closed section straight girder, 

respectively.  

 

5.1 VERTICAL DEFLECTION PREDICTION USING CLASSICAL BEAM THEORY 

 

In general, it is desirable to have a trapezoidal box girder perform within 

its elastic range during the construction and serviceability stages. This section 

studies the applicability of classical beam theory for predicting the vertical 

deflection of a straight trapezoidal box girder. Using classical beam theory, the 

elastic vertical deflection along girder length δ(x) and the elastic vertical deflection 

at midspan δmid of a simply-supported straight girder with length l under uniform 

load w are 

   ( ) ( )32 2
24

xlxl
EI

wx
x +−=δ    (5.1) 

 

           
EI

wl
mid 384

5 4

=δ       (5.2) 
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where x is the coordinate along the girder length, E is the modulus of elasticity, 

and I is the moment of inertia about the horizontal axis. 

 Eqs.5.1 and 5.2 can be used for both open sections and pseudo-closed 

sections, provided that I is calculated appropriately. In order to verify the 

applicability of these formulas to trapezoidal box girders, UTRAP was used to 

analyze a simply-supported Model 1 straight girder for both the open section and 

the pseudo-closed section. The cross-section dimensions of Model 1 were shown 

in Figure 1.5. Figure 5.1 shows the analysis cases and top lateral bracing systems 

used throughout this chapter. 
 

CASE I Straight : X-type system  
Struts: WT 6x11 (As = 3.24 in2) 
Diagonals: WT 6x11 (Ad = 3.24 in2) 
No internal diaphragm 

CASE II Straight : Alternating-Diagonal system 
Struts: WT 6x25 (As = 7.34 in2) 
Diagonals: WT 6x25 (Ad = 7.34 in2) 
No internal diaphragm 

CASE III Straight : Single-Diagonal system 
Struts: WT 6x25 (As = 7.34 in2) 
Diagonals: WT 6x25 (Ad = 7.34 in2) 
No internal diaphragm 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 
Distance to left support (ft) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
Panel nth 

CASE 0 Straight : Open section 

 

Figure 5.1 Type of top lateral bracing system used in each analysis case 
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Figure 5.2 shows comparisons between the predicted vertical deflections 

along the length (using Eq.5.1) and UTRAP solutions for both the open section 

and the pseudo-closed section with the X-type top lateral bracing system under a 

uniformly distributed load of 1 k/ft. 
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Figure 5.2 Predicted vertical deflections and UTRAP solutions  
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There is good agreement between the predicted vertical displacements using 

classical beam theory and the UTRAP solutions. However, the predicted vertical 

deflections are smaller than the UTRAP solutions for both the open and the 

pseudo-closed sections.  

 

5.1.1 Shear deformation 

The formulas to predict vertical deflections expressed in both Eqs.5.1 and 

5.2 neglect vertical deflections due to shear deformation. Total vertical deflections 

δTOT including the effect of shear deformation can be calculated as follows: 

      SMBTOT δδδ += .     (5.3) 

where δBM is the component of vertical deflection due to bending moment, 

expressed in Eqs.5.1 and 5.2, and δS is the component of vertical deflection due to 

shear deformation. Using the Virtual Work Method (Castigliano’s 1st Theorem), 

δS of a straight girder with length l is 

      ( )∫=
l

xx
S dx

GA
vV

0

)(αδ     (5.4) 

where α is the shear deformation coefficient that depends on the cross-section 

shape and the assumptions about the distribution of shear stress across the cross-

section, G is the shear modulus of elasticity (for steel G = 11200 ksi), A is the 

cross-sectional area, V(x) is the shear force along the length due to the applied load, 

and v(x) is the shear force along the length due to a unit load applied at the location 

where the deflection is to be calculated. 

Figure 5.3 shows V(x) and v(x) for a girder under a uniformly distributed 

load w with the midspan vertical deflection as the deflection of interest (i.e. 

applying a unit load at the midspan). 
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Figure 5.3 Shear force diagram  

 

Based on Figure 5.3, Eq.5.4 can be modified as follows: 
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 The shear deformation coefficient α for a trapezoidal box girder is not 

well established, whereas the α for an I-section is given in Young and Budynas 

(2002). Therefore, in order to study the effect of shear deformation on the vertical 

deflection, Model 1 is modified to Model 4, which is analogous to two identical I-

girders. Figure 5.4 shows the cross-section dimensions of Model 4; Figure 5.5 

shows the analysis cases for the hand calculations and UTRAP. 

 
 

1.5″ 

1.5″ 1.5″ 

0.5″ 0.5″ 60″ 

50″ 

25″ 25″ 

 

Figure 5.4 Cross-section dimensions of Model 4 girder 

Young and Budynas indicated that for the I-section shown in Figure 5.6, 

the shear coefficient α is 
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where r is the radius of gyration of the section with respect to the neutral axis. 

The shear coefficient α  for Model 4 is 3.98. 
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Figure 5.5 Analysis case for UTRAP and hand calculation 
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Figure 5.6 Dimension of I girder 

 

The UTRAP solution for the midspan deflection of an open-section Model 

4 straight girder under a uniformly distributed load of 1 k/ft is 5.44 inches. The 

components of the midspan vertical deflection of Model 4 using the hand-

calculation are: 
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The predicted midspan vertical deflection neglecting shear deformation is 5.26 

inches (3.3% difference from the UTRAP solution) and the predicted midspan 

vertical deflection including shear deformation is 5.34 inches (1.8% difference 

from the UTRAP solution). 

 Figure 5.7(a) shows the midspan deflection for seven different lengths of a 

Model 4 straight girder from UTRAP and the calculated deflection due to bending 

moment only, and the total deflection including both elastic components due to 

both bending moment and shear deformation. Figure 5.7(b) shows the percent 

discrepancies between the UTRAP solutions and the predicted midspan 

deflections neglecting and including shear deformation. Figure 5.7(a) shows that 

there is good agreement between the predicted midspan deflections and the 

UTRAP solutions. Usually, the deflection component from shear deformation is 

very small compared to the elastic deflection due to bending moment. Figure 

5.7(b) shows that for a relatively short girder, the discrepancies between the 

UTRAP solutions and the predicted deflections using only the bending component 

can be large. On the other hand, for a short girder, deflection usually will not 

control the design, and the additional precision in predicting the deflection is not 

justified from a fabrication perspective. The percent discrepancies between the 

specified camber and the final product are usually more than those of neglecting 

shear deformation in predicting deflections. Moreover, steel box girders are not 
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generally used for short spans. Based on all of these facts, it can be concluded that 

neglecting shear deformation in predicting deflections is acceptable from a design 

standpoint. 
 

Midspan deflection
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Figure 5.7 Midspan deflection and percent discrepancies between the predicted 

midspan deflection and the UTRAP solution 
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5.2 BEHAVIOR OF AN OPEN-SECTION STRAIGHT GIRDER 

 

Branco (1981) indicated that an open-section straight girder under a 

symmetrical uniformly distributed load will experience a bending distortion, as 

shown in Figure 5.8. 

 In-plane bending of the top flanges 

outward bending of the webs 

outward bending of the webs 

 

Figure 5.8 Bending distortion of an open-section trapezoidal box girder 

 

Bending distortion involves the outward bending of the webs, the upward bending 

of the bottom flange, and the in-plane (lateral) bending of the top flanges. This 

bending distortion is caused by the horizontal load component wH due to the 

sloping webs as shown in Figure 5.9. 
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Figure 5.9 Horizontal load component due to sloping webs 

The horizontal load component wH is directly proportional to tan(α), so a 

trapezoidal box girder with a larger web angle α is more prone to bending 

distortion than one with a smaller α.   

 In order to verify the presence of bending distortion in an open-section 

trapezoidal box girder, UTRAP was used to analyze “Case 0 Straight” of a Model 

1 girder. It should be noted that both vertical and horizontal deflections of all 

seven nodes shown in Figure 5.10 can be obtained from the UTRAP output. 

 
Node 1 

Node 2 Node 6 

Node 4 Node 5 Node 3 

Node 7 

2
d  

2
d  

2
bfb  

2
bfb  
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y 

  

Figure 5.10 Nodes locations where deflections can be extracted from the 

UTRAP output 
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Figure 5.11 shows UTRAP solutions for horizontal deflections of the “Case 0 

straight” Model 1 girder under a uniform load of 1 k/ft. Positive and negative 

horizontal displacements indicate the horizontal displacement in the positive and 

the negative x-direction, respectively. Nodes 1 and 2 move in the negative x-

direction and nodes 6 and 7 move in the positive x-direction. In an open-section 

straight girder under a symmetrical uniform load, the movement of nodes 1 and 7 

and the movement of nodes 2 and 6 are symmetrical with respect to the girder 

centerline. The horizontal displacement is fairly constant over the center portion 

of the span. There is no horizontal deflection at the supports because UTRAP 

assumes there is a rigid diaphragm at each support. 
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Figure 5.11 Horizontal deflection of the open-section  

 

 In order to provide a more detailed illustration of bending distortion, 

Figure 5.12 shows the deformed position of an open-section Model 1 straight 

girder at midspan. Figure 5.12 shows that under a symmetrical uniform loading, 
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there is a cross-section deformation in an open-section straight girder in addition 

to its rigid body motion. Vertical deflection data shows the upward bending of the 

bottom flange. 
 

Midspan deformation in Case 0 Straight 
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Figure 5.12 Deformed position at the midspan of an open-section  

 

 Figure 5.13 shows the normal stress variation along the length. The 

average normal stress represents the normal stress due to bending assuming a 

rigid cross-section (i.e. without bending distortion). The bending distortion does 

not change the maximum normal stress at the midspan. The explanation for this is 

that the deviance of total normal stress from the bending normal stress is caused 

by the in-plane bending of the top flanges. Figure 5.11 shows that there is no in-

plane bending of the top flanges near the midspan (i.e. horizontal displacements 
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of nodes 1 and 7 near the midspan are constant). Therefore, there is no additional 

normal stress due to bending distortion near the midspan. 
 OPEN (Case 0 Straight)
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Figure 5.13 Normal stress in the open-section of Model 1 straight girder 

 

Figure 5.13 also shows that the normal stresses at nodes 11 and 14 are the 

same, as are those at nodes 12 and 13. Therefore in all the subsequent plots of 

normal stress variation, only nodes 13 and 14 are shown. 

5.2.1 Preventing Bending Distortion 

Bending distortion shown in Figure 5.8 can easily be prevented by using 

struts that will prevent the spreading of the web, as shown in Figure 5.14. The 

struts used in the following example are WT 6x11 (Area = 3.24 in2). 
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Figure 5.14 Using struts with 10-ft spacing to prevent bending distortion 

 

Struts only prevent the spreading of the web. They do not contribute to the overall 

bending or torsional stiffness of the girder. For this reason, a girder with struts 

must be treated as an open section. 

Figure 5.15 shows the total normal stress variation along the length of a 

Model 1 girder with struts under a uniform load of 1 k/ft, which can be compared 

to that without struts, shown in Figure 5.13. Figure 5.15 shows that the total 

normal stress in nodes 11 through 14 in top flanges of an open-section girder with 

struts is approximately the same as the bending normal stress. However, there is 

jaggedness in the total normal stress variation along the length, as compared to the 

smooth variation shown in Figure 5.13. This indicates that there are localized 

normal stresses in addition to the bending normal stress due to the presence of the 

struts. 

Figure 5.16 shows the horizontal displacements of the right top flange. 

The horizontal displacement of the top flanges in the open-section straight girder 

with struts is almost zero, compared to that without struts (i.e. Figure 5.11). 

However, as can be seen from Figure 5.16, there is a repetitive pattern of in-plane 

bending of the top flanges between struts. This in-plane bending of the top flanges 

causes the additional normal stress, which is called the localized normal stress. 

The horizontal displacement is flat over a 2-foot increment at maximum 

displacement.  The reason for this is that the UTRAP output is in 2-ft increments, 

so there is no data point between the two points to make a smooth plot. 
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 OPEN with 10-ft strut spacing
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Figure 5.15 Total normal stress in the top flanges of the open-section  
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Figure 5.16 Horizontal displacement of the top flange of the open-section  
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Figure 5.17 shows a comparison of the deformed shape of Model 1 with 

and without struts at a location 86 ft from the left support. This location is 

arbitrarily chosen because there is no strut at that location (strut spacing is 10 ft). 

Even though there is no strut in that location, there is no bending distortion in the 

Model 1 girder with a 10-ft strut spacing. It can be concluded that struts are 

effective for preventing the cross-section deformation due to bending distortion. 
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Figure 5.17 Deformed position 86 ft from the left support of the open-section  

 

5.2.2 Required strut spacing 

In-plane bending of the top flanges will occur between struts and thus 

induces localized normal stress in addition to the bending normal stresses. Figure 

5.18 shows the total normal variation in the right top flange of the open-section 

Model 1 girder with a 30-ft strut spacing, under a uniform load of 1 k/ft. The 
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maximum total normal stress in the girder with 30-ft strut spacing can be 2 ksi 

more than that in the girder without struts 
 OPEN with 30-ft strut spacing
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Figure 5.18 Total normal flange stress with a 30-ft strut spacing 

 

  As seen in Figure 5.16, the horizontal displacement of the top flanges due 

to the horizontal component of the applied load in a straight trapezoidal box 

girder with struts can be simplified as the displacement of a continuous girder. In 

order to calculate the additional normal stress conservatively, each panel (between 

two adjacent struts) can be simplified as a fixed-fixed beam. The maximum 

localized bending moment is 2

12
1 swH  at the strut locations, where s is the strut 

spacing. The additional normal stress σadd at the tip of the top flanges due to 

lateral bending of the top flanges is 
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ttf and btf are the thickness and width of the top flanges, respectively. From Eq.5.7, 

the required s to limit σadd due to lateral bending of the top flange is 

   
H

tftfadd

w
bt

s
22σ

=     (5.8) 

In order to verify the analytical formula, UTRAP was used to analyze 

Model 1 straight girders with different strut spacings. It should be pointed out that 

UTRAP can only give the total normal stresses at nodes 11 through 14 on the top 

flanges, which do not correspond to the maximum total normal stresses that occur 

at the tip of the top flanges. The total normal stresses at the tip of the left top 

flange and right top flange can be found by using a linear interpolation based on 

those at nodes 11 and 12 and nodes 13 and 14, respectively. The maximum 

additional normal stress due to lateral bending of the top flange is found by 

subtracting the bending normal stress from the total normal stresses at the tip of 

the top flange. The bending normal stresses on the top flange were obtained by 

averaging the total normal stresses at nodes 11 through 14. 

Figure 5.19 shows the variation of the maximum additional normal 

stresses due to lateral bending of the top flange for a Model 1 girder with a 30-ft 

strut spacing, under a uniform load of 1 k/ft. The maximum additional normal 

stress due to bending occurs at the strut location. The maximum stresses in the 

first and last panel are greater than those in the other panels. The explanation for 

this is that the first panel is analogous to a propped cantilever beam, whereas all 
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the other panels are analogous to a fixed-fixed beam. Since the maximum bending 

moment in a propped cantilever beam is larger than that in a fixed-fixed beam, the 

maximum bending stress is also larger. From a design perspective, the maximum 

additional normal stress in the first panel will not be a concern, because the 

bending normal stresses near a support are very small. Therefore, the analytical 

formula to predict the additional normal stresses due to lateral bending of the top 

flanges is derived based on a fixed-fixed beam.  
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Figure 5.19 Additional normal stress at the tip of the top flanges  

 

Figure 5.20 shows an example of the additional normal stress at the tip of 

the top flanges due to lateral bending of the top flanges as a function of the strut 

spacing. Model 1 girder under a uniform load of 1k/ft was used in this analysis. 

The analytical solution was calculated using Eq.5.7. The analytical formula can 

conservatively predict the additional normal stress due to lateral bending of the 
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top flanges. The discrepancies between the analytical formula and the UTRAP 

solution are caused by modeling error. The analytical formula is derived using a 

fixed-fixed beam model, whereas the real condition at the strut location is less 

stiff than a fixed support. 
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Figure 5.20 Additional normal stress at the tip of the top flanges  

 

5.3 BEHAVIOR OF A PSEUDO-CLOSED SECTION STRAIGHT GIRDER 

 

Figure 5.21 shows UTRAP solutions for the vertical deflections along the 

length of a Model 1 straight girder under a uniformly distributed load of 1 k/ft for 

an open section with three different top lateral bracing systems, shown in Figure 

5.1. Figure 5.21 shows that the vertical deflections of the open-section, 

Alternating-Diagonal, and Single-Diagonal top lateral bracing systems are almost 

identical. The vertical deflections of the X-type system are slightly smaller than 

those for the other systems. These observations agree with the fact that 
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Alternating-Diagonal and Single-Diagonal systems are less effective than the X-

type system in resisting vertical bending. 
 Vertical deflection
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Figure 5.21 UTRAP solutions for vertical deflections 

 

 Figure 5.22 shows the normal bending stress among the open section and 

the pseudo-closed section using three different top lateral bracing systems under a 

uniform load of 1 k/ft. The variation of normal bending stress in both the open-

section and the pseudo-closed section Model 1 straight girder follows the same 

trend as noted for the vertical deflection. From both vertical deflection and 

bending normal stress perspectives, there is no advantage for using either the 

Alternating-Diagonal or the Single-Diagonal system in a straight girder. On the 

other hand, using the X-type system can reduce the vertical deflection and 

bending normal stress, although only slightly. 
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Figure 5.22 Bending normal stress of the open and pseudo-closed sections  

 

Even though the variations of the bending normal stresses in the three 

different top lateral bracing systems are identical as shown in Figure 5.22, the 

variations of total normal stresses are significantly different because of the 

localized normal stress. The following sections present the localized normal 

stresses in Model 1 with the three different top lateral bracing systems under a 

uniformly distributed load of 1 k/ft.  

5.3.1 Localized normal stress in the X-type system 

Figure 5.23 shows the total normal stress variation along the length of the 

pseudo-closed section with an X-type system.  



 127 

 X-type, Straight (Case 1)
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Figure 5.23 Total normal stress variation on the top flange - X-type system 

 

Using an X-type top lateral bracing system instead of using only struts will not 

affect the localized normal stress. The only difference is that the total stress in a 

pseudo-closed section using X-type system is smaller than that in an open section 

because the X-type system provides some contribution to the overall bending 

stiffness of the girder. 

 

5.3.2 Localized normal stress in Alternating-Diagonal system 

In addition to the lateral bending of top flanges due to spreading of the 

webs, the localized normal stress in a pseudo-closed section using Alternating-

Diagonal top lateral system can be caused by the lateral bending of the flanges 

due to the interactive forces  between top lateral bracing members and top flanges, 
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as will be discussed in Chapter 9. Figure 5.24 shows the total normal stress 

variation along the length of the pseudo-closed section with the Alternating-

Diagonal system. In this case, the localized normal stress is about 15 percent of 

the bending normal stress. This ratio is fairly constant within each panel. The 

maximum localized normal stress of about 2.5 ksi is also fairly constant within 

each panel.  
 Alternating-Diagonal, Straight (Case II)
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Figure 5.24 Total normal stress variation on the top flange - Alternating-

Diagonal  

Comparing Figure 5.23 and Figure 5.24 shows that the localized normal 

stresses in a girder with an Alternating-Diagonal top lateral bracing system are 

significantly higher than that with X-type system because in an X-type system, 

there are no interactive forces between top lateral bracing members and top 

flanges, as presented in Chapter 9. In addition, Figure 5.25 shows that the top 

flanges of a girder with an Alternating-Diagonal system laterally bend like a 
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continuous beam between panels, whereas those in a girder with X-type system 

do not. 
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Alternating-Diagonal, Straight (Case II)
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Figure 5.25 Horizontal displacement of the right top flange with X-type and 

Alternating-Diagonal systems   
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5.3.3 Localized normal stress in the Single-Diagonal system 

Unlike the top flanges in a girder with an Alternating-Diagonal system, 

those in a girder with a Single-Diagonal system do not bend like a continuous 

beam as shown in Figure 5.26. Also, there is a kink at the midspan. Obviously, 

this kink will induce significantly high localized normal stress.  Figure 5.27 shows 

the total normal stress variation along the length with the Single-Diagonal system. 

The total normal stress variation in the top flanges of a girder with the Single-

Diagonal top lateral bracing system is generally similar to that with the X-type 

system. However, there is a significantly high localized normal stress at midspan 

due to the kink in horizontal displacement of its top flange. In this case, the 

localized normal stress at midspan is about 10 percent of the bending normal 

stress. 
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Figure 5.26 Horizontal displacement of the top flange - Single-Diagonal  
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 Single-Diagonal, Straight (Case III)
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Figure 5.27 Total normal stress variation on the top flange - Single-Diagonal  

5.4 SUMMARY 

 

Classical beam theory can be used to predict the vertical deflection of a 

straight trapezoidal box girder. For a typical steel box girder used in practice, 

there is a good agreement between the vertical deflections obtained from classical 

beam theory neglecting shear deformation and those obtained from UTRAP.     

Due to the horizontal component of the applied load (because of the 

sloping web), the cross-section of an open section trapezoidal box girder will 

distort under vertical bending. This bending distortion involves the outward 

bending of the webs, the upward bending of the bottom flange, and the lateral 

bending of the top flanges. The lateral bending of the top flanges causes deviation 

of the total normal stresses from the bending normal stresses in the top flanges.  
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The struts are very effective in preventing bending distortion because they 

prevent the spreading of the webs. However, the lateral bending of the top flanges 

can still occur between struts and cause additional normal stresses (i.e. localized 

normal stresses), which reach their maximum magnitude at the strut location. 

Depending upon the spacing of the struts, this localized normal stress can be 

significant, causing the maximum total normal stresses in a girder with struts to be 

greater than the maximum bending normal stress. This chapter presented an 

analytical formula for determining the required strut spacing in order to limit 

these additional normal stresses.  

 The vertical deflections and the bending normal stresses in a pseudo-

closed girder with the Alternating-Diagonal or the Single-Diagonal top lateral 

bracing system are the same as those in an open-section girder. However, both the 

vertical deflections and the bending normal stresses in a pseudo-closed girder 

with the X-type system are slightly less than those in an open-section girder. From 

both vertical bending and bending normal stress perspectives, there is no benefit 

in using the Alternating-Diagonal or the Single-Diagonal top lateral bracing 

system in a straight girder. 

The total normal stress in a simply-supported straight girder consists of 

bending and localized normal stresses. The localized normal stress depends on the 

type of top lateral bracing system and generally caused by a lateral bending of the 

top flanges. The magnitudes of the localized normal stresses in an open section 

with the struts and in a pseudo-closed section with an X-type system are about the 

same and those in an Alternating-Diagonal system are significantly larger. The 

localized normal stresses in a girder with a Single-Diagonal system are 

significantly high near the midspan where the top flanges experience a kink. 

However, the maximum localized normal stress in a girder with a Single-Diagonal 

system is still smaller than that with an Alternating-Diagonal system. 
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CHAPTER 6 
Behavior of a Curved Girder 

 
 

This chapter discusses the general behavior of a horizontally curved 

girder. The most important difference between a curved girder and a straight 

girder is that in a curved girder, regardless of load placement, there is always a 

torsional loading component due to curvature. Consequently, the deformation of a 

curved girder involves rotations and horizontal displacements in addition to the 

vertical displacements. Generally, the cross-sections of a curved girder will also 

distort from the original profile due to the distortional component of the torsional 

loading. 

The first two sections in this chapter discuss vertical deflection, rotation, 

and lateral displacement of a curved girder. In those sections, the cross-section is 

assumed to be rigid (i.e. the original profile of cross-section is maintained). In 

order to make this assumption valid, closely-spaced internal diaphragms (2-ft 

spacing) are used. The third section discusses cross-section distortion. In that 

section, the significance of various parameters on cross-section distortion is 

discussed and recommendations for the spacing of internal diaphragms to control 

distortion are presented.   

 

6.1 VERTICAL DEFLECTION AND ROTATION  

6.1.1 Analytical 

Nakai and Yoo (1988) presented closed-form solutions for the vertical 

deflection and the rotation of a simply-supported curved girder under uniformly 
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distributed and concentrated loads. The distributed load p used in the Nakai and 

Yoo formulation is over the girder surface (i.e. load per unit area). The formulas 

were obtained by solving the differential equation related to the torsional warping 

theory and are applicable to both open and pseudo-closed sections. The general 

Nakai and Yoo formulations have been simplified for the singly symmetric 

sections considered herein.  

Figure 6.1 shows a simply supported curved girder under a uniformly 

distributed load p over the girder surface with the notations used by Nakai and 

Yoo in the closed-form solutions. The curved girder has a central angle Φ, a 

radius of centroidal axis Ro, and radii of the inside and outside edges of the 

uniformly distributed load Rin and Rout, respectively. The angle defining a position 

along the curved length, measured from the left support, is denoted φ. 

 

Rout 

Rin 

Left Support Right Support p 

Rs 

Φ 

φ 

 

Figure 6.1 Simply supported curved girder under a uniform load p 

 

For a uniformly distributed load p, Nakai and Yoo used the following notations in 

their formulation.  

               ( )33
1 3

1
inout RRL −=     (6.1) 
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              ( )22
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The differential equation related to the torsional warping theory is  
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where MX and IX are the bending moment and the bending moment of inertia with 

respect to the horizontal centroidal axis, respectively, and θ is the torsional angle. 

The analytical formulas for predicting the deflection along the length of a simply 

supported curved girder under a uniformly distributed load p, obtained by solving 

Eqn.(3), is 
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w

o EI
GJR=α       (6.9) 

   E: Young’s modulus of elasticity 

   G: Shear modulus of elasticity 

    J: Pure torsional constant 

   Iw: Warping moment of inertia 

 Figure 6.2 shows the cross-section rotation of a girder. The analytical 

formula for predicting the torsional angle θ along the length of a simply-

supported curved girder under a uniformly distributed load p is  
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Figure 6.2 Cross-section rotation 

Having calculated both the torsional angle and the vertical deflection, the rotation 

along the length of a simply supported curved girder β(φ) is 

             ( ) ( )
( )
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δ
θβ −=     (6.11) 
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6.1.2 Verification 

 In order to determine the accuracy of the analytical formulas, UTRAP was 

used to analyze a 180-ft simply supported Model 1 girder, shown in Figure 1.5, 

under a uniformly distributed load of 0.8 k/ft. An X-type top lateral bracing 

system with a 2-ft panel spacing was used as shown in Figure 6.3. In order to 

eliminate the cross-section distortion, a 2-ft spacing of the internal diaphragms 

with 4-in2 member sizes was used. The area of the strut As was 4 in2 and the area 

of the diagonal Ad was varied to produce different equivalent plate thicknesses. In 

order to study whether the accuracy of the analytical formulas is sensitive to the 

equivalent plate thickness, an open section and a pseudo- closed section with 

equivalent plate thicknesses of 0.05 inches (Ad=2.63 in2) and 0.01 inches 

(Ad=0.525 in2) were used. Three different radii of curvature were used.  
 As

 Ad
 

2 ft 

76″ 

 

Figure 6.3 X-type top lateral bracing system 

 

Figure 6.4 shows the vertical deflections along the length of the curved 

girder obtained from Eq.6.4 and the UTRAP solutions. The UTRAP vertical 
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deflections plotted are those of the node located at the middle of the bottom 

flange. 
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Figure 6.4 Vertical deflections of Model 1 curved girder 

 

There is good agreement between the UTRAP solution and the analytical formula. 

The UTRAP deflections are slightly greater than those from the analytical 

formulas. These small discrepancies may be caused by ignoring the shear 

deformation in the derivation of the analytical formulas. Figure 6.4 suggests that 

the accuracy of the analytical formulas for predicting the vertical deflection is not 

sensitive to the central angle or the equivalent plate thickness.  

 Figure 6.5 shows the rotations along the length of the two pseudo-closed 

section and Figure 6.6 presents the rotation for the open section. The UTRAP 

rotations shown are the rotations of the bottom flange. A negative rotation 

indicates a counter-clockwise rotation when viewed from the origin, as shown in 
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Figure 6.2. Because the rotation of an open section is much larger than that of a 

pseudo-closed section, the rotation of the open section is plotted separately.  
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Figure 6.5 Rotations of a pseudo-closed section curved girder 
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Figure 6.6 Rotations of an open-section curved girder 
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Figure 6.5 and Figure 6.6 show that there is a good agreement between the 

rotations obtained from the UTRAP solution and the analytical formula. The 

accuracy of the analytical formula for predicting rotation is not sensitive to the 

central angle or the equivalent plate thickness. 

 

6.1.3 Parametric study 

A parametric study was performed to study the effect of the equivalent 

plate thickness on the maximum vertical displacement and the maximum rotation. 

Figure 6.7 and Figure 6.8 show the maximum vertical displacement of the node 

located at the middle of the bottom flange and the cross-section rotation, 

respectively. These results were obtained from the UTRAP solution for the 180-ft 

Model 1 curved girder with a radius of curvature of 600 ft, under a uniformly 

distributed load of 1 k/ft. An X-type top lateral bracing system with a 2-ft panel, 

with the diagonal areas corresponding to each equivalent plate thickness shown in 

Table 6-1, was used in the analysis. As before, a 2-ft spacing of internal 

diaphragms with 4-in2 members was used to eliminate the cross-section distortion. 

For equivalent plate thicknesses greater than 0.03 inches, the maximum 

deflection and the maximum rotation are not very sensitive to the equivalent plate 

thickness. It can be concluded that with an equivalent plate thickness greater than 

0.03 inches, the changes in the maximum deflection and rotation will be 

insignificant to the changes in the top lateral bracing member size. 
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Midspan vertical deflection of Model 1 curved girder
(L=180 ft, R=600 ft, w=1 K/ft) 
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Figure 6.7 Effects of equivalent plate thickness on maximum vertical deflection 

Midspan rotation of Model 1 curved girder
(L=180 ft, R=600 ft, w=1 K/ft) 
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Figure 6.8 Effects of equivalent plate thickness on maximum rotation 
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Table 6-1 Diagonal area of the 2-ft panel the X-type system and the 

corresponding equivalent plate thickness 

Equivalent plate thickness (inch) Diagonal area (in2) 
0.005 0.263 

0.0075 0.394 
0.01 0.525 

0.0175 0.919 
0.025 1.31 
0.03 1.58 
0.04 2.10 
0.05 2.63 

  

 A second parametric study evaluated the effect of the type of top lateral 

bracing system on vertical deflection and rotation. Figure 6.9 and Figure 6.10 

show the vertical deflections and the rotations along the length of the curved 

girder with different top lateral bracing systems. The diagonal cross-sectional 

areas used in each top lateral bracing system are summarized in Table 6-2. The 

strut spacing and properties of the internal diaphragm were the same as those used 

in the earlier studies.  

 

Table 6-2 Diagonal area for each top lateral bracing system and the 

corresponding equivalent plate thickness 

Cross-sectional area of diagonal member Equivalent plate 
thickness X-type Alternating-Diagonal Single-Diagonal 
0.01 in 0.525 in2 1.05 in2 1.36 in2 
0.03 in 1.58 in2 3.16 in2 9.97 in2 
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 Vertical deflection of Model 1 curved girder
L=180 ft, R=600 ft, w=1 K/ft
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Figure 6.9 Vertical deflection with different top lateral bracing systems 

 

Figure 6.9 shows that the vertical deflections for the three different top lateral 

bracing systems that have the same equivalent plate thickness are the same. This 

observation is true for equivalent plate thicknesses of 0.01 and 0.03 inches. The 

vertical deflections predicted by the analytical formula are slightly smaller than 

those from the UTRAP solution, since the analytical formula neglects shear 

deformation.  It should be noted that in this case, the bending properties used in 

the analytical formula are calculated without considering the presence of the top 

lateral bracing system because the panel geometry shown in Figure 6.3 gives a 

low effective stiffness.  
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 Rotation of Model 1 curved girder
L=180 ft, R=600 ft, w=1 K/ft
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Figure 6.10 Rotation with different top lateral bracing systems 

 

Figure 6.10 shows that the rotation is also not sensitive to the type of top 

lateral bracing system. However, the rotations of the Single-Diagonal system are 

slightly larger than those in the X-type and the Alternating-Diagonal systems. As 

shown in Figure 5.26, the lateral displacement of the top flanges near the midspan 

is several times greater than that of the X-type and the Alternating-Diagonal 

systems. In a curved girder, the lateral displacement of the top flanges is larger 

than that of a straight girder due to a second order effect as follows: Under 

bending, the top flanges are in compression and want to move away from the 

center of curvature, whereas the bottom flange is in tension, wanting to straighten 

up and move toward the center of curvature. As a result, the lateral movement of 

the top flanges is accompanied by additional rotation. As the lateral displacement 
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of the top flanges becomes larger, the additional rotation due to the second order 

effect will also be larger.  

Using a longer panel length, the lateral displacements of the top flanges 

near the midspan of a girder with the Single-Diagonal system will be significantly 

larger that those with the X-type and the Alternating-Diagonal system. 

Consequently, due to the second order effect, the rotations near the midspan of the 

simply-supported curved girder with the Single-Diagonal system will also be 

significantly larger. Figure 6.11 shows rotations along the length of the 180-ft 

Model 1 curved girder. All systems have an equivalent plate thickness of 0.03 

inches, but the panel length and the internal diaphragm spacing are 10 ft. The 

cross-sectional area of the strut is 4 in2 and the cross-sectional areas of the 

diagonals in the X-type, the Alternating-Diagonal, and the Single-Diagonal 

systems are 1.83 in2, 3.94 in2, and 4.25 in2, respectively. 

Figure 6.11 shows that the rotations of Model 1 with the X-type and the 

Alternating-Diagonal systems are the same and they are similar to those for the 2-

ft panel spacing given in Figure 6.10.  However, the rotations with the Single-

Diagonal system are very sensitive to the panel length. Even though the 

equivalent plate thicknesses are kept the same (i.e. 0.03 inches), the rotations with 

a 10-ft panel Single-Diagonal system are significantly larger than those with a 2-ft 

panel. In general, cross-section distortion due to curvature effects is not affected 

by the type of top lateral system as will be shown in section 6.3. Choosing the 

panel length that maintains a top lateral bracing member angle of 45 degrees will 

result in a maximum total rotation of a Single-Diagonal system 50 percent larger 

than that of the X-type or the Alternating-Diagonal system. 
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Rotation of Model 1 curved girder, teq=0.03 in
L=180 ft, R=600 ft, w=1 K/ft
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Figure 6.11 Rotation with the equivalent plate thickness of 0.03 in and using 

10-ft panel 

6.2 LATERAL DISPLACEMENT  

 

Unlike in a straight girder, there can be significant lateral displacements in 

a curved girder. Figure 6.12 shows the lateral displacement of the top and the 

bottom flanges of a simply-supported Model 1 curved girder with 2-ft panels of 

the X-type system from UTRAP solutions. Positive and negative lateral 

displacements indicate displacement toward and away from the center of 

curvature, respectively. The lateral displacement values have been plotted on a 

reverse scale in order to physically correlate displacements with the plan view of 

a curved-girder in UTRAP. 
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Model 1 curved girder with the X-type system, teq=0.03 in, 2-ft panel

L=180 ft, R=600 ft, w=1 K/ft
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Figure 6.12 Lateral displacements of the top and the bottom flanges from 

UTRAP 

 

Figure 6.12 shows that the lateral displacements of the bottom flange along the 

length of a curved girder are different than those of the top flanges. Since UTRAP 

assumes that there is a rigid diaphragm at each support that prevents cross-section 

distortion, the lateral displacement of all nodes at the support location must be the 

same. Since the lateral boundary conditions in UTRAP supports are fixed and 

free, Figure 6.12 shows that there is rigid body lateral movement at the right 

support, which is a free support. Even though the girder is a pseudo-closed 

section, there is some warping of cross-section. The laterally fixed support 

prevents warping displacements and consequently, the rigid body movement is 

induced. In practice, the lateral movement in a simply-supported curved girder is 

not permitted. Therefore, all the subsequent lateral displacement plots are 
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corrected for the rigid body movement so that there is no support lateral 

movement.  

 Figure 6.13 shows the corrected lateral displacements of the top and 

bottom flanges. Since the girder is symmetrical about midspan, the corrected 

lateral displacements are also symmetrical about midspan. Both of the top and 

bottom flanges move away from the center of curvature. This indicates that the 

shear center is located under the bottom flange, which agrees with the calculation 

shown in Chapter 4. More detailed discussions of the lateral displacement of the 

top flanges, the bottom flange and the support are presented in the following 

sections.  
 

Model 1 curved girder with the X-type system, teq=0.03 in, 2-ft panel
L=180 ft, R=600 ft, w=1 K/ft
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Figure 6.13 Corrected lateral displacements of the top and bottom flanges 
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6.2.1 Lateral displacement of the top flanges 

The lateral displacements of the top flanges in a girder with the Single-

Diagonal system are larger than those with the X-type and the Alternating-

Diagonal systems. In addition, even for the same equivalent plate thickness, as the 

panel length in the Single-Diagonal system gets longer, the lateral displacements 

become larger. Figure 6.14 shows the corrected lateral displacements of the top 

flanges of Model 1 with different top lateral bracing systems. A 2-ft panel length 

is used and the equivalent plate thicknesses for all systems are 0.03 inches. 

Model 1 curved girder, teq=0.03 in, 2-ft panel
L=180 ft, R=600 ft, w=1 K/ft
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Figure 6.14 Lateral displacements of the top flanges 

 

Figure 6.14 shows that the lateral displacements of the top flanges of Model 1 

with the X-type and the Alternating-Diagonal systems are the same and those with 

the Single-Diagonal system are slightly larger. Figure 6.15 compares the lateral 
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displacements of Model 1 with the 2-ft panel and the 10-ft panel of the Single-

Diagonal system. Both of them have the same equivalent plate thickness of 0.03 

inches.  

Model 1 curved girder with Single-Diagonal system, teq=0.03 in
L=180 ft, R=600 ft, w=1 K/ft
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Figure 6.15 Lateral displacements with the 2-ft panel and the 10-ft panel of the 

Single-Diagonal system 

 

Figure 6.15 shows that the lateral displacements with the 10-ft panel Single-

Diagonal system are larger than those with the 2-ft panel. These additional lateral 

displacements cause the rotations with the 10-ft panel to be larger than those with 

the 2-ft panel. Therefore, if one wants to use a Single-Diagonal system instead of 

an X-type or an Alternating-Diagonal system, he must be careful in determining 

the panel length in addition to selecting the member sizes to produce the same 

equivalent plate thickness. As the panel length of the Single-Diagonal system 

increases, the lateral displacements and rotations become significantly larger than 
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those in a girder with the X-type or the Alternating-Diagonal system, even though 

the equivalent plate thicknesses are the same. In order to limit the additional 

lateral displacements and rotations of the Single-Diagonal system to 50 percent of 

those of the X-type and Alternating-Diagonal systems, the maximum 

recommended panel length is equal to the top width of the girder. 

 

6.2.2 Lateral displacements of the bottom flange 

In order to study the sensitivity of the top lateral bracing systems on the 

lateral displacements of the bottom flange, Figure 6.16 shows the corrected lateral 

displacement of the bottom flange of Model 1 with different top lateral bracing 

systems. A 2-ft panel top lateral bracing system is used, while the equivalent plate 

thickness for all systems used in this analysis is reduced to 0.01 inches. 

Model 1 curved girder, teq=0.01 in, 2-ft panel
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Figure 6.16 Lateral displacements of the bottom flange  
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Figure 6.16 shows that the lateral displacements of the bottom flange are not 

sensitive to the type of the top lateral bracing system. No matter what type of top 

lateral bracing system is used, as long as the equivalent plate thicknesses are the 

same, the lateral displacements of the bottom flange are the same. Comparing the 

lateral displacement of the bottom flange for Model 1 with equivalent plate 

thicknesses of 0.01 inches and 0.03 inches (Figure 6.16 and Figure 6.12), it can be 

observed that those for Model 1 with an equivalent plate thickness of 0.01 inches 

are larger. The maximum lateral displacement of the bottom flange in a simply 

supported curved girder occurs at the support. 

   

6.2.3 Lateral displacement of the support 

Simply-supported curved girder rests on one pin and one roller support. In 

UTRAP, the pin support prevents both lateral and longitudinal displacements, 

whereas the roller support allows both lateral and longitudinal displacement. 

Depending on the equivalent plate thickness, the uncorrected UTRAP solutions 

for support lateral displacement can be significant. The UTRAP solution for the 

support lateral displacement of the open-section Model 1 curved girder used in the 

previous analysis (i.e. L=180 ft, R=600 ft, w=1 k/ft) is 108 inches. Figure 6.17 

shows the uncorrected UTRAP support lateral displacements of the pseudo-closed 

Model 1 with different equivalent plate thicknesses. In order to prevent cross-

section distortion, a 2-ft internal diaphragm spacing is used. Figure 6.17 shows 

that the magnitude of the support lateral displacement depends on the equivalent 

plate thickness. For an equivalent plate thicker than 0.03 inches, the support 

lateral displacement is not very sensitive to the equivalent plate thickness, 

whereas for an equivalent plate thickness less than 0.03 inches, it becomes very 
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sensitive. It should be noted that all support lateral displacements are positive, 

which means the support tends to move laterally toward the center of curvature. 

Support lateral displacement of Model 1 curved girder
(L=180 ft, R=600 ft, w=1 K/ft) 
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Figure 6.17 UTRAP solutions for support lateral displacements  

 

In practice, support lateral displacement in simply-supported curved 

girders is not permitted. However, in a continuous curved girder, there is a 

support lateral displacement. As seen from UTRAP solutions, the support lateral 

displacement can be significant depending on the equivalent plate thickness. 

Figure 6.18 shows the lateral displacement at an end support of the three-spans 

continuous U.S 290 Bridge in Austin, Texas. 
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Figure 6.18 Lateral displacement of an end support of the “U.S 290-Bridge” 

 

6.2.3.1 Analytical prediction of support lateral displacement 

 Since cross-section distortion is prevented, the only source of the support 

lateral displacement is warping deformation. As discussed in Chapter 2, warping 

deformation involves an out-of-plane displacement. Figure 6.19 shows a plan 

view of an out-of-plane warping displacement of the bottom flange with the width 

of bbf. Warping deformation involves the rotation κ of the edge of the bottom 

flange. The coordinate and the out-of-plane displacement along the width of the 
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bottom flange are denoted as s and u(s), respectively. The maximum out-of-plane 

displacements occur at the edges of the bottom flange and are denoted umax.  

 

κ 2
bfb  

umax 

Bottom flange 
s 

umax 

u(s) 

 

Figure 6.19 Plan view of an out-of-plane warping displacement of the bottom 

flange 

 

The torsional warping function w(s), discussed in Chapter 2, is linearly 

proportional to the warping axial displacement u(s). Mathematically, the relation 

between the warping axial displacement and the torsional warping function at the 

edge is  

dz
dwu edge
θ

=max     (6.12) 

where wedge is the torsional warping function at the edge of the bottom flange and 

dz
dθ is the rate of change of twist along the girder length (torsional curvature).  

From Figure 6.19, umax can also be expressed as 

       
2max
bfb

u κ=      (6.13) 
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Combining Eqs.6.12 and 6.13, the rotation of the edge of the bottom flange κ is 

    
bf

edge

b
dz
dw θ

κ
2

=     (6.14) 

 Figure 6.20(a) shows a plan view of the lateral displacement of the 

bottom flange δH. For clarity, a line representing the bottom flange is shown in 

Figure 6.20(b). Due to the warping deformation, a chord of a curved girder rotates 

κ radians and the roller support laterally moves δH closer to the center of 

curvature. The final and the initial chord lengths are assumed to be the same. 

From the box shown in Figure 6.20(b), the support lateral displacement δH of a 

curved girder with the chord length c and the central angle Φ is 

    ( ) 





 Φ=

2
coscH κδ     (6.15) 

Combining Eqs.6.14 and 6.15, δH  becomes 

    ( ) 





 Φ=

2
cos

2
c

b
dz
dw

bf

edge

H

θ

δ    (6.16) 

It should be noted that 
dz
dθ shown in Eq.6.16 is the rate of change of twist at the 

support.  
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Figure 6.20 Plan view of the lateral displacement of the bottom flange 

6.2.3.2 Verification 

In order to verify the analytical formula for predicting a support lateral 

displacement, UTRAP was used to analyze a 180-ft Model 1 curved girder with a 

radius of curvature of 600 ft, under a uniform load of 1 k/ft. The central angle of 

the girder Φ is 0.3 radians and the chord length c is 

  ( ) 3.179
2
3.0sin6002

2
sin2 =






=






 Φ= Rc  ft 
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The UTRAP solutions for the support lateral displacement of an open section and 

a pseudo-closed section with an equivalent plate thickness of 0.01 inches are 108 

inches and 2.92 inches, respectively. Having calculated the twist at 2 ft from the 

support using Eq.6.11, the rate of change of twist within 2 ft of the support of the 

open-section and the pseudo-closed section are 0.001845 in-1 and 0.000062 in-1, 

respectively. 

From the cross-section properties calculations shown in Chapter 4, the 

torsional warping function at the edge of the bottom flange wedge for the open 

section and the pseudo-closed section are 672.5 in2 and 649.4 in2, respectively. 

Using Eq.6.16, δH of the open section is: 

           ( )( ) ( ) 6.105
2
3.0cos123.179

50
001845.05.6722

=





×=Hδ  inches 

Similarly, support lateral displacement of the pseudo-closed section is 3.43 

inches. The discrepancy between the UTRAP solution and the analytical solution 

for the support lateral displacement of the open section and the pseudo-closed 

section are 2.2 percent and 17.5 percent. Even though the percent discrepancy 

with the pseudo-closed section is much larger than with the open-section, the 

support lateral displacement of a pseudo-closed section is significantly smaller. It 

can be concluded that the lateral support displacement given by UTRAP is caused 

by warping displacement. 

 

6.3 CROSS-SECTION DISTORTION 

 

The previous sections discussed the behavior of a curved girder with the 

assumption of a non-deformable cross section. In order to prevent cross-section 

distortion, closely-spaced internal diaphragms must be used along the length.  
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This section discusses the distortion of the cross section due to curvature and the 

effect of the internal diaphragms on cross-section distortion. Section 6.3.1 

discusses some existing recommendations for the internal diaphragm spacing. 

Sections 6.3.2 through 6.3.4 presents the effect of different parameters on 

distortional deformation in simply supported girders. Section 6.3.5 briefly 

discusses the distortional deformation in a continuous girder. 

In order to aid the physical understanding of cross-section deformation, 

Figure 6.21 shows the deformed position at the midspan of a Model 1 girder with 

both a 2-ft internal diaphragm spacing and without any internal diaphragms. The 

girder used in this example is a 180-ft simply-supported girder with a 2-ft panel of 

the X-type system under a uniformly distributed load of 1 k/ft. The radius of 

curvature is 600 ft and the equivalent plate thickness is 0.01 inches.  
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Figure 6.21 Total deformation at the midspan 
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Figure 6.21 shows that the total deformations of the girder using a closely-spaced 

internal diaphragm and without any internal diaphragms are significantly 

different. With a closely-spaced internal diaphragm, the girder only experiences 

rigid body rotation, whereas without any internal diaphragms, it experiences 

cross-section distortion in addition to rigid body rotation. The deformation due to 

distortion, shown in Figure 6.22, can be found by subtracting the deformation of 

the girder with closely-spaced internal diaphragms (rigid body rotation) from that 

without any internal diaphragms. 
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Figure 6.22 Deformation at midspan due to distortion 

 

Figure 6.21 and Figure 6.22 show that cross-section distortion involves bottom 

flange rotation opposite to the rigid body rotation, a change in the diagonal 

lengths a-c and b-d, and web distortion. 
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6.3.1 Existing recommendations for internal diaphragm spacing and area 

             Internal diaphragms are effective in preventing cross-section distortion. 

Heins (1978) recommended that in order to limit the distortional normal stress to 

10 percent of the bending normal stress, the required internal diaphragm spacing s 

should satisfy the following requirement: 

       25
7500200

≤







−
≤

L
RLs  ft   (6.17) 

where L and R are the span length and the radius of curvature, respectively, in 

feet. Eq.6.17 is based on limiting the distortional normal stresses in the bottom 

flange so it was developed for application to the completed bridge. The 

recommended internal diaphragm spacing shown in Eq.6.17 assumes that all cross 

frames and diaphragms are rigid. In order to satisfy this assumption, Heins 

suggested that the required minimum area of X-type cross-frames Ab should be 

    ( )db
t

d
sbA w

b +
=

3

2min, 75     (6.18) 

where d, b, and tw are the girder depth, width, and web thickness, respectively. 

 Green (1978) indicated that a distortional brace spacing of one-quarter of 

the span length was appropriate for the majority of spans with length greater than 

30 m (98.4 ft). 

 Nakai and Yoo (1988) presented guidelines that limit the distortional 

normal stress to less than 5 percent of the bending normal stress. The required 

internal diaphragm spacing s in meters for a straight girder should be: 

   s < 6 m   for L < 60 m   (6.19) 

   s ≤ 0.14 L -2.4  for 60 m ≤ L ≤ 160 m  (6.20) 

   s = 20 m  for L > 160 m   (6.21) 

For a curved girder, the required internal diaphragm spacing must be decreased by 

the reduction factors ξ as follows: 
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   ξ = 1.0   for L < 60 m   (6.22) 

   
2100

)60(
1

−
−=

L
R
L

ξ  for 60 m ≤ L ≤ 200 m  (6.23) 

It should be noted that 1 meter is equal to 3.28 feet.  

 Based on experimental works performed using 46-inch scaled models, 

Siddiqui and Ng (1988) recommended that an internal diaphragm spacing of L/4 

should be used in box girder bridges with rectangular or trapezoidal cross-

sections. This recommendation was based on the observation that the maximum 

decrease in the distortional normal stress occurs when an internal diaphragm 

spacing of L/4 was used and any further decrease in spacing did not reduce the 

stress appreciably. 

 Based on parametric studies performed on rectangular box girders without 

lattice walls, under vertically eccentric loading, using the Beam on Elastic 

Foundation analogy, Yabuki and Arizumi (1989) recommended ratios of span 

length to internal diaphragm spacing. Table 6-3 shows the recommended ratios 

for limiting the vertical deflection due to distortion to less than 1/1000 of the 

internal diaphragm spacing and the distortional stress to less than 5 percent of the 

design bending stress. Their recommendations are a function of the L/b and L/R 

ratios.  

 The 2003 AASHTO Guide Specifications for Laterally Curved Steel 

Girder Highway Bridges states that spacing of the internal diaphragms should not 

exceed 30 feet. This recommendation is based on the criteria that the longitudinal 

distortional normal stress should be less than 10 percent of the bending stress. 
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Table 6-3 Required ratio of span length to internal diaphragm spacing 

recommended by Yabuki and Arizumi (1989) 

Central angle (L/R) (radian) Span length to 
width ratio 

(L/b) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

10 5 6 6 7 8 8 9 9 10 10 10 
20 5 6 7 8 9 10 11 11 12 13 13 
30 5 7 8 9 11 11 12 13 14 15 15 
40 5 7 9 10 12 13 14 15 15 16 17 
50 5 8 10 11 13 14 15 16 17 18 19 

  

Figure 6.23 summarizes all existing recommendations. In one case, the 

radius of curvature is kept constant at 600 ft and in the other case, the length is 

kept constant at 180 ft. Yabuki and Arizumi recommendations result in the 

smallest spacing. Green, Siddiqui and Ng recommendations are similar and they 

result in the largest spacing for the girder longer than 120 ft. Heins’ 

recommendation is about 50 percent larger than Yabuki and Arizumi’s 

recommendation. Figure 6.23 shows that there are significant variations among 

the recommendations. These variations indicate that cross-section distortion has 

not been well understood. 
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Figure 6.23 Existing recommendations for internal diaphragm spacing 
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6.3.2 Effect of internal diaphragms on total rotation  

 As seen in Figure 6.22, the cross-section distortion involves a distortional 

rotation opposite to the rigid body rotation. Unlike rigid body rotation, the 

distortional rotation of the bottom flange is not the same as that of the top flanges. 

Figure 6.24 shows the total rotation of the bottom and the top flanges of a 180-ft 

long Model 1 girder with a 30-ft internal diaphragm spacing and with no internal 

diaphragms. 
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Figure 6.24 Total rotations of the bottom and the top flanges 

 

The total rotations of the bottom flange and the top flanges with a 30-ft internal 

diaphragm spacing are about the same, whereas those without any internal 

diaphragms are tremendously different. The maximum magnitude of the total 

rotation without internal diaphragms is significantly smaller than that with a 30-ft 

internal diaphragm spacing. However, as seen in Figure 6.21, the webs of a girder 
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without any internal diaphragms experience significant distortion. Since the total 

rotations of the bottom and top flanges in a girder with a reasonable internal-

diaphragm spacing are about the same, the rotation of the bottom flange will be 

reported. 

In order to observe the effect of internal diaphragms on cross-section 

distortion, Figure 6.25 shows the total rotation of the bottom flange with different 

internal-diaphragm spacings. The top lateral bracing system was a 2-ft panel of 

the X-type system with an equivalent plate thickness of 0.01 inches. Negative and 

positive rotations indicate counter-clockwise and clockwise rotations, 

respectively, with the center of curvature on the right side of the girder as shown 

in Figure 6.21. There is no distortional rotation with a 2-ft internal-diaphragm 

spacing (i.e. only rigid body rotation). The 30-ft spacing and 2-ft spacing give 

almost the same total rotation indicating that the 30-ft spacing is sufficient to 

control distortion. As the internal-diaphragm spacing gets larger, the total rotation 

becomes less negative. From the total rotation of Model 1 with a 90-ft internal 

diaphragm spacing, it can be seen that the presence of just one internal diaphragm 

brings the total rotation closer to the rigid body rotation. 

The distortional rotation can be obtained by subtracting the rigid body 

rotation from the total rotation. Figure 6.26 shows distortional rotations with 18-ft 

and 30-ft internal diaphragm spacings. Two different internal diaphragms areas 

Aid, 4 in2 and 20 in2, are also used. These values will be compared to Eq.6.18 

later. The maximum distortional rotation with a 30-ft internal diaphragm spacing 

is more than double that with an 18-ft spacing. However, the distortional rotation 

is very small. The maximum rotation at midspan is less than 0.001 radians (0.057 

degrees). The distortional rotation decreases as the internal diaphragm area 

increases. Even though the percentage reductions in the distortional rotation due 

to increased internal diaphragm area can be significant, from a total rotation 
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perspective, as long as a reasonable internal diaphragm spacing is used, there is 

little difference in total rotation due to the change in a change in diaphragm area. 
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Figure 6.25 Effect of internal diaphragm spacing on total rotation 
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The required internal diaphragm areas based on Eq.6.18 for 18-ft and 30-ft 

internal diaphragm spacing are 0.26 in2 and 0.43 in2, respectively. The maximum 

forces in the internal diaphragm diagonal member with an 18-ft spacing are 12.3 k 

in both tension and compression. With a 30-ft spacing, the maximum forces are 

20.3 k in both tension and compression. These forces were obtained from 

UTRAP. The forces predicted by the formulation developed by Helwig and Fan 

(2000) are 12.7 k and 21.1 k for the two spacing. From a strength standpoint, a 

WT 5x6 (1.77 in2) is required indicating Eq.6.18 is unrealistic. It can be 

concluded that the required internal diaphragm area is controlled by the strength 

requirement. The strength requirements and the design equations for evaluating 

brace forces in internal diaphragms are discussed in Helwig and Fan (2000). 

 

6.3.2.1 Parametric studies 

A parametric study was conducted to determine the effect of the 

equivalent plate thickness on the magnitude of distortional rotation. Figure 6.27 

shows the distortional stress as a function of the internal diaphragm spacing for 

Model 1 with an equivalent plate thicknesses of 0.01 inches and 0.03 inches. The 

maximum distortional rotation is insensitive to the equivalent plate thickness. 

However, the rigid body rotation of a girder with a larger equivalent plate 

thickness is smaller. The maximum rigid body rotations for the Model 1 curved 

girder (L=180 ft, R=600 ft, w=1 k/ft) with equivalent plate thicknesses of 0.01 

inches and 0.03 inches are -0.0413 radian and -0.0158 radian, respectively. 

Figure 6.28 shows that the ratio of the maximum distortional rotation to 

the maximum rigid body rotation is sensitive to the equivalent plate thickness. 

Since the direction of the distortional rotation is opposite to the rigid body 
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rotation, the ratio shown in Figure 6.28 is negative. Depending on the equivalent 

plate thickness, the distortional rotation can be larger than the rigid body rotation.   
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Figure 6.27 Maximum distortional rotation as a function of an internal 

diaphragm spacing 

 Another parametric study was performed to examine the effect of the 

internal diaphragm spacing on the ratio of the distortional to the rigid body 

rotations (θD/θT). In this study, both lengths and radii of curvature were varied to 

produce the same central angle of 0.3 radians. However, the ratio of the midspan 

total rotation to the span length and the midspan bending normal stress are kept 

about the same. Table 6-4 shows all analysis cases used in this study and  shows 

θD/θT for Model 1 with an equivalent plate thickness of 0.03 inches. The existing 

recommendations for the internal diaphragm spacing are summarized in Table 

6-5. 
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Figure 6.28 Ratio of the maximum distortional rotation to the maximum rigid 

body rotation  

 

Figure 6.29 Effect of s/L on distortional rotation
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Table 6-4 Analysis cases to study internal diaphragm spacing 

Length, 
L (ft) 

Radius of 
curvature 

(ft) 

Load 
(k/ft) 

Midspan 
rotation, 
θT (rad)* 

Midspan 
Deflection, 
∆m (in)* 

Midspan bending 
normal stress, 
σ (Ksi)* 

Ratio 
of 

θT / L (ft-1) 

Ratio 
of 

∆m / L 

Internal 
diaphragm 

spacing, s (ft) 

Ratio 
of 

s / L 

18 1/10 
30 1/6  
36 1/5 
60 1/3 

180 600 1 0.0158 9.36 19.5 8.78 E-5 4.33 E-3 

90 1/2 
16 1/10 
20 1/8 160 533 1.27 0.0140 7.41 19.8 8.75 E-5 3.86E-3 
40 1/4 
20 1/7 

140 467 1.65 0.0123 5.70 19.6 8.78 E-5 3.39 E-3 
28 1/5 
20 1/6 
24 1/5 120 400 2.25 0.0105 4.22 19.6 8.77 E-5 2.93 E-3 
30 1/4 

 
Note: 
* Value for a girder with 2-ft internal diaphragm spacing (i.e. no distortion)  
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Table 6-5 Existing recommendations for the maximum internal diaphragm 

spacing 

Recommended minimum ratio of the internal diaphragm spacing to the span 
length (s / L) 

Length, 
L 

(ft) 

Radius of 
Curvature, 

R 
(ft) 

AASHTO 
(2003) 

Yabuki & 
Arizumi 
(1989) 

Nakai & 
Yoo 

(1988) 

Siddiqui & 
Ng 

(1988) 

Heins 
(1978) 

Green  
(1978) 

180 600 0.17 0.10 0.11 0.25 0.14 0.25 

160 533 0.19 0.11 0.12 0.25 0.15 0.25 

140 467 0.21 0.11 0.14 0.25 0.15 0.25 

120 400 0.25 0.11 0.16 0.25 0.16 0.25 

  

  Figure 6.29 shows that as long as the ratio of θT/L and the midspan 

bending normal stress are kept about the same, the ratio of θD/θT  for girders with 

similar central angles and s/L are about the same. If distortional rotation is equal 

to the rigid body rotation, the total rotation of the bottom flange is zero. In order 

to avoid a total rotation in the opposite direction to the rigid body rotation, at least 

one internal diaphragm must be used.  

 To examine the sensitivity of the ratio of θD/θT for different central angles, 

a third parametric study was performed. In this study, a 180-ft Model 1 girder 

with an equivalent plate thickness of 0.06 inches is used. In order to produce 

different central angles, three different radii of curvature were utilized. Figure 

6.30 shows the ratio of θD/θT with central angles of 0.2, 0.3, and 0.4 radians. As 

the central angle increases (i.e. R decreases for L=constant), the ratio of θD/θT also 

increases. The explanation for this is that the lateral load component on a girder 

due to curvature (M/(hR)) that causes the distortion becomes larger as the central 

angle increases. The change in the ratio of θD/θT is not linearly proportional to the 

change of the lateral load component due to curvature. Using an internal 

diaphragm spacing requirement for a larger central angle is conservative. 
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Figure 6.30 Effect of central angle on the ratio of the distortional rotation to 

the rigid body rotation 

6.3.3 Effect of internal diaphragm on the diagonal lengths 

As shown in Figure 6.22, cross-section distortion changes both diagonal 

lengths. Figure 6.31 shows the diagonal lengths of a trapezoidal box girder. The 

diagonal lengths from the left and right top flanges are called the left and the right 

diagonal lengths, respectively. The center of curvature is located on the right side 

of the girder. The undeformed diagonal length in a Model 1 girder is 87 inches. 

 Figure 6.32 shows the change in diagonal lengths due to distortion δD of a 

180-ft Model 1 with one internal diaphragm at the midspan (4-in2 member size) 

and without any internal diaphragms. Figure 6.32 shows that the maximum 

distortion always occurs midway between any two internal diaphragms. The 

changes in both diagonal lengths due to distortion are equal in magnitude and 

opposite in direction.   
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Figure 6.31 Diagonal lengths of a trapezoidal box girder 
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Figure 6.32 Change in diagonal lengths due to distortion 

 

Figure 6.33 shows the effect of internal diaphragm area on δD. The internal 

diaphragm areas Aid used in this analysis were 1 in2, 4 in2, and 20 in2 and the 

spacing of the internal diaphragm was 30 ft. Since δD of the left and right 
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diagonals are equal in magnitude and opposite in direction, only δD of the right 

diagonal is shown. Figure 6.33 shows that the internal diaphragm area affected δD. 

The length change decreases as the internal diaphragm area increases. However, 

with a reasonable internal diaphragm area (i.e. 4 in2), increasing the internal 

diaphragm area will not affect δD appreciably. 
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Figure 6.33 Change in right diagonal length due to distortion 

6.3.3.1 Parametric studies 

A parametric study examined the effect of the equivalent plate thickness 

on the magnitude of δD. Figure 6.34 shows the maximum δD in Model 1 with a 2-

ft panel of the X-type system as a function of the internal diaphragm spacing. The 

internal diaphragm area used in this study is 4 in2. It should be noted that the 

initial diagonal length in Model 1 is 87 inches. The maximum δD increases as the 

internal diaphragm spacing increases. For a certain internal diaphragm spacing, δD 



 176 

decreases as the equivalent plate thickness increases, but the effect is not 

significant for spacing less than 50 ft. 
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Figure 6.34 Effect of diaphragm spacing on change in diagonal length  

 

A second parametric effort studied the effect of internal diaphragm spacing on δD 

of girders with different lengths and radii of curvature. In order to summarize all 

results in one graph, the change in a diagonal length is normalized by the midspan 

vertical deflection ∆m. All analysis cases used in this study are shown in Table 6-4 

where all the girders have the same central angle of 0.3 radians and equivalent 

plate thicknesses of 0.03 inches. Figure 6.35 summarizes the results of this 

parametric study. Figure 6.35 shows that the ratio of δD/∆m of girders with similar 

central angles and ratios of s/L are about the same. In order to limit the ratio of 

δD/∆m to less than 2 percent, the maximum recommended ratio of s/L is 1/4. The 

maximum proposed ratio of 1/4 is the same as the existing maximum 
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recommended ratio shown in Table 6-5. Since the magnitude of the maximum 

change in a diagonal length is not very sensitive to the equivalent plate thickness 

(refer to Figure 6.34), the ratio shown in Figure 6.35 will likewise not be 

sensitive. 

 

Figure 6.35 Ratio of the maximum change in diagonal length change due to 

distortion to the midspan vertical deflection 

  

 A third parametric study observed the effect of changing the central angle 

on the maximum change in diagonal length due to distortion. Figure 6.36 shows 

ratios of the maximum change in diagonal length due to distortion to the midspan 

vertical deflection for central angles of 0.2, 0.3, and 0.4 radians. In this case, the 

girder length and the equivalent plate thickness are kept constant. As the central 

angle increases, the ratio of δD/∆m also increases. Using an internal diaphragm 

spacing requirement for a larger central angle will therefore be conservative. 



 178 

  

Figure 6.36 Effect of central angle on the ratio of the maximum change in a 

diagonal length to the midspan vertical deflection 

6.3.4 Effect of changing plate thickness and cross-section dimensions 

 Figure 6.37 shows the effect of increasing the web thickness tw on the 

maximum θD and the maximum δD of Model 1 with an equivalent plate thickness 

of 0.03 in. Figure 6.37 shows that generally, increasing the web thickness results 

in a smaller distortion. The reductions of both the maximum θD and δD because of 

the increase of the web thickness are more significant as the internal diaphragm 

spacing increases. The rationalization for this is that generally, cross-section 

distortion is controlled by cross-section distortion stiffness and internal diaphragm 

stiffness. In a girder with closely-spaced internal diaphragms, the contribution of 

cross-section distortional stiffness to the overall girder distortional stiffness is 

negligible compared to the contribution of the internal diaphragm. Therefore, 
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increasing the cross-section distortional stiffness does not affect the cross-section 

distortion in such cases. However, as the internal diaphragm spacing becomes 

larger, increasing the distortional stiffness will reduce cross-section distortion 

considerably. 

The parametric study was conducted to examine the effect of changing the 

cross-section dimensions on the maximum θD and δD. Two different cross-

sections, Model 1 and Model 3 (shown in Figure 1.5) are used. The length, radius 

of curvature, and equivalent plate thickness are the same in both models. In order 

to keep the midspan bending normal stresses the same in both models, uniform 

loads of 1 k/ft and 1.4 k/ft are applied to Model 1 and Model 3, respectively. 

Since the depths of the girders are not the same, the lateral load components due 

to curvature (M/(hR)) are different (1.36 k/ft in Model 1 and 0.908 k/ft in Model 

3). Figure 6.38 shows the distortional rotation and the maximum change in 

diagonal length due to distortion in both models. Figure 6.38 shows that the 

maximum θD and δD of Model 3 are larger. As the internal diaphragm spacing 

gets larger, the differences in the maximum θD and δD become more significant.  

Figure 6.39 shows the ratios of θD/θT and δD/∆m for both Model 1 and 

Model 3. Figure 6.39 shows that those ratios are practically insensitive to cross-

section dimensions. Therefore, it can be concluded that an internal diaphragm 

spacing requirement established based on the parametric study using Model 1 can 

be extended to different cross-sections. 



 180 

 

Figure 6.37 Effect of changing the web thickness on the maximum distortional 

rotation and the maximum change in diagonal length  
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Figure 6.38 Maximum distortional rotation and maximum change in a 

diagonal length due to distortion for Model 1 and Model 3 
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Figure 6.39 Effect of changing the cross-section dimensions  
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6.3.5   Cross-section distortion in a continuous girder 

This section discusses distortional rotation and change in diagonal length 

due to distortion in a continuous girder. The purpose of this section is to study 

whether the results of the parametric studies conducted for a simply-supported 

girder can be extended to a continuous girder. The girder used in this section is a 

two-equal-span Model 1 girder, in which the length and the radius of curvature of 

each span are the same as those in the simply-supported girder. 

Figure 6.40 shows both the rigid body and the distortional rotations of the 

bottom flange in a two-equal-span 180-ft Model 1 continuous curved girder. The 

central angle of each span is 0.3 radians. 

((L=360 ft, R=600 ft, w=1 K/ft, teq =0.03 in)

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0 30 60 90 120 150 180 210 240 270 300 330 360
Distance to the left support (ft)

R
ot

at
io

n 
(ra

d)

Rigid body rotation
Distortional rotation (no internal diaphragm)
Distortional rotation (30-ft internal diaphragm spacing)  

Figure 6.40 Rigid body and distortional rotation of a two-equal-span 180-ft 

continuous curved girder 
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As in a simply supported girder, the distortional rotation in a continuous girder is 

opposite to the rigid body rotation. The maximum rigid body rotation in a 

continuous girder is significantly smaller than the rotation in a simple span. 

Moreover, the maximum distortional rotation in a continuous girder that has the 

same internal diaphragm spacing is smaller. Figure 6.41 shows the ratio of θD/θT 

as a function of the ratio of s/L for both a simply-supported and a continuous 

girder. 

 

Figure 6.41 Ratio of the distortional rotation to the rigid body rotation 

Since the rigid body rotation in a continuous girder is significantly smaller than 

that in a simply-supported girder, the ratio of the distortional rotation to the rigid 

body rotation in a continuous girder is larger. In order to keep the distortional 

rotation less than the rigid body rotation, it is recommended that the ratio of s/L be 

kept smaller than 1/3. In this particular example, using a 60-ft internal diaphragm 

spacing is satisfactory from a distortional rotation perspective. 
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 The maximum change in a diagonal length δD in a continuous girder in 

which the central angle of each span is the same as that in a simply-supported 

girder is smaller than that in the simply supported girder. In addition, the 

maximum vertical deflection ∆m in a continuous girder is also smaller. Figure 6.42 

shows the ratio of δD/∆m as a function of the ratio of s/L. 

 

Figure 6.42 Ratio of the maximum change in a diagonal length to the 

maximum vertical deflection 

 

Figure 6.42 shows that the ratio of δD/∆m in a continuous girder is larger than that 

in a simply-supported girder. The explanation for this is that the percent reduction 

in ∆m, going from a simply-supported to a continuous girder, is larger than that in 

δD. Using a ratio of s/L of 1/5 or smaller, one can keep δD less than 2 percent of 

∆m. However, since ∆m in a continuous girder is significantly smaller, the 
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reduction in the recommendation for the maximum s/L from 1/4 to 1/5 in a 

continuous girder is not warranted.  

The maximum θD and δD in an equal-span continuous girder is smaller 

than those in a simply-supported girder whose length and central angle are the 

same as those for each span of the continuous girder. However, with a ratio of s/L 

smaller than 1/4, the ratios of θD/θT and δD/∆m between the two girders are about 

the same. Therefore, the internal diaphragm spacing requirement developed based 

on the studies of a simply-supported girder can be extended to a continuous 

girder. As the central angle of each span of the continuous girder decreases, those 

ratios will also decrease. For that reason, it is conservative to determine an 

internal diaphragm spacing requirement based on the parametric studies done with 

a girder with a larger central angle. 

 

6.4 SUMMARY 

 

This chapter presented the general behavior of a curved girder. There is 

good agreement between the vertical deflections and rotations obtained from the 

UTRAP solution and the analytical formulas. The vertical deflections and 

rotations of a curved girder are not very sensitive to a change in the equivalent 

plate thickness for thicknesses greater than 0.03 inches. The vertical deflection is 

not sensitive to the type of top lateral bracing system, whereas the rotation is. The 

rotation of a girder with the X-type and the Alternating-Diagonal systems are the 

same and independent of the panel length, whereas the rotation with the Single-

Diagonal system is larger. In order to limit the additional maximum rotation of the 

Single-Diagonal system to 50 percent of those of the X-type and Alternating-
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Diagonal system, the maximum recommended panel length is equal to the top 

width of the girder. 

The lateral displacement of the top flange is sensitive to the type of top 

lateral bracing system, whereas that of the bottom flange is not. The magnitude of 

support lateral displacement obtained from UTRAP depends on the equivalent 

plate thickness. From a support lateral displacement perspective, the minimum 

recommended equivalent plate thickness is 0.03 inches.  

Cross-section distortion involves the distortional rotation of the bottom 

flange opposite to the rigid body rotation, the change of both diagonal lengths, 

and web distortion. The required internal diaphragm area is controlled by 

strength, not stiffness.  In order to keep the maximum distortional rotation less 

than the maximum rigid body rotation and the ratio of δD/∆m less than 2 percent, 

the maximum recommended ratio of s/L is 1/4.  

The internal diaphragm spacing requirement developed based on the 

studies of a simply-supported girder can be extended to a continuous girder. It 

should be pointed out that the recommended internal diaphragm spacing is based 

on the parametric study done of a simply supported girder and a continuous girder 

with a central angle of each span of 0.3 radians. This recommendation is 

conservative for a girder with a central angle of each span less than 0.3 radians. 

The recommended ratio of s/L of 1/4 is the same as the ratio proposed by 

Green, Siddiqui, and Ng. However, for a span longer than 120 ft, the 

recommended internal diaphragm spacing is larger than the maximum spacing 

permitted by AASHTO 2003. This chapter shows that relaxing the AASHTO 

maximum internal diaphragm spacing requirement and the recommended spacing 

from Yabuki, Arizumi, Nakai, Yoo, and Heins does not adversely affect the cross-

section distortion. 
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CHAPTER 7 
 Warping Normal Stresses 

 
An analytical method for predicting the  warping normal stress in a simply 

supported curved girder is presented in this section. The results from the 

analytical method are then compared with UTRAP solutions for an open and a 

pseudo-closed sections. The Model 1 girder whose cross-section dimensions are 

shown in Figure 1.5 is used for both the open section and pseudo-closed cross-

sections. For the pseudo-closed section, an X-type top lateral bracing system with 

an equivalent plate thickness of 0.05 inches, shown in Figure 7.1, is used. This 

equivalent plate thickness was also used in the sample calculations of the cross-

sectional properties in Chapter 4. For convenience, the cross-sectional properties 

from those sample calculations are presented in this section. In order to eliminate 

the localized normal stress due to lateral bending of the top flange, a 2-ft panel 

spacing is adopted. Moreover, in order to minimize any distortional warping 

normal stresses, internal diaphragms are closely spaced at 2 ft intervals.   
 As=4 in2 Ad=2.63 in2 

2 ft 

76″ 

 

Figure 7.1 X-type top lateral bracing system 
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7.1 ANALYTICAL METHOD 

 

The warping normal stress σW can be predicted using Eq.2.17. 

Analytically, σW in a trapezoidal box girder can be calculated using the following 

procedures.   

1. Calculate the shear center location.  

2. Calculate the pure torsional constant J 

3. Construct the torsional warping function diagram w(s)  

4. Calculate the warping moment of inertia Iw 

5. Calculate the warping shear parameter µ and the central second moment of 

area for the pseudo-closed section Ic 

The open and pseudo-closed Model 1 cross-section properties are shown in 

Figure 7.2 and Figure 7.3, respectively. The detailed calculations were given 

in Chapter 4.  

6. Determine B (bimoment) for a simply supported curved girder 

The distribution of the bimoments along the length of the simply-

supported, uniformly loaded curved girder with a constant cross-section is shown 

in Figure 7.4. From Eq. 2.18 derived by Dabrowski, the maximum magnitude of 

the bimoments for the open and pseudo-closed sections of a 180-ft, simply-

supported Model 1 curved girder with 600-ft radius of curvature under 1 k/ft 

loading are 14840 k.ft2 and 46.7 k.ft2, respectively. The bimoment in the open-

section is much higher (about 300 times) than that in the pseudo-closed section 

because a significant portion of the torsional moment is resisted by warping 

torsion. In a pseudo-closed section, the portion resisted by warping is almost 

negligible. Since the maximum bimoment occurs at midspan, the maximum σW 
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will also occur at midspan. For many other loading and support conditions, the 

location of the maximum σW has been derived (Dabrowski, 1968, Seaburg and 

Carter, 1997).  

Having calculated the bimoments and all cross-sectional properties of the 

open and pseudo-closed sections, the σW distribution on the cross-section can be 

determined using Eq.2.17. Figure 7.5 shows the predicted σW at the midspan of 

the open-section and the pseudo-closed section of the 180-ft simply supported 

Model 1 curved girder with a 600-ft radius of curvature under a symmetric 

uniformly-distributed load of 1 k/ft. The σW distribution is anti-symmetrical about 

the vertical centroidal axis. A negative sign indicates a compressive stress. The 

warping normal stress is added to the bending normal stress. The maximum σW in 

the open section is much higher than that in the pseudo-closed section. It should 

be noted that in the simplified analytical model for the pseudo-closed section, the 

top flanges are assumed to be concentrated at one point and located at the top of 

the web. Therefore, only the σW at the junction between the top flange and the 

web can be predicted analytically. 
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Figure 7.2 Model 1 torsional properties - open section  
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Figure 7.3 Model 1 torsional properties - pseudo-closed section 
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Figure 7.4 Bimoment distribution for  a simply supported curved girder 
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7.2 VERIFICATION 

 

In order to verify the analytical prediction of the  warping normal stresses 

σW, the UTRAP program was used to analyze the same problem as discussed in 

Section 7.1. Figure 7.6 shows the node locations where the total normal stress can 

be obtained from UTRAP outputs. 
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Figure 7.6 Node locations from UTRAP  

7.2.1 Open section 

In general, one is more concerned with the top flanges than the bottom 

flange because the top flanges are much smaller and experience larger normal 

bending stresses because the centroidal axis is closer to the bottom flange. Figure 

7.7 shows the variation of the total normal stresses on nodes 11 through 14 and 

the bending normal stresses on the top flanges. The bending normal stresses σB 

were obtained by taking the average of the total normal stresses on nodes 11 
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through 14. Figure 7.7 shows that the total normal stress is significantly different 

than σB. Since a closely spaced k-frame internal diaphragm is used, there is no 

distortional normal stress. The warping normal stress is the only normal stress 

causing the significant deviation of the total normal stresses from σB. The 

magnitude of σW can then be found by subtracting σB from the total normal 

stresses. 
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Figure 7.7 Total and bending normal stress variation - open section 

 

 Figure 7.8 compares the σW variation obtained from UTRAP and that 

obtained from Eq.2.17. For clarity, the UTRAP solutions are shown for every 8-ft 

interval. There is good agreement between the σW obtained from the UTRAP 

solution and that predicted using the analytical method. Figure 7.8 also shows the 

anti-symmetrical nature of the warping normal stress (i.e. σW at nodes 12 and 13 

are equal in magnitude but opposite in sign, as are those at nodes 11 and 14). 

Comparing the σB shown in Figure 7.7 and the warping σW shown in Figure 7.8 
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shows that the σW for an open-section can be three times higher than the σB. In a 

simply supported curved girder, the maximum σW occurs at the midspan, where 

the σB is also maximum. The σW in Figure 7.8 are for nodes 11 through 14, which 

do not correspond to the maximum σW location, which occurs at the tip of the top 

flanges as shown in Figure 7.5. 
 

L=180 ft, R=600 ft, w=1 k/ft

-80

-60

-40

-20

0

20

40

60

80

0 20 40 60 80 100 120 140 160 180Distance to the left support (ft)St
re

ss
 (K

si
)

Node 11
(UTRAP)

Node 11
(Analytical)

Node 12
(UTRAP)

Node 12
(Analytical)

Node 13
(UTRAP)

Node 13
(Analytical)

Node 14
(UTRAP)

Node 14
(Analytical)12 

11 

14 

13 

 

Figure 7.8  Warping normal stress variation – Open section 

 

 Figure 7.9 shows the distribution of the σW on the midspan cross-section 

of the open-section Model 1 girder obtained from the UTRAP output and the 

analytical method. Because of the anti-symmetry of the σW, only stresses for the 

left top flange and the left web are shown. There is good agreement between the 

UTRAP output and the analytical method.  
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Figure 7.9 Distribution of warping normal stresses at  midspan – open section 

7.2.2 Pseudo-closed section 

Figure 7.10 shows the total and bending normal stress variations along the 

length of the pseudo-closed section. Unlike the total and the bending normal 

stresses for the open-section, those for the pseudo-closed section are about the 

same. However, they are not exactly identical. The total normal stresses at nodes 

13 and 12 are slightly smaller and larger, respectively, than the bending normal 

stress and the total normal stress at nodes 11 and 14, and the bending normal 

stresses are identical. The deviation of the total normal stress from the bending 

normal stress is caused by the warping normal stress.  
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Figure 7.10 Total and bending normal stress variations - pseudo-closed  

 

Figure 7.11 compares the σW at the junction of the left web and the left top 

flange along the length of the open section and the pseudo-closed section, 

obtained from UTRAP. σW in a pseudo-closed section is almost zero.  

Figure 7.12 shows the σW at the junction of the web and the top flange 

obtained from UTRAP and from Eq.2.17. There is good agreement between the 

UTRAP and the analytical solutions. The σW in the two flanges are equal in 

magnitude but opposite in sign. The σW near the supports obtained from the 

UTRAP output deviate from the analytical prediction. However, since the bending 

normal stress near the supports is almost zero, the total normal stress is very small 

and of no concern. 
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Figure 7.11 Warping normal stress for the open and pseudo-closed sections  
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Figure 7.12  Warping normal stress variation - pseudo-closed section  
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Figure 7.13 shows the σW distribution at the midspan cross-section of a 

pseudo-closed-section with an equivalent plate thickness of 0.01 in  because the 

σW in the pseudo-closed section with an equivalent plate thickness of 0.05 inches 

are very small. Unlike the small discrepancies between the predicted distribution 

of the σW and the UTRAP output for the open-section shown in Figure 7.9, those 

for this pseudo-closed section are quite large, especially in the web. However, the 

discrepancy between the predicted σW and the UTRAP output at the junction of 

the web and the top flange is not large (about 10 percent). Since the σW in a 

pseudo-closed section are generally very small, the discrepancies between the 

predicted distribution of the σW and the UTRAP output are of minor concern. 
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Figure 7.13 Distribution of the  warping normal stresses at midspan – pseudo-

closed section 
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7.3 PARAMETRIC STUDIES 

 

The  warping normal stresses σW for an open-section can be several times 

larger than the bending normal stresses σB, whereas those for a pseudo-closed 

section with a sufficient equivalent plate thickness are generally so small that they 

may be neglected. Based on studies performed on rectangular box girders with the 

width to depth ratio between 1 and 3, Heins (1978) concluded that in order to 

keep the σW less than 10 percent of σB, the required minimum equivalent plate 

thickness is 0.05 inches. Heins’ parametric studies indicated that as the width to 

depth ratio increases, the ratio of σW /σB increases. In a girder with the width to 

depth ratio of 1, the minimum required equivalent plate thickness to keep the ratio 

of σW /σB less than 10 percent is 0.03 inches.   

This section presents the effect of equivalent plate thickness on the 

magnitude of the σW obtained from UTRAP and the analytical method. The 

parametric studies presented in this section focus on the σW at the junction of the 

web and the top flange. The analyses are conducted on a Model 1 curved girder 

with the same configuration as that in the previous sections.  

Figure 7.14 shows the variation of the σW along the length for several 

different equivalent plate thicknesses teq. Since the absolute magnitudes of the σW 

in a singly-symmetric trapezoidal box girder at both web-top flange junctions are 

the same (refer to Figure 7.12), only the σW at the left junction are shown. The 

sizes of the diagonal members used in the X-type top lateral bracing system 

corresponding to each equivalent plate thickness were shown in Table 6.1. Figure 

7.14 shows that there is good agreement between the variation of the σW along the 

length obtained from UTRAP and the analytical method. The values near each 

end support are not included because they are not meaningful. Even though the 
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accuracy of the analytical method depends on the equivalent plate thickness, the 

maximum discrepancy between the two results is generally less than 10 percent. 

For the equivalent plate thicknesses that are relatively thick (e.g. 0.04”), the 

predicted σW are larger than the UTRAP solution, whereas for equivalent plate 

thicknesses that are relatively thin, the predicted values are smaller than the 

UTRAP solution. 

 
 L=180 ft, R=600 ft, w=1 k/ft, 2-ft panel X-type system

-2.5

-2

-1.5

-1

-0.5

0
20 40 60 80 100 120 140 160

Distance to the left support (ft)

S
tre

ss
 (K

si
)

teq = 0.04"
(UTRAP)

teq = 0.04"
(Analytical)

teq = 0.025"
(UTRAP)

teq=0.025"
(Analytical)

teq=0.01"
(UTRAP)

teq=0.01"
(Analytical)

teq=0.005"
(UTRAP)

teq=0.005"
(Analytical)teq=0.005″ 

teq=0.01″ 

teq=0.025″ teq=0.04″ 

 
Figure 7.14 Warping normal stresses for different equivalent plate thicknesses 

 

Figure 7.15, Figure 7.16, and Figure 7.17 show the effect of teq on the 

midspan bimoment, the torsional warping function at the junction between the left 

web and the left top flange, and the warping moment of inertia, respectively. 

Figure 7.15 shows that in the curved girder with teq greater than 0.02 inches, 

changing teq does not affect the magnitude of the bimoment significantly, whereas 

with a teq less than 0.02 inches, the bimoment is very sensitive to teq. As teq 

becomes smaller, the bimoment increases dramatically. Figure 7.16 and Figure 



 202 

7.17 show that assuming the torsional warping function and the warping moment 

of inertia to be inversely proportional to teq is reasonable.  

Figure 7.15 shows that the midspan bimoment for the open-section is very 

close to that for the pseudo-closed section with an equivalent plate thickness 

approaching zero. On the other hand, there are noticeable discrepancies (about 10 

percent) between the torsional warping function and the warping moment of 

inertia for the open-section and those for the pseudo-closed section with an 

equivalent plate thickness approaching zero. These discrepancies indicate that the 

analytical formulas used to predict the cross-sectional properties related to 

torsional warping are not perfect, which accounts for the deviation of the 

predicted  warping normal stresses from the UTRAP solution, especially when the 

equivalent plate thickness becomes extremely thin. However, due to the 

complexity of warping torsion, a ten percent discrepancy between the analytical 

method and the UTRAP solution is acceptable, particularly since in a typical 

curved girder with a reasonable amount of top lateral bracing, the  warping 

normal stresses are so small that they can be neglected. 

Figure 7.18 and Figure 7.19 show the variation of the σW along the length 

of the pseudo-closed section with three different top lateral bracing systems, with 

teq of 0.05 inches and 0.01 inches, respectively. Table 7-1 shows the areas of the 

diagonal members used in the top lateral bracing systems corresponding to each 

teq. Figure 7.18 through Figure 7.19 show that the σW are generally not sensitive to 

the type of top lateral bracing system, as long as the teq is kept the same. The 

variations of the σW along the length of the girder using the X-type and the 

Alternating-Diagonal systems are exactly the same. For the teq of 0.05 inches, the  

σW using the Single-Diagonal system are close to those using both the X-type and 

the Alternating Diagonal systems, except near the midspan where the stresses 

increase significantly. 
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Figure 7.15 Midspan bimoment   
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Figure 7.16 Torsional warping function  
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Figure 7.17 Warping moment of inertia  

The jump in the σW near the midspan of the girder using the Single-Diagonal 

system is partly due to the kink in the horizontal displacement discussed in 

Chapter 5 that induces the concentrated localized normal stresses. The magnitude 

of the σW near the midspan of the girder using the Single-Diagonal system 

becomes closer to those of the girder using both the X-type and the Alternating-

Diagonal systems as the teq becomes smaller. For an extremely thin equivalent 

plate thickness (0.01 inches), the σW with a Single-Diagonal system are smaller 

than those in a girder using either the X-type or the Alternating-Diagonal system. 

Therefore, for a curved girder with a typical equivalent plate thickness, the results 

of parametric studies using the X-type system can be extended to the Alternating-

Diagonal and Single-Diagonal systems.  
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Figure 7.18 Effect of different top lateral bracing systems – teq=0.05 in 
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Figure 7.19 Effect of different top lateral bracing systems – teq=0.01 in 
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Table 7-1 Areas of diagonal members corresponding to equivalent plate 

thicknesses 

Size of diagonal member in top lateral bracing system (in2) Equivalent plate 
thickness (in) X-type Alternating-Diagonal Single-Diagonal* 

0.05 2.63 5.28 9.82 
0.025 1.31 2.63 4.91 
0.01 0.525 1.05 1.96 

* Note: Assume the area of the struts is 4 in2 (same as the area of the internal diaphragms)   

 

Figure 7.20 shows the midspan warping normal stresses at the junction of 

the web and the top flange as a function of the equivalent plate thickness. The 

maximum σW increases as the teq decreases. The maximum σW approaches zero as 

the teq becomes greater than 0.05 inches.  For a typical teq (between 0.02 and 0.05 

inches), the stresses are not sensitive to the teq. Figure 7.20 also shows that there is 

good agreement between the maximum σW obtained from UTRAP and from the 

analytical method.   

Figure 7.21 shows the UTRAP solutions for the variation of the maximum 

warping normal stress at the junction of the web and flange in a simply-supported 

Model 1 curved girder with an equivalent plate thickness of 0.01 inches as a 

function of the central angle. In addition to the magnitude of the σW, Figure 7.21 

also shows the ratio of the maximum warping normal stresses to the maximum 

bending normal stresses. In Figure 7.21(a) and (b), the radius of curvature is kept 

constant at 600 ft, whereas in Figure 7.21(c) and (d), the length is kept constant at 

180 ft. Changing the central angle for a constant radius of curvature was done by 

altering the length; for a constant length, the radius of curvature was varied. 

Figure 7.21(a) and (c) show that the maximum σW is sensitive to the central angle, 

the length L, and the radius of curvature R. In general, as the central angle 

increases, the maximum σW also increases. However, the change of the maximum 
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σW is more sensitive to the change of the length than to the change of the radius of 

curvature. For a constant radius of curvature of 600 ft, the maximum σW increases 

with the square of the central angle. For example, the maximum σW with the 

length 2L is roughly four times higher than with the length L. For a constant 

length of 180 ft, the change of maximum σW is approximately inversely 

proportional to the change of central angle.  
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Figure 7.20 Maximum warping normal stress as a function of the equivalent 

plate thickness 

 

Even though the change in the maximum σW is more sensitive to the 

change in girder length than to the change in the radius of curvature, the ratio of 

the maximum warping normal stress to the maximum bending normal stress for a 

constant radius of curvature of 600 ft is about the same for different central 

angles, as shown in Figure 7.21(b). On the other hand, Figure 7.21(d) shows that 
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the change of that ratio for a constant length of 180 ft is linearly proportional to 

the change of the central angle. For a central angle less than 0.4 radians, the 

maximum σW is less than 2 ksi and the ratio of the maximum warping normal 

stress to the bending normal stress is less than 8 percent. 

The maximum σW for different combination of length and radius of 

curvature vary. However, the parametric studies for a constant radius of curvature 

and the constant length coincide at the central angle of 0.3 radians, since the 180-

ft girder with a radius of curvature of 600 ft is used in both parametric studies.  

Figure 7.22 shows the variation of the ratio of the midspan warping 

normal stress to the midspan bending normal stress (σW/σB) as a function of an 

equivalent plate thickness. In this parametric study, the sensitivity of the σW/σB  to 

the pair of length and radius of curvature, and to the cross-section dimensions are 

examined. The cross-section dimensions of the Model 3 girder are shown in 

Figure 1.5. The central angle of 0.3 radians and the maximum bending normal 

stress are kept constant. Figure 7.22 shows that the ratio σW/σB for a certain teq are 

sensitive to L and R and to the cross-section dimensions. For the same central 

angle, σW/σB  in a girder with a shorter length is larger. In order to limit the σW to 

less than 2.5 percent of the σB, the minimum recommended teq is 0.05 inches. The 

limit of 2.5 percent is selected because the ratio shown in Figure 7.22 is based on 

the warping normal stress at the junction of the web and the top flange, which is 

not the maximum warping normal stress in a cross-section. The recommended 

minimum equivalent plate thickness is the same as Heins’ recommendation with 

the criterion to limit the ratio of the warping to bending normal stress less than 10 

percent in a relatively shallow girder (depth to width ratio of 1/3). 
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Figure 7.21 Variation of the maximum  warping normal stress as a function of the central angle
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Figure 7.22 Ratio of midspan warping normal stress to midspan bending 

normal stress 

7.4  WARPING NORMAL STRESS IN A CONTINUOUS GIRDER 

 

The analytical method to predict the  warping normal stress is limited to a 

simply-supported curved girder because there is no simple expression available 

for predicting the bimoment in a continuous curved girder. To study the variation 

of the σW in a continuous curved girder, this section presents the UTRAP 

solutions for the σW in a two-equal-span and a three-equal-span continuous curved 

girder. A Model 1 girder with the 2-ft panel of the X-type system was used again 

as a representative pseudo-closed section. The diagonal area used in this section is 

0.525 in2, which corresponds to an equivalent plate thickness of 0.01 inches. In 

order to eliminate cross-section distortion, a 2-ft spacing of internal diaphragms 
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consisting of a k-frame with 4-in2 member sizes was used. A symmetrical uniform 

load of 1 k/ft was applied to the girder. 

Figure 7.23 and Figure 7.24 show the variation of the bending and the  

warping normal stresses, respectively, in a two-equal-span 180-ft continuous 

curved girder for central angles of 0.3 radians (R=1200 ft) and 0.6 radians (R=600 

ft). Only the σW at the junction of the left web and the left top flange is presented. 

Figure 7.24 shows that the maximum σW in a two-equal-span continuous curved 

girder is smaller than that in a simply-supported girder. For the same total central 

angle of 0.3 radians, the maximum magnitude of the σW in the continuous girder 

is only 0.37 ksi, as opposed to about 1 ksi in the simply-supported girder (refer to 

Figure 7.21). Even if the radius of curvature is kept at 600 ft, so that the central 

angle of each span is the same that of the simply supported girder,  the maximum 

magnitude of the σW is only 0.6 ksi, which is still significantly less than that in the 

simply-supported girder. In addition, for the total central angle of 0.3 radians 

(R=1200 ft), the compressive σW in the continuous girder is only about 2.7 percent 

of the maximum compressive bending normal stress, as opposed to 5.4 percent in 

the simply-supported girder. However, if the central angle of each span is 0.3 

radians (R=600 ft), the ratio of the maximum compressive  warping normal stress 

to the compressive bending normal stress in the continuous girder is the same as 

that in the simply supported girder with the same central angle and span. The 

maximum warping normal stress occurs at the intermediate support, where the 

tensile bending normal stress is generally maximum. The additional tensile σW is 

not as detrimental as the additional compressive σW, due to a potential buckling 

problem. In addition, the ratio of the maximum tensile σW to the maximum tensile 

σB is smaller than the ratio of the maximum compressive σW to the maximum 

compressive σB. 
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Figure 7.23 Bending normal stress -  two-equal-span 180-ft continuous girder 
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Figure 7.24  Warping normal stress - two-equal-span 180-ft continuous girder 
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 Figure 7.25 and Figure 7.26 show the variation of σB and σW, respectively, 

in a three-equal-span 180-ft continuous curved girder for central angles of 0.3 

radians (R=1800 ft) and 0.9 radians (R=600 ft). As in the two-equal-span 

continuous girder example, the maximum magnitudes of the σW in a three-equal-

span continuous girder with a central angle of 0.3 radians are also smaller than 

those in a simply-supported girder with the same central angle. However, the ratio 

of the maximum compressive σW to the maximum σB in a three-equal-span 

continuous curved girder with an individual span central angle of 0.3 radians is 

5.4 percent, which is the same as that in a simply-supported girder with the same 

central angle and length. The maximum magnitude of the σW in a three-equal-

span continuous girder occurs near the midspan of the exterior spans.   
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Figure 7.25 Bending stress - three-equal-span 180-ft continuous girder 
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Figure 7.26  Warping stress - three-equal-span 180-ft continuous girder 

 

 The trend of the maximum σW as a function of the central angle in a 

continuous girder is the same as in a simply-supported girder. As the total central 

angle increases, the maximum magnitude of the σW in a continuous girder also 

increases. The maximum magnitude of the σW in an equal-span continuous girder 

is smaller than that in a simply-supported girder whose length and central angle 

are the same as those for each span of the continuous girder. In addition, the ratio 

of the maximum compressive σW to the compressive σB in an equal-span 

continuous girder is the same as that in a simply supported girder with the same 

length and central angle as those in each span of the continuous girder. Therefore, 

for  warping normal stress calculations, it is conservative to analyze each span of 

a continuous curved girder as being simply-supported. 
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7.5 SUMMARY 

 

This chapter presented an analytical method for predicting the  warping 

normal stress in a simply-supported curved girder.  There was good agreement 

between the results from the analytical method and the UTRAP solution for both 

an open section and a pseudo-closed section. In a simply-supported curved girder, 

the maximum  warping normal stress σW occurs at the midspan. The σW in an 

open-section can be several times higher than the bending normal stresses σB, 

whereas those in a pseudo-closed section with a relatively thick equivalent plate 

thickness are negligible compared to σB. The maximum σW increases as the 

equivalent plate thickness decreases. In order to σW  in the junction of the web and 

the top flange to less than 2.5 percent of σB, the minimum recommended 

equivalent plate thickness is 0.05 inches.  

The maximum  σW  is sensitive to the central angle and the combination of 

length L, and radius of curvature, R. Based on the parametric studies, the 

maximum σW increases with the square of the central angle for a constant R, 

whereas with a constant L, that change is approximately inversely proportional to 

the change of central angle. However, for a constant R, the ratio of σW/σB is about 

the same for different central angles; for a constant length, the change of that ratio 

is linearly proportional to the change in the central angle. 

The maximum magnitude of σW in an equal-span continuous girder is 

smaller than that in a simply-supported girder whose length and central angle are 

the same as those for each span of the continuous girder. However, the ratio of the 

maximum compressive σW/σB in an equal-span continuous girder is the same as 

that in a simply supported girder with the same length and central angle as those 

of each span of a continuous girder. 
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CHAPTER 8 
Distortional Normal Stress 

 
 

In Chapter 6, the distortion of a curved pseudo-closed box sections was 

discussed with a focus on the distortional deformations. In this chapter, the 

normal stresses that develop in the flange from the distortion will be discussed. 

These stresses will be called distortional normal stresses. A general discussion of 

the source of the distortional normal stresses is given first, followed by a 

presentation of UTRAP results on a simply supported girder subjected to a 

symmetrical uniform load. The model used in the analysis is the same model that 

was used to discuss distortional deformation in Chapter 6. The use of internal 

diaphragm to control distortional stresses is discussed along with other parameters 

that may affect distortion. After the parametric study on simply supported girders, 

a brief discussion of distortional normal stresses in continuous girders is 

presented. A method for predicting the distortional normal stress is then 

developed and the results compared with UTRAP and some existing 

recommendations.  

 

8.1 SOURCE OF DISTORTIONAL NORMAL STRESS 

 

The distortional component of torsional loading in a curved girder under a 

symmetrical uniform load develops as a result of a second order effect. Figure 8.1 

shows bending normal stresses in the top and bottom flanges of a curved girder. 

Under bending, the top flanges that are in compression move away from the 

center of curvature, whereas the bottom tension flange moves toward the center of 
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curvature. Since this lateral movement is caused by internal normal bending 

stresses that act on a curved member, the source of this lateral movement is a 

second order (P-δ) effect.    

 Top flange 

Bottom flange 

σC σC 

σT σT 

σC : Compressive Stress 

σT: Tensile Stress 

 

Figure 8.1 Bending normal stresses in the flanges of a curved girder 

The second order effect can be approximated by applying imaginary 

horizontal loads as shown in Figure 8.2. Helwig and Fan (2000) indicated that the 

imaginary horizontal load can be approximated by M/(hR), where M is the 

bending moment, h is the girder depth, and R is the radius of curvature.  

 Figure 8.3 shows the distribution of the distortional normal stress. It can 

be seen from Figure 8.3 that the distribution of the distortional normal stress σD is 

anti-symmetrical about the vertical centroidal axis and is similar to the warping 

normal stress. For this reason, σD is called the distortional warping normal stress 

in some literature. Even though the distributions of the distortional and warping 

normal stresses are similar, the sources of the two stresses are completely 

different. The distortional normal stress occurs because the lateral movements of 

the top and bottom flanges due to the curvature, whereas the warping normal 

stress develops because warping (i.e. out-of-plane displacement) is restrained. 
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Figure 8.2 Imaginary horizontal loads due to curvature  
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Figure 8.3 Distribution of distortional normal stress 
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8.2 UTRAP SOLUTION FOR DISTORTIONAL NORMAL STRESS 

 

Total normal stresses in a curved girder consist of bending, localized, 

warping, and distortional normal stresses. The distortional normal stress can be 

determined by subtracting the bending, localized, and warping normal stresses 

from the total normal stresses.  

Figure 8.4 shows the variation of total normal stresses along a 180-ft 

Model 1 girder with the radius of curvature of 600 ft, under a uniform load of 1 

k/ft. The diagonal and strut areas used in this case are 0.525 in2 and 4 in2, 

corresponding to an equivalent plate thickness of 0.01 inches. In order to clearly 

show the distortional normal stress, no internal diaphragms are used in this case. 

Only total normal stresses at the junction of the web and the top flanges are 

shown. Normal bending stress σB is determined by taking the average of the total 

normal stresses in the left and the right flanges. Since a very close X-type panel 

spacing is used, the localized normal stress can be assumed to be negligible. The 

smooth variation of the total normal stresses shown in Figure 8.4 supports this 

assumption. Therefore, the deviation of the total normal stresses from the bending 

normal stress shown in Figure 8.4 is caused by the warping normal stress σW and 

the distortional normal stress σD.  

Figure 8.5 shows the variations of σW and σD. The warping normal stress 

was obtained by subtracting σB from the total normal stress in the analysis using 

2-ft diaphragm spacing, and σD was determined by subtracting σW  from the total 

normal stress. Figure 8.5 shows that both the maximum σW and σD occur at the 

midspan. However, at any location, the sense (i.e. compression or tension) of σD 

is opposite to that of σW. Without using any internal diaphragms, it can be seen 

from Figure 8.5 that σD is significantly higher than σW and is 9.4 percent of the 
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bending normal stress. Since the sense of σD and σW are opposite to one another, 

the maximum additional stresses from both of those stresses to σB are only about 

0.7 Ksi (as seen in Figure 8.4).  

It should be emphasized that σD at the junction of the web and the top 

flange is not the largest. The maximum σD usually occurs at the junction of the 

web and the bottom flange. However in the construction stage, the top flanges are 

of more concern than the bottom flange because they are much smaller. For 

simplicity, only σD at the top flanges is presented. In the top flanges, σW at the 

junctions of the web and the top flanges can be predicted theoretically and 

verified by the UTRAP solutions as shown in Chapter 7. For simplicity, only σD 

at the junctions of the web and the top flanges is presented.   

(L=180 ft, R=600 ft, w=1 K/ft)
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Figure 8.4 Variation of total and bending normal stresses - No internal 

diaphragm 
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Warping normal stress at the junction of the web and the top flange 
(L=180 ft, R=600 ft, w=1 K/ft)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 30 60 90 120 150 180

Distance to the left support (ft)

St
re

ss
 (K

si
)

Left junction Right junction

Distortional normal stress at the junction of the web and the top flange 
(L=180 ft, R=600 ft, w=1 K/ft)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 30 60 90 120 150 180

Distance to the left support (f t)

St
re

ss
 (K

si
)

Left junction Right junction

 

 
Figure 8.5 Variations of warping and distortional normal stresses - No internal 

diaphragm 
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8.3 EFFECT OF THE INTERNAL DIAPHRAGM  

 

Figure 8.6 shows the variation of total normal stresses along the length 

with one internal diaphragm at the midspan. The top lateral bracing system and 

the equivalent plate thickness are kept the same as before (i.e. 2-ft panel X-type 

system with an equivalent plate thickness of 0.01 inches). 

Total normal stress at the junction of the web and the top flange 
(L=180 ft, R=600 ft, w=1 K/ft)
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Figure 8.6 Variation of total and bending normal stresses - one internal 

diaphragm 

Comparing the maximum total normal stresses in a girder without diaphragms 

(18.9 ksi) and with one internal diaphragm (25.5 ksi) shown in Figure 8.4 and 

Figure 8.6, respectively, the stress with one internal diaphragm is larger. It can 

also be observed that the presence of one internal diaphragm increases the 

maximum σB from 18.2 ksi to 19.4 ksi. However, the reason for this increase has 

not been resolved. Figure 8.7 shows variations of σW and σD. Since the top lateral 
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bracing systems are the same, σW shown in Figure 8.7 are the same as that shown 

in Figure 8.5 ; just the scale is different. From a lateral bending perspective, the 

top flanges in a girder with internal diaphragms behave as continuous girders, 

where the internal diaphragms serve as intermediate supports. Similar to the 

bending stress in a continuous girder, the maximum σD occurs at the internal 

diaphragm location, as shown in Figure 8.7. Unlike the case without any internal 

diaphragms, shown in Figure 8.5, the maximum σD with one internal diaphragm 

has the same sense (i.e. additive) as σW. The presence of the internal diaphragm 

generally reverses the sense of σD at its location. However, the deformation of a 

girder with an internal diaphragm is smaller than that without any internal 

diaphragm. 

In order to study the effect of internal diaphragm area Aid on the σD, 

Figure 8.8 shows σD when there is one internal diaphragm at the midspan. Three 

different internal diaphragm areas, 1 in2, 4 in2, and 20 in2, were used. Figure 8.8 

shows that σD is not sensitive to the area of the internal diaphragm. The required 

minimum internal diaphragm area recommended by Heins (Eq.6.18) is 1.28 in2. 

8.4 PARAMETRIC STUDIES 

 

Internal diaphragms are effective in reducing cross-section distortion. The 

maximum σD in the flanges occurs at the location of the internal diaphragm for 

girders with constant cross-section properties over the length. Therefore, it is 

important to determine internal diaphragm spacing that is effective in limiting 

cross-section distortion without inducing significant σD. This section studies the 

effect of equivalent plate thickness, web thickness, span length, radius of 

curvature, the central angle and cross-sectional dimensions at different diaphragm 
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spacing. Spacing recommendations from various sources were presented in 

Chapter 6.  
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Figure 8.7 Variations of warping and distortional normal stresses - one internal 

diaphragm 
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Figure 8.8 Effect of internal diaphragm area on the distortional normal stress 

  

A parametric study investigated the effect of equivalent plate thickness teq 

on σD in a simply supported girder. Figure 8.9 shows the midspan σD (σD is 

maximum at midspan) as a function of internal diaphragm spacing. Figure 8.9 

shows that σD is not sensitive to equivalent plate thickness. 

The effect of changing the web thickness (i.e. changing the cross-section 

distortional stiffness) on σD was studied. Since increasing the web thickness will 

slightly change σB, the midspan distortional normal stress shown in Figure 8.10 is 

normalized by the midspan σB. The ratio of σD/σB decreases as a web thickness 

increases. The effect of changing the web thickness is only significant in a girder 

with a relatively large internal diaphragm spacing. 
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Figure 8.9 Effect of teq on the midspan distortional normal stress  

  
Figure 8.10 Effect of web thickness on the midspan distortional normal stress  
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  The effects of changes in span length L and radius of curvature R on σD 

are shown in Figure 8.11. The same central angle was kept constant at 0.3 radians. 

The midspan total rotation to the span length and the midspan bending normal 

stress are kept about the same. Table 6-4 shows all analysis cases used in this 

study and Figure 8.11 shows the ratio of the midspan σD to the midspan σB for 

Model 1 with an equivalent plate thickness of 0.03 inches. The existing 

recommendations for the maximum ratio of the span length to the internal 

diaphragm spacing s/L are summarized in Table 6-5. Figure 8.11 shows that the 

ratio of σD/σB in the girders having similar central angles and s/L are similar, but 

the longer spans show slightly higher ratio. However, for s/L ≤ 0.15, σD is 

insignificant. For s/L ≤ 0.20, σD will be less than 5 percent of σB. For girders with 

L ≤ 120 ft, an s/L ≤ 0.25 will control the ratio of σD/σB to the 5 percent limit.   

 

Figure 8.11 Ratio of the midspan distortional normal stress to the midspan 

bending normal stress 
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 A fourth parametric study was performed to examine the effect of central 

angle on the ratio of σD/σB. Figure 8.12 shows ratios of σD/σB for a 180-ft Model 

1 girder with central angles of 0.2, 0.3, and 0.4 radians. The trendline of each data 

set is also shown in Figure 8.12. Figure 8.12 shows that each data set can be best 

fitted using a second order equation. As the central angle increases, the ratio of 

σD/σB also increases. The explanation for this is that the lateral load component 

on a girder due to curvature (M/(hR)) becomes larger as the central angle 

increases, as shown in Table 8-1. 

  

Figure 8.12 Effect of central angle on the ratio of distortional normal stress to 

bending normal stress 

Decreasing the radius of curvature from 600 ft to 450 ft causes a 35% increase in 

the midspan lateral load due to curvature (from 1.36 to 1.83). As seen in Figure 

8.12, the trendline equation for the 450-ft radius of curvature is 1.34 times larger 

than that for the 600-ft radius of curvature. In addition, the midspan lateral load in 
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a girder with the 900-ft radius of curvature is only 66% of that with the 600-ft 

radius of curvature. The trendline equation for the 900-ft radius of curvature is 

0.67 of that for the 600-ft radius of curvature. The change in the ratio of σD/σB is 

linearly proportional to the change in the lateral load due to curvature. This 

suggests that the recommended internal diaphragm spacing developed based on 

parametric studies performed using a central angle of 0.3 radians can be modified 

by the ratio of the M/(hR) for other central angles. However, it is conservative to 

apply the recommendation for a girder with a larger central angle to that with a 

smaller central angle. 

Table 8-1 Lateral load component due to curvature 

Length, L 
(ft) 

Radius, R 
(ft) 

L/R 
(radian) 

Midspan moment, M 
(k.ft) 

Midspan lateral load due to 
curvature (M/(hR))   (k/ft) 

450 0.4 4118.4 1.83  

600 0.3 4088.2 1.36  180 

900 0.2 4066.8 0.904  

  

A fifth parametric study considered cross-section dimensions. For this 

purpose, two different cross-sections, Model 1 and Model 3 (shown in Figure 

1.5), are analyzed. The length, radius of curvature, equivalent plate thickness, and 

midspan bending normal stresses of both models are the same. Figure 8.13 shows 

the ratio of σD/σB in both Model 1 and Model 3. Figure 8.13 shows that the ratio 

of σD/σB is sensitive to the cross-section dimensions. The difference of the ratio 

between different girders increases as the internal diaphragm spacing becomes 

larger. Using an internal diaphragm spacing of 36 ft (s/L = 0.2), the ratio for 

Model 1 is not tremendously different than that for Model 3, and both are still less 

than 5 percent. 
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Figure 8.13 Ratio of the distortional normal stress to the bending normal stress 

in Model 1 and Model 3 

8.5 DISTORTIONAL NORMAL STRESS IN A CONTINUOUS GIRDER 

 

This section discusses distortional normal stress in a continuous girder and 

the applicability of the parametric study results of a simply-supported girder to a 

continuous girder. Figure 8.14 shows both σW and σD in a two-equal-span Model 

1 girder. Since σW and σD are anti-symmetrical about the vertical centroidal axis, 

only the stresses at the junction of the left web and the left top flange are 

presented. The central angle of each span is 0.3 radians. The maximum 

compressive σB in this continuous girder is 10.6 ksi, as opposed to 19.5 ksi in a 

simply supported girder with the same length and central angle as those in each 

span of the continuous girder. 
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Figure 8.14 Warping and distortional normal stress in a two-equal-span 

continuous girder 

Like in a simply-supported girder, the sense of σD in a continuous girder without 

any internal diaphragm is generally opposite to that of σW. It can be seen from 

Figure 8.14 that the maximum σD in a girder without any internal diaphragms is 

several times larger than the maximum σW. The presence of the internal 

diaphragms significantly reduces the maximum σD. However, at the locations of 

the internal diaphragms, the sense of the σD is the same as that of σW. 

 Figure 8.14 shows that the maximum σD in a continuous girder with 30-ft 

internal diaphragm spacing is 0.37 ksi. This stress is significantly smaller than the 

maximum σD of 0.63 ksi in a simply supported girder with the same length and 

central angle as those in each span of the continuous girder. Since the maximum 
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bending normal stress in a continuous girder is also smaller, the ratios of σD /σB in 

both girders are the same.  

 Figure 8.15 shows σD and the ratio of σD/σB in a two-equal-span 

continuous girder and a simply-supported girder. The length and central angle of 

each span in the continuous girder are the same as those in the simply-supported 

girder. Figure 8.15 shows that the maximum σD in a continuous girder is smaller 

than that in a simply-supported girder. However, with a reasonable internal 

diaphragm spacing, the ratios of σD/σB in both girders are practically the same. 

The parametric study results of a simply-supported girder can then be extended to 

a continuous girder, provided that the length and central angle of each span of the 

continuous girder are the same as those of the simply-supported girder. As the 

central angle increases, the ratio of σD/σB also increases. Therefore, it is 

conservative to apply the results of the parametric studies performed on a girder 

with a larger central angle to that with a smaller central angle. 

 

8.6 DEVELOPMENT OF DESIGN RECOMMENDATION  

8.6.1 Analytical modeling 

As seen in Figure 8.14, the variation of distortional normal stress between 

two internal diaphragms can be simplified as that in a fixed-fixed beam. Figure 

8.16 shows simplification of the top and bottom flanges of a curved girder 

between two internal diaphragms under the distortional load due to curvature wT 

and wB, respectively. Each top flange is assumed to carry half of wT. Even though 

the variations of wT and wB follow the variation of bending moment diagram, 

herein, the variations are assumed to be constant.  
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Figure 8.15 Distortional normal stress and the ratio of distortional to bending 

normal stresses in a continuous and a simply-supported girder 
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The maximum lateral bending moment in the top and bottom flanges are 

2

12
1 swT  and 2

12
1 swB , respectively, at the internal diaphragm locations. The 

distortional normal stress due to this bending moment is denoted σD global. On 

the top flanges, there is an additional stress σD local because the wT can bend the 

top flanges between strut locations. The distortional normal stresses at the internal 

diaphragm location at the tip of the top and bottom flanges σD,T and σD,B, 

respectively, can be derived as follows: 

σD,T = σD global + σD local 
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where ttf and tbf are the thickness of the top and bottom flanges, respectively.  

Figure 8.17 shows UTRAP solutions for σD on the top and bottom flanges 

of a 180-ft Model 1 girder with a 6-ft panel of the X-type system and a 30-ft 

internal diaphragm spacing. UTRAP solutions for σD were obtained by 

subtracting the total normal stresses with a 2-ft internal diaphragm spacing from 

those with a 30-ft spacing. Since the girder is symmetrical about the midspan, the 

stresses are shown for only half of the girder length. Node locations are shown in 

Figure 7.6. Figure 8.17 shows that the variations of σD on the top flanges are 

much more complex due to the presence of the top lateral bracing system. From 



 235 

the σD at nodes 11 through 14 and at nodes 19 through 22, σD at the tips of the top 

flanges and at the edge of the bottom flange can be calculated by assuming a 

linear stress distribution. 
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where: Mmid = Midspan vertical 
          bending moment  

              h = Vertical depth of girder 
              R = Radius of curvature 

 

Figure 8.16 Simplified model of top and bottom flanges between two internal 

diaphragms 

Figure 8.18 shows the magnitude of σD at the junction of the top flange 

and the web obtained from the analytical formula and the UTRAP solutions. 

Eq.8.1 was modified to predict σD at the junction of the top flange and the web by 
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ignoring the σD local and eliminating the btf/2 term in the numerator of σD global. 

Figure 8.18 shows that the analytical formula can predict the magnitude of σD at 

the junction of the top flange and the web well. 

Figure 8.19 shows σD at the tip of the top flanges obtained from Eq.8.1 

and the UTRAP solutions. Even though the maximum σD at the tip of the left top 

flange is compressive, only the absolute value is presented. The analytical 

solutions accounting for only σD global and both σD global and σD local are 

presented. The distortional normal stress at the tip of the top flanges can be more 

than double that at the junction of the top flange and the web. Figure 8.19 shows 

that the magnitudes of σD at the tip of the left top flange are larger than those in 

the right top flange. The difference in magnitudes between the two is 

approximately constant for different internal diaphragm spacings. Figure 8.19 also 

shows that the analytical formula underestimates the magnitude of the distortional 

stress. The analytical formula including the global and local effects can only 

account for 60 percent of the maximum σD at the tip of the top flange. Since the 

σD global analytical formula can predict the σD at the junction of the top flange 

and the web well as shown in Figure 8.18, the additional σD at the tip of the top 

flange that cannot be calculated analytically must be due to the local effect. With 

an internal diaphragm spacing of less than 40 feet, the unknown source of σD is 

small (i.e. less than 1.5 ksi).   

Figure 8.20 shows σD at the edge of the bottom flanges obtained from 

Eq.2 and the UTRAP solutions. The senses of σD at both edges of the bottom 

flange are opposite, whereas the magnitudes are the same. Figure 8.20 shows that 

the analytical formula can predict the stress well. The distortional normal stress at 

the edge of the bottom flange is smaller than that at the tip of the top flange. 
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Figure 8.17 Distortional normal stresses on the top and bottom flanges 
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Figure 8.18 Distortional normal stress at the junction of the top flange and the 

web 
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Figure 8.19 Distortional normal stresses at the tip of the top flange 



 239 

L=180 ft, R=600 ft, w=1 k/ft, 6-ft panel of X-type system (teq=0.03 in)
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Figure 8.20 Distortional normal stress at the edge of the bottom flange 

 

As shown in Figure 8.19, Eq.8.1 can predict only 60 percent of σD at the 

tip of the top flange. Figure 8.21 shows σD at nodes 11 though 14 that cannot be 

predicted analytically. The line connecting each data point is only for clarity and 

it does not suggest that the stress varies linearly. Those σD were obtained by 

subtracting the analytical prediction (using σD global and σD local) from the 

UTRAP solution for σD shown in Figure 8.17. Figure 8.21 shows that the 

variation of σD that cannot be predicted analytically is complicated and the 

mechanism or forces causing that variation cannot be explained. 
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L=180 ft, R=600 ft, w=1 k/ft, 6-ft panel of X-type system (teq=0.03 in) 
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Figure 8.21 Variation of distortional normal stresses that cannot be predicted 

analytically 
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8.6.2 Design recommendation and comparison to the existing 

recommendation 

Based on the results of parametric studies presented in this chapter, the 

maximum recommended ratio of s/L to control σD at the junction of the web and 

the top flange to less than 5 percent of σB is 1/5. For girders with L ≤ 120 ft, an 

s/L ≤ 1/4 will control the ratio of σD/σB to the 5 percent limit. These 

recommendations can be applied to a girder within the limit of parametric studies 

performed in this chapter (i.e. the maximum length and central angle are 180-ft 

and 0.3 radians, respectively, and the width to depth ratio is about 1). For a girder 

outside the limit of the parametric study, this chapter presented a simplified 

analytical method to calculate the distortional normal stress as a function of 

internal diaphragm spacing and cross-section dimensions. In order to use the 

analytical formula for predicting σD at the tip of the top flange, the additional 

stress of 1 to 2 ksi must be added to account for the distortional normal stress that 

cannot be predicted analytically. 

Comparing the existing recommendation shown in Table 6.5 to the 

parametric study results shown in this chapter, the s/L = 1/4 recommended by 

Green, Siddiqui, and Ng results in a σD larger than 5 percent of σB for longer 

spans. The recommended ratio of 1/5 will result in an internal diaphragm spacing 

in a girder longer than 150 ft that is larger than the maximum spacing of 30 feet 

recommended by AASHTO 2003. However, as seen in Figure 8.11, relaxing the 

AASHTO maximum spacing requirement and the recommended spacing from 

Yabuki, Arizumi, Nakai, Yoo, and Heins will not adversely affect the ratio of 

σD/σB. For a girder with a span of 120 feet, the recommended internal diaphragm 

spacing is 30 feet, which is the same as the AASHTO maximum spacing 

requirement. 
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One of the reasons why Yabuki, Arizumi, Nakai, Yoo, and Heins 

recommended a closer internal diaphragm spacing is that they used the maximum 

σD at the bottom flange, which is larger than that in the junction of the web and 

the top flange. One must realize that the maximum σB in a typical trapezoidal 

girder occurs at the top flange. Therefore, herein the ratio of σD/σB is taken at the 

junction of the web and the top flange, instead of at the bottom flange. This way, 

the recommended internal diaphragm spacing is larger than that proposed by other 

authors. 

 A maximum ratio of σD/σB of 5 percent, as opposed to 10 percent in the 

current specification, is selected in order to account for the fact that the maximum 

σD is higher than the σD at the junction of the web and the top flange. In the top 

flange, the maximum σD occurs at the tip. It should be noted that the Japanese 

Specification for Highway Bridges also limits the distortional stress to 5 percent 

of the bending stress (Nakai and Yoo 1988).  

Figure 8.22 shows the required internal diaphragm spacing s in a 180-ft 

Model 1 girder with different radius of curvature from the proposed 

recommendation, analytical methods, and several existing recommendations. The 

proposed recommendation of the maximum ratio s/L of 1/5 is valid when the 

central angle is less than 0.3 radians. The required s based on the proposed 

recommendation is smaller than that based on the formulas to limit σD/σB at the 

junction of the top flange and the edge of the bottom flange to 5 percent and 10 

percent, respectively. The required s based on the analytical formula to limit σD at 

the junction of the top flange to 5 percent of σB is about 45 percent larger than 

Heins’ recommendation and 10 percent smaller than the requirement to limit 

σD/σB at the edge of bottom flange to 10 percent. For the radius of curvature less 

than 650 ft, the required s based on the analytical formula to limit σD/σB at the 
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junction of the top flange to 5 percent is smaller than Green, Siddiqui and Ng’s 

recommendation.  
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Figure 8.22 Proposed and existing recommendations for diaphragm spacing 

 

8.7 SUMMARY 

 

This chapter showed that the distortional normal stress in a curved girder 

under a symmetrical uniform load occurs because of the lateral movement of the 

top and bottom flanges (i.e. second order effect). The distribution of the 

distortional normal stress is anti-symmetrical with respect to the vertical 

centroidal axis. 

In a girder without any internal diaphragms, the sense of the distortional 

normal stress is opposite to that of the warping normal stress. The presence of an 

internal diaphragm generally reverses the sense of the distortional normal stress at 
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its location. In addition, the maximum distortional normal stress occurs at the 

internal diaphragm location. The distortional normal stress is not sensitive to the 

area of the internal diaphragm or to the equivalent plate thickness. 

In order to keep the distortional normal stress at the junction of the web 

and the top flange to less than 5 percent of the bending normal stress, the 

recommended maximum ratio of s/L is 1/5. Since the ratio of σD/σB in a shorter 

girder is smaller, it is not necessary to use an internal diaphragm spacing less than 

30 feet. The recommended internal diaphragm spacing can be extended to a 

continuous girder, provided that the length and central angle of each span are the 

same as those of the simply-supported girder. This recommendation is valid for a 

girder with a maximum length and central angle of 180 ft and 0.3 radians, 

respectively, and a width to depth ratio of about 1. For a girder outside these 

limits, a simplified analytical method to calculate the distortional normal stress as 

a function of internal diaphragm spacing and cross-section dimensions was 

developed. The analytical formula can very accurately predict σD at the junction 

of the web and the edge of the bottom flange. However, in order to use the 

analytical formula for predicting σD at the tip of the top flange, an additional 

stress of 1 to 2 ksi must be added to account for the distortional normal stress that 

cannot be predicted analytically. 
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CHAPTER 9 
Top Lateral Bracing Force 

 
 

Helwig and Fan (2000) indicated that forces developed in the top lateral 

bracing system result from three components: 

• Horizontal component of the applied load due to sloping webs 

• Vertical bending 

• Torsional moment 

This chapter presents methods to estimate the force developed in top 

lateral bracing system due to each component. In order to calculate total forces in 

the top lateral bracing system, the force developed from each component can then 

be added together using principal of superposition.  

The magnitude of force developed in top lateral bracing system depends 

on the type of system. Three different top lateral bracing systems, X-type, 

Alternating-Diagonal, and Single-Diagonal, are examined in this chapter. In order 

to verify all analytical formulas to predict top lateral bracing forces, UTRAP was 

used to analyze a simply supported straight and curved girder with the three 

different top lateral bracing systems. Results from UTRAP will be compared to 

those from Helwig and Fan. 
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9.1 TOP LATERAL BRACING FORCE FROM THE HORIZONTAL COMPONENT OF 

THE APPLIED LOAD 

 

Sloping webs of a trapezoidal box girder induce a horizontal component 

acting on the top flange, as shown in Figure 5.9, which then induces forces on top 

lateral bracing system. The horizontal component of the applied load wH is found 

to be ( )αtan
2
w . Helwig and Fan indicated that the top flanges carries the entire 

horizontal component of the applied load, instead of the top and bottom flanges 

carrying half of the horizontal component of the applied load.  

Under a uniform loading w, the total horizontal component of the applied 

load in each panel of the top lateral bracing system with length s (strut spacing) is 

wH s. Which truss member carries this total horizontal component depends on the 

type of top lateral bracing system.  

 

9.1.1 X-type top lateral bracing system 

In an X-type lateral bracing system, both the struts and the diagonals work 

together to carry the horizontal component of the applied load wH. Figure 9.1 

shows an elongation of both struts and diagonals due to wH. For simplicity, it is 

assumed that the only movement is A-A’.  

Neglecting longitudinal deformation of top flanges, the elongation of strut 

is ∆s and the elongation of diagonal is ∆d.  Their relation can be expressed as:  

              ( )θsinsd ∆=∆     (9.1) 

Due to elongation ∆s and ∆d, the axial force in the struts Fs,H and the axial 

force in the diagonals Fd,H can be found as follows: 
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where E is modulus of elasticity. Writing equilibrium equation in y-direction at 

joint A will yield the following equations: 
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Figure 9.1 Elongation of both struts and diagonals  

 

Final expressions of axial force in the struts and diagonals due to the 

horizontal component of the applied load can be found by substituting Eq.9.4 into 

Eqs.9.2 and 9.3 and they are expressed as follows: 

         
( ) sw

AA
A

F H
ds

s
Hs θ3, sin2+
=     (9.5) 
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       ( )
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, sin2
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+
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9.1.2 Alternating-Diagonal top lateral bracing system 

In an Alternating-Diagonal top lateral bracing system, the diagonal forces 

due to the sloping web are usually significantly smaller than strut forces that resist 

the horizontal component. As a result, struts are assumed to carry the entire 

horizontal component of the load and there will be no force induced in diagonal.  

Mathematically, this can be expressed as: 

                    swF HHs =,      (9.7) 

            0, =HdF      (9.8) 

9.1.3 Single-Diagonal top lateral bracing system 

Strut and diagonal forces induced in a Single-Diagonal top lateral bracing 

system due to the horizontal component of the applied load can be assumed 

similar to those in an Alternating-Diagonal top lateral bracing system (i.e. Eqs.9.7 

and 9.8 apply). 

 

9.2 TOP LATERAL BRACING FORCE DUE TO VERTICAL BENDING 

 

In a simply supported girder under uniformly applied gravity load, a top 

fiber will shorten and a bottom flange will lengthen. The force developed in top 

lateral bracing system is due to shortening of top fiber and compatibility between 

top flanges and top lateral bracing system. The magnitude of the induced force is 
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a function of the stiffness of the top lateral bracing system and the bending strain 

at the level of top lateral bracing system. Herein, top lateral bracing members are 

conservatively assumed to be connected directly to the top flanges. A more 

general solution to predict the top lateral bracing forces for cases where the top 

lateral bracing system is located significantly below top flanges can be found in 

Helwig and Fan. 

In order to observe the deflected shape of each system, SAP 2000 

computer software was used to analyze each top lateral bracing system under the 

loading that mimics the vertical bending moment diagram. Figure 9.2 shows the 

boundary conditions and loading conditions of a planar truss model of the top 

flanges and top lateral bracing system of a trapezoidal box girder. The flanges are 

represented by the chords of the truss. Joints 1, 18, 19, and 36 (at girder ends) can 

only move in the Y-direction and joints 10 and 28 (at midspan) can only move in 

the X-direction. All loads are applied as a concentrated load at a joint, except 

loads between joints 9 and 11 and between joints 27 and 29, which are applied as 

a uniform load. These loads can be calculated by taking a cut at joint location, 

determining the bending moment at that location, calculating the force at that 

location by dividing bending moment at that location by the girder depth, and 

determining what incremental load needed to be applied at that joint to develop 

total force at that joint. In modeling, all bracing member connections are assumed 

to be pin-connections (i.e. all diagonals and struts have moment releases at both 

ends of each member). The two-dimension analysis option in SAP 2000 was used 

in analyzing the model. 

Figure 9.3 shows an example of the required loading conditions to 

simulate the effect of vertical bending for the 180-foot simply-supported straight 

girder of Model 1, under a uniformly distributed load of 1 k/ft.  
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Figure 9.2 SAP 2000 Model of top flanges and top lateral bracing system  
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Figure 9.3 Loading conditions to simulate the effect of vertical bending in a straight girder 
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Figure 9.4 shows the SAP 2000 results for deflected shapes of three 

different top lateral bracing systems. A WT 6x11 was used as diagonals and struts 

in X-type lateral bracing system and WT 6x25 was used as diagonals and struts in 

both Alternating-Diagonal and Single-Diagonal systems.     

Figure 9.4 shows that among the three top lateral bracing systems, the X-

type system experienced the smallest amount of axial deformation and lateral 

displacement, while the Single-Diagonal system experienced the largest amount 

of axial deformation and lateral displacement. Based on these observations, the 

hypothesis can be made that under the effect of vertical bending only, the bracing 

forces in X-type system will be the largest and bracing forces in Single-Diagonal 

systems will be the smallest.  

In order to verify this hypothesis, further study was conducted using both 

SAP 2000 and UTRAP. Figure 9.5 shows the forces in the top lateral bracing 

members for three different systems from both SAP 2000 and UTRAP outputs. In 

order to eliminate the effects of sloping webs, the Model 1 trapezoidal box girder 

is converted into the vertical web girder by modifying the bottom flange width of 

Model 1 to 76 inch (similar to the top width). Figure 9.5 shows that there are 

some discrepancies between SAP 2000 and UTRAP results for top lateral bracing 

forces. In general, top lateral bracing forces obtained from the model shown in 

Figure 9.3 analyzed using SAP 2000 are larger than those obtained from straight 

girder, vertical webs of Model 1, analyzed using UTRAP. However, the trend of 

force variation along the length of the girder is approximately the same for both 

analysis results. 

For the X-type system under vertical bending, diagonal bracing forces are 

shown as if there is only one diagonal per panel since axial forces developed in 

both diagonals located in one panel are always similar in magnitude and direction. 
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Figure 9.4 Deflected shapes of top lateral bracing system under loading shown in Figure 9.3 (Scale factor : 100)
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Figure 9.5 shows that the bracing members in X-type systems have the largest 

forces and those in Single-Diagonal system have negligible forces. The bracing 

forces in the Single-Diagonal system are approximately zero, except near the 

midspan location, where there is the largest lateral displacement. These 

observations are consistent with the deflected shapes shown in Figure 9.4 and 

support the previous hypothesis. Based on the deflected shape shown in Figure 

9.4 and top lateral bracing forces shown in Figure 9.5, it can be concluded that the 

X-type system provides the largest stiffness contribution to the overall bending 

stiffness of the girder, the Alternating-Diagonal system provides the second 

largest contribution, and the Single-Diagonal system provides the smallest (almost 

negligible) contribution. In order to satisfy equilibrium, top flanges in Single-

Diagonal and Alternating-Diagonal systems have to carry higher compressive 

forces due to vertical bending than those are in X-type system. 

Helwig and Fan derived a formula to predict top lateral bracing forces due 

to vertical bending in both X-type and Alternating-Diagonal systems. For 

convenience, those derivations are reproduced in the following section. In the 

derivation of top lateral bracing forces due to vertical bending Helwig and Fan 

assumed that the girder is prismatic and under uniform moment, the web provides 

no lateral resistance to the top flanges, and the effects of horizontal curvature on 

bending behavior are negligible. 

9.2.1 X-Type lateral bracing system 

Figure 9.6 shows the interactive forces Q between top lateral bracing 

members and top flanges in X-type system. FB is the total force due to bending 

moment. Because the web is assumed to provide no lateral resistance to the top 

flanges, Q must be zero in order to satisfy equilibrium of top flanges. 
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 X-type top lateral bracing system

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

Distance to left support (ft)

Fo
rc

es
 (K

ip
)

Diagonal
forces from
SAP 2000

Diagonal
forces from
UTRAP

Strut forces
from SAP
2000

Strut forces
from UTRAP

Alternating-Diagonal top lateral bracing system

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

Distance to left support (ft)

Fo
rc

es
 (K

ip
)

Diagonal
forces from
SAP 2000

Diagonal
forces from
UTRAP

Strut forces
from SAP
2000

Strut forces
from UTRAP

Single-Diagonal top lateral bracing system

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 20 40 60 80 100 120 140 160 180

Distance to left support (ft)Fo
rc

es
 (K

ip
)

Diagonal
forces from
SAP 2000

Diagonal
forces from
UTRAP

Strut forces
from SAP
2000

Strut forces
from UTRAP

 

Figure 9.5 Top lateral bracing forces due to vertical bending 
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Figure 9.6 Interactive forces Q between top lateral bracing members and top 

flanges in X-type system 

By enforcing equilibrium in the Y-direction at joint A, the relationship 

between the strut force due to bending Fs,B and diagonal force due to bending Fd,B 

is 

        ( )θsin2 ,, BdBs FF −=     (9.9) 

If the moment is not uniform, Fd,B in two adjacent panel will not be equal 

(i.e. Fd,B left ≠ Fd,B right), so Eq.9.9 would need to be modified by replacing (-

2Fd,B) with (-(Fd,B left  +  Fd,B right)). Left and right refer to the panel locations 

adjacent to the strut under consideration.    
In order to develop the expression for Fd,B, the axial elongation of diagonal 

needed to be considered first. Figure 9.7 shows the elongation of diagonal in a 

panel of X-type system. u is a displacement in X-direction and v is a displacement 

in Y-direction. 

The axial elongation of diagonal ∆d is 

   ( ) ( )θθ sincos vud +=∆    (9.10) 

where v is the axial elongation of strut ∆s , expressed as 
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  ( )
s

Bd
s

Bss EA
aF

EA
aFv θsin2 ,, −==∆=   (9.11) 

Using the relation between force and deformation, ∆d becomes 

       
d

Bdd EA
dF ,=∆     (9.12) 

Axial deformation of top flange u (for one panel) using Hook’s Law is 

          s
E

u Btf ,σ
=      (9.13) 

where s is the panel length (i.e. spacing of strut) and σtf,B is the axial stress in the 

top flange due to vertical bending.    
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Figure 9.7 Elongation of diagonal in a panel of X-type system 

The force in the diagonal due to vertical bending Fd,B , found by 

substituting Eqs.9.11, 9.12, and 9.13 into Eq.9.10,  is 

   
( )

( )θ

θσ

3

2
,

,

sin21
cos

sd

Btf
Bd

AA

F
+

=    (9.15) 

where ( )
d
a

=θsin  and ( )
d
s

=θcos  as can be seen in Figure 9.7. The diagonal 

forces due to bending in the X-type system are a function of the axial stiffness of 

the diagonals, struts, and top flanges.   
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9.2.1.1 Modification of top flange areas 

The X-type system provides a significant stiffness contribution to the 

overall bending stiffness of the girder. Consequently, the actual axial stress in top 

flange due to vertical bending σtf,B is less than the predicted stress by bending 

theory without including the presence of the X-type system. It is conservative to 

neglect the presence of the X-type system in calculating σtf,B. However, Fan and 

Helwig indicated that a modification to the σtf,B can be made by adding the 

additional area Aadd,each  to a top flange. For convenience, the derivation of the 

equivalent increase in each top flange area due to the presence of the X-type top 

lateral bracing system Aadd,each is reproduced in this section. 

Figure 9.8, which is similar to the one shown in Helwig and Fan, shows a 

free body diagram of the top flange and the X-type system under vertical bending.  

 

σtf,B 

Top flange 

Top flange 

σtf,B 

Fd,B 

Fd,B 
F 

θ 

 

Figure 9.8 Resistance to the bending moment 

The contributions of the top flanges and the X-type system in resisting bending 

moment MTop are 

  MTop = F yC = 2 σtf,B Atf yC + 2 Fd,B cos(θ) yC   (9.16) 
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where yC is the distance from the centroid of the top flanges to the neutral axis and 

Atf is the cross-sectional area of each top flange. Treating the X-type system as the 

additional area of each top flange Aadd,each, Eq.9.16  can be written as follows: 

   MTop = 2 σtf,B (Atf + Aadd,each) yC   (9.17) 

Eq.9.17 assumes that the X-type system is connected directly to the top flanges. 

From Eqs.9.16 and 9.17, Aadd,each is 

          
( )

Btf

Bd
eachadd

F
A

,

,
,

cos
σ

θ
=     (9.18) 

Substituting Eq.9.15 to Eq.9.18 results in the following expression: 

       ( )
( )θ
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9.2.2 Alternating-Diagonal top lateral bracing system 

Figure 9.9 shows the interactive forces Q between top lateral bracing 

members and the top flanges in the Alternating-Diagonal system. FB is the total 

force due to the bending moment. In the Alternating-Diagonal system, there are 

two types of joints. Joint type I is the connection between the strut and the top 

flange only, whereas joint type II is the connection between the strut, the two 

diagonals, and the top flange. Unlike the X-type system where Q is zero, in the 

Alternating-Diagonal system, Q must be equal in magnitude and opposite in 

direction with Fs,B, in order to satisfy equilibrium of top flanges. Again it is 

assumed that the web provides no lateral resistance to the top flanges. 

The relationship between the strut force due to bending Fs,B and the 

diagonal force due to bending Fd,B  is, by enforcing equilibrium in the Y-direction 

at joint type II,  
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    ( )θsin,, BdBs FF −=      (9.20) 

Eq.9.20 is obtained using the fact that in the Alternating-Diagonal system, Q = 

Fs,B . 
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Figure 9.9 Interactive forces Q between top lateral bracing members and top 

flanges in Alternating-Diagonal system 

 

Figure 9.4 shows that there is a displacement pattern that always repeated 

every two panels where the top flanges bend like a continuous beam between 

panel points. Figure 9.10 shows a relative deflection between two consecutive 

panels in the Alternating-Diagonal system. v1 is a relative lateral displacement of 

top flanges at the strut location, u is a displacement in the X-direction and v is a 

displacement in the Y-direction. 

Vertical bending causing the shortening of the top fiber will induce forces 

in the diagonals and struts. As can be seen in Figure 9.9, at joint type I, there are 

no other members framing to that joint to pick up strut forces. As the result, top 

flanges must carry the strut forces, causing lateral bending of the top flanges as 

shown in Figure 9.10. Figure 9.10 shows that v1 is analogous to the midspan 
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deflection of fixed-fixed beam with length 2s under a concentrated load Fs,B 

applied at the midspan, which is expressed as follows: 

       
( ) ( )

tf
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tf

Bs

EI
sF

EI
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v
24

sin
192

2 3
,

3
,

1

θ−
==    (9.21) 

where Itf is the lateral flange moment of inertia. 
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Figure 9.10 Relative deflection between two consecutive panels in Alternating-

Diagonal system 

 

Using the same approach as for the X-type system, the axial elongation of 

diagonal ∆d for the Alternating-Diagonal system is 

          ( ) ( ) ( )θθ sincos 21 vvud ++=∆    (9.22) 

where u is the axial deformation of top flange u (for one panel), expressed in 

Eq.9.13, and v2 is the axial elongation of the struts defined by: 

        ( )
s

Bd
s

Bs EA
aF

EA
aFv θsin,,2 −==   (9.23) 

The force in the diagonal due to vertical bending Fd,B , found by substituting 

Eq.9.12, 9.13, 9.21, and 9.23 into Eq.9.22, is 



 261 

       
( )

( ) ( ) ( )
stfd

Btf
Bd

AI
s

A

F
θθθ

θσ
322

2
,

, sin
24

sincos1
cos

++
=    (9.24) 

where ( )
d
a

=θsin  and ( )
d
s

=θcos . The forces developed in the diagonals of the 

Alternating-Diagonal system are a function of the axial stiffnesses of the 

diagonals, struts, and top flanges, and the lateral stiffness of the top flanges. The 

lateral stiffness of the top flanges does not affect the forces developed in the 

diagonals in the X-type system.  

Using the same procedure as that for the X-type system, the equivalent 

increase in each top flange area due to the presence of the Alternating-Diagonal 

top lateral bracing system Aadd,each is 

( )
( ) ( ) ( )
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9.2.3 Single-Diagonal top lateral bracing system 

The Single-Diagonal system provides almost negligible stiffness 

contribution to the overall bending stiffness of the girder. It is assumed that the 

top lateral bracing forces in Single-Diagonal system due to vertical bending are 

negligible. In addition, the bending properties of a pseudo-closed section with the 

Single-Diagonal system are assumed to be the same as those of an open-section.  

 

9.2.4 Verifications of top lateral bracing forces formulas 

In order to verify the top lateral bracing formulas, UTRAP was used to 

analyze a simply supported straight girder of Model 1, shown in Figure 1.5, under 
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a uniform load of 1 k/ft with the top lateral bracing configurations shown in 

Figure 9.11. 

 

 

Figure 9.11 UTRAP analysis cases and top lateral bracing systems  

 

Figure 9.12 shows comparisons between top lateral bracing forces 

obtained from UTRAP and the predicted top lateral bracing forces for three 

different systems. Figure 9.12 shows that the top lateral bracing force formulas 

predict the force in the top lateral bracing members of a straight-trapezoidal box 

girder very well. It should be noted that the scales used for the y-axis among all 

top lateral bracing systems are not the same. For the X-type system under vertical 

bending, diagonal bracing forces are shown as if there is only one diagonal per 
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panel since axial forces developed in both diagonals located in one panel are 

always identical in magnitude and direction.  

Figure 9.12 shows that analytically, there is no diagonal force induced in 

Single-Diagonal top lateral bracing system due to the horizontal component and 

vertical bending. However, there are still some strut forces induced by the 

horizontal load component due to sloping webs. The bracing forces in the Single-

Diagonal top lateral bracing system are predicted quite well, except near midspan, 

where the lateral displacement is the largest as can be seen in Figure 9.4.  

 The X-type system provides a significant stiffness contribution to the 

overall bending stiffness of the girder, whereas the Alternating-Diagonal system 

provides an insignificant contribution to the overall bending stiffness of the 

girder. Thus, when determining the axial stress in the top flange due to vertical 

bending σtf,B for the X-type system, one needs to take into account the increase of 

overall bending stiffness due to the presence of top lateral bracing system (i.e. 

calculate neutral axis location and moment of inertia for a pseudo-closed section). 

Helwig and Fan indicated that one simplified method for accounting the 

contribution of the top lateral bracing system to the overall bending stiffness is by 

adding the equivalent area of the top lateral bracing system to the top flanges. The 

additional area for each top flange due to the presence of the X-type system 

shown in Figure 9.11 is 1.50 in2, or 10% from the total top flange area. The 

presence of top lateral bracing system will change the location of the neutral axis 

location yc and the moment of inertia about horizontal centroidal axis I. Table 9-1 

shows the vertical bending property comparisons between Model 1 open-section 

and pseudo-closed section with the X-type system. If an open-section value of yc 

and I (i.e. neglect the presence of X-type lateral system) are used, there will be an 

additional error in predicting the top lateral bracing forces. Figure 9.13 shows an 

increase in discrepancies between the predicted forces and the UTRAP solution  



 264 

X-top lateral bracing system (Case I Straight)
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Figure 9.12 Top lateral bracing forces in a straight trapezoidal box girder  



 265 

due to neglecting the presence of the X-type system in calculating bending 

properties. 

 

Table 9-1 Vertical bending properties for the X-type system 

Vertical bending properties Open-section Pseudo-closed section  
yc 38.2 in 37.5 in 
I 100530 in4 104810 in4 
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Figure 9.13Top lateral bracing forces in the X-type system 

 

Figure 9.13 shows that the predicted top lateral bracing forces obtained by 

treating a girder as an open section (i.e. neglecting the contribution of the top 

lateral bracing system) in calculating the bending properties are slightly larger 

than those obtained by treating a girder as a pseudo-closed section. Treating a 

girder as an open-section is conservative and the percent discrepancies in this 

example are less than 5 percent. 
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 On the other hand, the Alternating-Diagonal system does not provide as 

much bending stiffness contribution as the X-type system does. The additional 

area for each top flange by including the presence of the Alternating-Diagonal 

system shown in Figure 9.11 is only 0.23 in2, or only about 1.5 percent of the total 

top flange area.  Table 9-2 shows the vertical bending properties between the 

Model 1 open section and pseudo-closed section for Alternating-Diagonal system. 

The vertical bending properties calculated by treating a girder as an open section 

are about the same as those obtained by treating a girder as a pseudo-closed 

section. Consequently, the predicted top lateral bracing forces calculated by 

treating a girder as an open-section are about the same as those calculated by 

treating a girder as a pseudo-closed section.  

 

Table 9-2 Vertical bending properties for the Alternating-Diagonal system 

Vertical bending properties Open-section Pseudo-closed section  
yc 38.2 in 38.1  in 
I 100530 in4 101200 in4 

   

9.3 TOP LATERAL BRACING FORCES DUE TO TORSIONAL MOMENT 

 

Adding a top lateral bracing system into an open-section girder increases 

its torsional stiffness significantly and makes the section pseudo-closed rather 

than open. Torsional analysis of a pseudo-closed section is usually performed 

using the equivalent plate method (EPM) developed by Kollbrunner and Basler 

(1969). Using the EPM, the top lateral bracing system is converted into a 

fictitious plate that has a thickness of teq. Part of the reason that the section is 

called a pseudo-closed section instead of a closed-section is because the thickness 

of the fictitious plate is typically much thinner than the web or flange thickness 
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which could develop significant warping stresses. However, the EPM assumes 

that the pseudo-closed section can be treated as a closed-section in determining 

the torsional stiffness, the torsional moment resistance, and the shear flow due to 

pure torsion. Figure 9.14 shows a trapezoidal box girder with top lateral bracing 

system (pseudo-closed section) with total torsional moment T. Treating a pseudo-

closed section as a closed section, the resulting shear flow q can be calculated 

simply using Bredt’s formula, 

            
oA

Tq
2

=      (9.26) 

where Ao is the area enclosed by shear flow (i.e. area of trapezium).   

 
a 

teq 

Top lateral 
bracing system 

Fictitious 
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Figure 9.14 Torsional analysis of a pseudo-closed section using the Equivalent 

Plate Method 

 

Having determined the shear flow in the fictitious plate using Eq.9.26, the 

equivalent shearing force acting on the fictitious plate Fplate is 

         aqFplate  =     (9.27) 
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where a is the assumed width of the fictitious plate shown in Figure 9.14. The 

equivalent shear force on the fictitious plate Fplate can be converted to axial forces 

in the top lateral bracing members. The magnitude and direction of those axial 

forces depends on geometry and orientation of bracing members and can be 

calculated using force resolution. Figure 9.15 shows the forces on diagonal Fd and 

the struts Fs due to uniform torsional moment for three different bracing systems. 

Double arrows indicate that the force depends upon the direction of the torsional 

moment. 
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Figure 9.15 Forces on top lateral bracing members due to uniform torsional 

moment 

 

Figure 9.15 shows that under a uniformly applied torsional moment there is no 

force developed in the struts due to torsional moment for both X-type and 

alternating-diagonal top lateral bracing systems. However, some force develops in 

the struts for the single-diagonal top lateral bracing system. These observations 

agree with the fact that the area of the strut does not appear in Eqs.D.1 through 

D.4 to determine teq in both X-type and alternating-diagonal top lateral bracing 

systems, but does appear in Eqs.D.5 and D.6 for the single-diagonal top lateral 

bracing system. If the torsional moment varies along the length, the forces 

developed in diagonals in adjacent panels will not be equal. These unbalanced 
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forces between diagonals in adjacent panels will induce strut forces in the 

Alternating-Diagonal system to satisfy joint equilibrium. However, for an X-type 

system, there will not be any strut forces induced by unbalanced diagonal forces 

because of the symmetry of top lateral system. The strut forces induced by 

unbalanced diagonal forces due to non-uniform torsion are discussed in more 

detail in the following sections.    

The force prediction in the top lateral bracing system due to torsional 

moment using EPM can be summarized as follows: 

1. Calculate the equivalent plate thickness teq for a given top lateral bracing 

system using Table D-1.  

2. Calculate the cross-section torsional properties and the total torsional 

moment T resisted by a cross-section. Technically, T consists of pure 

torsion and warping torsion components. However, for a typical pseudo-

closed section, warping torsion component is small compared to pure 

torsion component, so total torsional moment can be simplified using the 

pure torsion component only.  

3. Calculate shear flow q develops along the contour of the box using 

Eq.9.26. 

4. Calculate the equivalent shear force acting on the fictitious plate Fplate 

based on the shear flow developed on the fictitious plate calculated in step 

4.  

5. Calculate the force in the top lateral bracing system based on the geometry 

and the orientation of the bracing member (i.e. force resolution) as shown 

in Figure 9.15. 

For a simply supported curved girder, the torsional moment T can be calculated 

directly using Eq.3.6.  
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 In general, there are two possible orientations for diagonal members used 

as top lateral bracing, called diagonal type 1 and diagonal type 2, as shown in 

Figure 9.16. Axial force in diagonal type 1 and 2 are denoted as Fd1 and Fd2, 

respectively. The orientations of both diagonal types 1 and 2 are consistent with 

those used in UTRAP. 

 

Diagonal type 1 Diagonal type 2 

 

Figure 9.16 Orientations of diagonal type 1 and diagonal type 2 

 

The following section presents the derivation of formulas to predict the forces in a 

top lateral bracing system due to torsion using the EPM for three different top 

lateral bracing systems. In order to predict the diagonal forces at a certain panel, it 

is satisfactory to use the torsional moment in the middle of that panel. 

 

9.3.1 X-type top lateral bracing system 

Figure 9.17 shows the top lateral bracing forces in an X-type system due 

to uniform torsional moment.  The diagonal forces due to torsional moment Fd1,T  

and Fd2,T , found by resolving the equivalent shearing force acting on the fictitious 

plate Fplate , is 

   ( ) ( ) plateTdTd FFF =+ θθ sinsin ,2,1     (9.28) 
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Figure 9.17 Top lateral bracing forces in X-type system due to uniform 

torsional moment 

 

Under a uniform torsional moment, both diagonal forces Fd1,T and Fd2,T in 

all panels must be equal in magnitude and opposite in direction. Based on this 

fact, Eq.9.28 can be written as follows:   

          ( )θsin2,2,1
plate

TdTd

F
FF =−=     (9.29) 

Enforcing equilibrium in the y-direction at joint type II, the strut force due to 

torsional moment Fs,T can be expressed as follows: 

  ( ) ( ) 0sinsin ,,2,1 =−− TsTdTd FFF θθ  

            0, =TsF      (9.30) 

For non-uniform torsion, Fd1,T and Fd2,T for diagonals located on one panel are 

still always the same in magnitude and opposite in direction. However, due to 

non-uniform torsion, Fd1,T and Fd2,T in each panel will be different. Figure 9.18 

shows two adjacent panels of X-type lateral system, which are called left panel 

and right panel, relative to the strut under consideration (in this case strut AB). It 

is assumed that the torsional moment in the middle of the left panel TLEFT is 

greater than torsional moment in the middle of the right panel TRIGHT. As a result, 
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the diagonal forces due to torsional moment in the left panel, Fd1LEFT, T and 

Fd2LEFT, T, are higher than diagonal forces Fd1RIGHT, T and Fd2RIGHT, T. 
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Figure 9.18 Unbalanced diagonal forces in two-adjacent panels of X-type 

system 

 

Enforcing equilibrium in the y-direction at joints A and B, as shown in 

Figure 9.18, the strut forces due to the non-uniform torsional moment at both 

joints A and B, FsA,T and FsB,T , respectively, are 

  ( ) ( )θsinT ,2T ,1, RIGHTdLEFTdTsA FFF −=    (9.31) 

   ( ) ( )θsinT ,1T ,2, RIGHTdLEFTdTsB FFF −=    (9.32) 

Using the fact that the magnitude of the diagonal forces are always the same in 

one panel, it can be shown from Eqs.9.31 and 9.32 that both FsA,T and FsB,T are 

equal in magnitude and direction. This indicates that there will not be any axial 

force induced in strut AB due to unbalanced diagonal forces, so theoretically, 

struts are not required in X-type system to resist torsional moment. The y-

component of unbalanced diagonal forces will induce lateral forces in both top 

flanges and cause lateral bending of the top flanges and localized stress 
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concentrations. Therefore, top flanges must be designed to have sufficient lateral 

bending stiffness (i.e. sufficient width) to carry lateral forces due to the 

unbalanced diagonal forces. 

 

9.3.2 Alternating-Diagonal top lateral bracing system 

Figure 9.19 shows the top lateral bracing forces in an Alternating-

Diagonal system due to uniform torsional moment.  The forces in the diagonal 

type 2, Fd2,T , found by resolving the equivalent shearing force acting on the 

fictitious plate Fplate , is 

    ( ) plateTd FF =θsin,2     (9.33) 
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Figure 9.19 Top lateral bracing forces in Single-Diagonal system due to 

torsional moment 

Under uniform torsional moment, all diagonal forces due to torsional 

moment have to be the same (i.e. Fd1,T = - Fd2,T in all panels, where the negative 

sign indicates opposite in direction). Based on this fact, Eq.9.33 can be written as 

follows: 
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          ( )θsin,2,1
plate

TdTd

F
FF =−=       (9.34) 

Enforcing equilibrium in the y-direction at joint type II, the strut force due 

to torsional moment Fs,T can be expressed as follows: 

  ( ) ( ) 0sinsin ,,1,2 =+− TsTdTd FFF θθ  

            0, =TsF      (9.35) 

Under non-uniform torsional moment, Fd1,T will not be equal with Fd2,T , so there 

will be unbalanced diagonal forces at joints. Figure 9.20 shows a model of two 

adjacent panels in the Alternating-Diagonal system under the y-component of the 

unbalanced diagonal forces P applied at the joint type II. For practical purposes, 

the lateral bending stiffness of both top flanges are assumed to be the same. In 

addition, the top flanges are assumed continuous so the strut can carry axial force. 
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Figure 9.20 Simplified model of two-adjacent panels in Alternating-Diagonal 

system under the y-component of unbalanced diagonal forces 
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Figure 9.20 shows that half of the load P is taken by each of the top flanges. The 

strut will carry half of the unbalanced diagonal forces. Strut forces due to non-

uniform torsional moment Fs,T can be expressed as:  

  ( ) ( )θsin
2
1

,2,1, TdTdTs FFF +−=    (9.36) 

Diagonal forces Fd1,T and Fd2,T must have opposite signs. The negative sign in 

Eq.9.36 indicates that the force in the strut is opposite to the unbalanced diagonal 

forces.  

 Unlike the X-type system, struts are required in the Alternating-Diagonal 

system to carry part of the unbalanced diagonal forces due to non-uniform 

torsional moment. In addition, top flanges must be designed to have sufficient 

lateral bending stiffness (i.e. sufficient width) to carry lateral forces due to the 

unbalanced diagonal forces. 

 

9.3.3 Single-Diagonal top lateral bracing system 

Figure 9.21 shows the top lateral bracing forces in the Single-Diagonal 

system due to uniform torsional moment.  The forces in diagonal type 1 due to 

torsional moment Fd1,T is 

  ( ) ( )θθ
sin

sin ,1,1
plate

TdplateTd

F
FFF =⇒=    (9.37) 

Unlike the X-type and the Alternating-Diagonal systems, under uniform torsional 

moment, strut forces Fs,T will develope in Single-Diagonal top lateral system. The 

strut force Fs,T can be found by enforcing equilibrium in the y-direction at joint 

type III and is expressed as: 

        ( )θsin,1, TdTs FF −=     (9.38) 
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Figure 9.21 Top lateral bracing forces in Single-Diagonal system due to 

uniform torsional moment 

 

The negative sign in Eq.9.38 indicates that Fs,T is opposite to Fd1,T (i.e. if Fd1,T is 

in tension, Fs,T must be in compression).  

Under non-uniform torsional moment, Fd1,T in adjacent panels is not the 

same, so there will be an unbalanced diagonal forces at the joints. As with struts 

in the Alternating-Diagonal system, struts in a Single-Diagonal system will also 

carry half of the y-component of unbalanced diagonal forces and Eq.9.38 can be 

modified as follows: 

   ( ) ( )θsin
2
1

 ,1 ,1, TRIGHTdTLEFTdTs FFF +−=   (9.39) 

where Fd1LEFT, T and Fd1RIGHT, T are the diagonal forces in the left and right sides of 

the strut under consideration. Unlike Fd1,T and Fd2,T that have the opposite signs in 

the Alternating-Diagonal system, both Fd1LEFT, T and Fd1RIGHT, T have the same 

signs in the Single-Diagonal system. This fact causes the strut in Single-Diagonal 

system to carry much higher axial forces than those in the Alternating-Diagonal 

system. 
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9.4 TOTAL AXIAL FORCES IN TOP LATERAL BRACING MEMBERS OF A 

SIMPLY-SUPPORTED CURVED TRAPEZOIDAL BOX GIRDER 

 

This section presents comparisons between the predicted top lateral 

bracing forces and the UTRAP solutions for a simply supported 180 ft curved 

girder with Model 1 and a radius of curvature of 750 ft, under a uniform load of 1 

k/ft with the top lateral bracing systems shown in Figure 9.11. The equivalent 

plate thickness of the three top lateral bracing systems are the same, therefore, all 

systems shown in Figure 9.11 have the same torsional characteristics as predicted 

by the EPM.  

For a curved trapezoidal girder, the total forces developed in the top lateral 

bracing system result from the horizontal component of the applied load due to 

sloping webs, vertical bending, and torsional moment. Figure 9.22 shows the 

torsional moment diagram for the simply supported curved girder. The torsional 

moment diagram indicates the torsional resistance from the cross-section. It is not 

the same as externally applied torsional loading due to curvature, in which the 

variation along the member follows the shape of a bending moment diagram (i.e. 

M/R method).  

Figure 9.23 shows comparisons between the predicted top lateral bracing 

forces and the UTRAP solution for three different top lateral systems. It should be 

noted that the y-axis scale for the X-type system is different than the y-axis scale 

for the Alternating-Diagonal and Single-Diagonal systems. In general, the 

predicted forces are in good agreement with the UTRAP forces. Figure 9.23 

shows that even though all top lateral bracing systems have the same equivalent 

plate thickness, the top lateral bracing forces in are significantly different. In 

general, the maximum diagonal forces in a simply supported curved girder occur 

at the end-supports, where the torsional moment is the greatest (refer to Figure 
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9.22). For the X-type system, the maximum compressive forces in the diagonals 

occur some distance from the end-span because vertical bending induces 

significant compressive forces at top lateral bracing system (refer to Figure 9.12). 

At the end-span, vertical bending moment is zero, so the only component 

inducing diagonal forces is torsional moment. At some distance away from end-

supports, vertical bending starts to induce a significant compressive force in 

diagonals. Because Alternating-Diagonal and Single-Diagonal systems provide 

smaller contributions to the overall bending stiffness than the X-type system, the 

effect of vertical bending on the total forces in both Alternating-Diagonal and 

Single-Diagonal systems is very small compared to the effect of torsional 

moment. It can clearly be seen from Figure 9.23 that the variations of diagonal 

forces along the length in both Alternating-Diagonal and Single-Diagonal systems 

are approximately the same as the variation of torsional moment along the length, 

shown in Figure 9.22.     
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Figure 9.22 Torsional moment diagram  
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Alternating-Diagonal top lateral bracing system (Case II curved)
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Figure 9.23 Top lateral bracing forces in a curved trapezoidal box girder 
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Comparing the X-type system with the Alternating-Diagonal system in 

Figure 9.23, the maximum diagonal forces in both tension and compression for 

the X-type system are smaller than those for the Alternating-Diagonal system. 

The explanation for this is that in a curved girder, the largest component of 

diagonal forces near the end-supports results from torsional moment. In the X-

type system, there are two diagonals resisting torsional moment, whereas in the 

Alternating-Diagonal system, there is only one diagonal resisting the same 

magnitude of torsional moment. However, the strut forces in the X-type system 

are larger than those in the Alternating-Diagonal system because vertical bending 

induces significant strut forces (i.e. struts carry unbalanced diagonal forces due to 

non-uniform bending moment). This explanation is supported by the fact that the 

variation of struts forces in the X-type system is approximately the same as the 

variation of vertical bending moment along the length. In addition, variations of 

strut forces in the X-type system are smooth, whereas those in the Alternating-

Diagonal system are irregular. The jaggedness of strut forces in the Alternating-

Diagonal system is caused by the unbalanced diagonal forces in adjacent panels, 

due to non-uniform torsional moment.  

Observing the sign of the torsional moment and the forces in diagonals 

due to torsional moment, diagonals type 1 located in the negative torsional 

moment region will experience tensile forces and diagonals type 2 will experience 

compressive forces. As can be seen from Figure 9.23, placing diagonals type 1 in 

the negative torsional moment region and diagonals type 2 in the positive 

torsional moment region will cause all diagonals to experience tensile forces. The 

magnitude of the diagonal forces for both systems are approximately the same. 

However, the magnitude, sign, and variation of strut forces in both systems are 

significantly different. All strut forces in the Alternating-Diagonal system are 

tensile, whereas all strut forces in the Single-Diagonal system are compressive, 
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and the maximum magnitude of the strut forces in the Alternating-Diagonal 

system is significantly smaller than in Single-Diagonal system.  

From a design perspective, the diagonal member size in an Alternating-

Diagonal system will be larger than in a Single-Diagonal since the member must 

be designed for compression rather than tension. However, strut members in the 

Single-Diagonal system will be larger than they are in the Alternating-Diagonal 

system. One must also realize that using a smaller diagonal member in a Single-

Diagonal system will result in a thinner equivalent plate thickness, which can 

cause greater deformation. 

 

9.5 SUMMARY 

 

The forces in the top lateral bracing system have three components: the 

horizontal component of the applied load due to sloping webs, the vertical 

bending of a girder, and the torsional moment. There is good agreement between 

the predicted forces in the top lateral bracing system using the analytical method 

and those from the UTRAP solutions for both a straight girder and a curved 

girder.  

Analytically, the horizontal component of the applied load due to sloping 

web is assumed to be carried by both struts and diagonals in the X-type system, 

whereas it is assumed to be carried only by the struts in both the Alternating-

Diagonal and the Single-Diagonal systems.  

Only the X-type system provides significant contribution to the overall 

bending stiffness of a girder. Both the Alternating-Diagonal and the Single-

Diagonal systems can be assumed to not contribute to the overall bending 

stiffness of a girder. Thus, there are significant forces induced in bracing members 
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of the X-type system due to vertical bending, whereas there are only small forces 

induced in those of the Alternating-Diagonal and the Single-Diagonal systems. In 

addition, it can be concluded that ignoring the presence of the top lateral bracing 

system in calculating bending properties is acceptable. For the X-type system, the 

additional percent discrepancies between the predicted top lateral bracing forces 

obtained by treating a girder as an open section in calculating the bending 

properties and the UTRAP solutions are very small (in the example presented in 

this chapter is less than 5 percent). Under torsional moment, diagonals in the 

Alternating-Diagonal system carry significantly higher forces than those in the X-

type system because there is only one diagonal resisting the forces as opposed to 

two. Diagonals in the Single-Diagonal system carry approximately the same 

forces as those in the Alternating-Diagonal system, except that all of the diagonals 

are in tension, allowing smaller member sizes. However, all forces carried by 

struts in the Single-Diagonal system are compressive forces that are significantly 

larger than those in the Alternating-Diagonal system. 
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CHAPTER 10 
 Continuous Curved Girder Behavior under a 

Uniform Load 
 
 

This chapter focuses on the top lateral bracing forces in a continuous 

curved girder under a symmetric uniformly distributed load. Sample calculations 

for predicting the diagonal and strut forces in the X-type, Alternating-Diagonal, 

and Single-Diagonal top lateral bracing systems using the analytical method 

discussed in Chapter 9 are presented. In order to aid the understanding of the 

effect of using different top lateral bracing systems on the behavior of a 

continuous curved girder, this chapter also presents comparisons of the 

deformations and the total normal stresses. Three different analyses are 

performed. For the first analysis, the member sizes in each top lateral bracing 

system are selected so that all three top lateral bracing systems have the same 

equivalent plate thickness. For the second analysis, the member sizes in each 

system are chosen based on the required member size to carry the axial forces in 

each member based on the result of the first analysis. A third analysis was done to 

study the consequence of modifying the direction of diagonal members from the 

Alternating-Diagonal to the Single-Diagonal system. For this purpose, all member 

sizes in both systems are chosen to be the same. 

The cross-section dimensions of the Model 3 continuous girder used for 

the examples are shown in Figure 10.1. Two different cross-sections are used 

along the girder length. Section P (“Positive”) is used where the positive bending 

moment is dominant and section N (“Negative”) is used where the negative 

bending moment is dominant. The radius of curvature of the girder is 955 ft. 
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Figure 10.1 Cross-section dimension of Model 3 girder 

The nodes at the bottom flange at supports A,D, and E the are only prevented 

from moving vertically, whereas those at support B are prevented from moving 

vertically, laterally and longitudinally. The bottom flange at support B cannot 

rotate in the horizontal plane. Support B is similar to the fixed support in a grid 

analysis. Herein, it is called a pinned support. As can be seen in Figure 10.1, the 

girder is symmetric about point C.  

Figure 10.2 shows the top lateral bracing systems that were used. A 10-ft 

panel length (distance between struts) and a 20-ft internal diaphragm spacing are 

used in all top lateral bracing systems. Figure 10.3 and Figure 10.4 show the 

bending and torsional moment diagrams under a uniformly distributed load of 3.3 

k/ft. Since the girder is symmetrical about the midspan, the diagrams are shown 
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for only half of the girder length. The bending moment and the torsional moment 

in the middle of both the 24th and the 25th panels are shown explicitly. Those 

values will be used in the sample calculations of calculating forces in the top 

lateral bracing members. 

 
 

A 

B 
C 

D 

E 
          X-Type  

1 
4 

8 
12 

16 20 24 28 32 
nth panel 

A 

B 
C 

D 

E 

            Alternating-Diagonal 

1 
4 

8 
12 

16 20 24 28 32 
nth panel 

A 

B 
C 

D 

E 

                 Single-Diagonal 

1 
4 

8 
12 

16 20 24 28 32 
nth panel 

 

Figure 10.2 Top lateral bracing systems used in the analyses 

10.1 ANALYSIS I 

 

Analysis I was performed using the same equivalent plate thickness for 

all the three top lateral bracing systems. All member sizes in the top lateral 

bracing system were kept the same for both sections P and N. Since the areas of 

the top flanges in the two sections are different, the equivalent plate thickness will 

be different.  Therefore, in Analysis I, the member sizes in all top lateral bracing 
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systems were chosen so that the equivalent plate thickness of section P is the 

same. Table 10-1 summarizes the member sizes used in each top lateral bracing 

system and the corresponding equivalent plate thickness for both sections P and 

N. 
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Figure 10.3 Bending moment diagram  
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Figure 10.4 Torsional moment diagram  



 287 

Table 10-1 Member size and the corresponding equivalent plate thickness used 

in Analysis I 

 X-type Alternating-Diagonal Single-Diagonal 

Diagonal area 3.82 in2 8.59 in2 10.3 in2 

Strut area 2.4 2.4 10.3 

teq section P 0.05738 in 0.05738 in 0.05738 in 

teq section N 0.05865 in 0.06282 in 0.05865 in 
   

All internal diaphragms are the same with a member area of 2.4 in2.  

 

10.1.1 Top lateral bracing forces 

Figure 10.5 shows the diagonal forces. For the length between A and C, 

there is no diagonal type 2 for the Single-Diagonal system. Therefore, in the 

graph showing the force in diagonal type 2, only the X-type and the Alternating-

Diagonal systems are shown. The line connecting each data point is only for 

clarity purposes.  

The maximum tensile force in a diagonal occurs at support B, where the 

magnitude of the torsional moment is also maximum. Table 10-2 summarizes the 

maximum diagonal forces in both tension and compression for each top lateral 

bracing system. The diagonal members in the Alternating-Diagonal system 

experience the largest compressive forces, so that from a design standpoint, these 

members will require a larger size than those in the two other systems. The 

maximum diagonal tensile forces in both the Alternating-Diagonal and the Single-

Diagonal are not significantly different (i.e. from a design perspective, the same 

member size can be used to carry the diagonal tensile forces in both systems). 
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However, the maximum diagonal compressive force in the Single-Diagonal 

system is several times smaller than that in the Alternating-Diagonal system.  

 

Table 10-2 Summary of the maximum diagonal forces 

Top lateral bracing system Maximum tensile force Maximum compressive force 

X-type 71.3 K -41.5 K 

Alternating-Diagonal 61.5 K -60.8 K 

Single-Diagonal 69.4 K -16.6 K 

  

The diagonal type 1 located in the negative torsional moment region will 

experience a tensile force. Unlike the diagonal forces in a simply-supported girder 

with a Single-Diagonal top lateral bracing system, due to the complexity of the 

torsional moment diagram in a continuous girder, there are some diagonals that 

experience a compressive force in the Single-Diagonal system. Technically, one 

can avoid having the diagonal member in compression by orienting the diagonal 

such that there are only type 1 diagonals in the negative torsional moment region 

and only type 2 diagonals in the positive torsional moment region. However, this 

approach is not justified from a construction perspective. In addition, due to the 

pouring sequence and moving loads, the torsional moment inflection point will 

move so that no matter how one orients the diagonals, there will always be a 

compressive force in some diagonal in a continuous curved girder. 

 Figure 10.6 shows the strut forces in each top lateral bracing system. The 

maximum tensile and compressive forces in the struts of each top lateral bracing 

system are summarized in Table 10-3. The struts in the Alternating-Diagonal 

system experience the smallest force. It should be noted that the strut forces in 

Figure 10.6 are shown every 20 ft (at 10 ft, 30 ft, 50 ft, etc. from the left support).  
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Figure 10.5 Diagonal forces – Analysis I 
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This does not mean there are no struts at 20 ft, 40 ft, etc. At those locations, the 

internal diaphragm consisting of a k-frame serves as the strut. However, the forces 

in that internal diaphragm are not shown, due to the fact that UTRAP solution for 

the top horizontal member of the k-frame includes components from the k-

diagonals. 
  Forces in Struts
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Figure 10.6 Strut Forces – Analysis I  

 

Table 10-3 Summary of the maximum strut forces 

Top lateral bracing system Maximum tensile force Maximum compressive force 

X-type 41.0 K -37.3 K 

Alternating-Diagonal 6.13 K -2.46 K 

Single-Diagonal 15.0 K -37.4 K 
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 As can be seen in Table 10-3, the struts in the Single-Diagonal system will 

carry much higher compressive forces than those in the Alternating-Diagonal 

system. From a design standpoint, the struts are much shorter than the diagonals 

so the effect of the magnitude of force on the strut is not as significant compared 

to the longer diagonal. Therefore, from a bracing member perspective, the Single-

Diagonal system is better than the Alternating-Diagonal system. 

 

10.1.2 Sample calculations of the forces in top lateral bracing member 

This section presents sample calculations for estimating the forces in the 

diagonals and struts located in the 25th and the 26th panels from the left support. 

Those two panels are arbitrarily chosen. The UTRAP solutions for the forces in 

the diagonals and the struts are shown in Figure 10.5 and Figure 10.6, 

respectively. The total forces developed in the top lateral bracing members result 

from three components: the horizontal component of the applied load due to 

sloping webs, vertical bending moment, and torsional moment. The horizontal 

component of the applied load in Model 3 under the uniform vertical load of 3.3 

k/ft is 0.4125 k/ft. From Figure 10.3 and Figure 10.4 the bending moments in the 

middle of the 25th and the 26th panels are 477.1 k.ft and 2793.4 k.ft, and the 

corresponding torsional moments are –524.4 k.ft and –507.7 k.ft, respectively. 

 

10.1.2.1 X-type top lateral bracing system 

Figure 10.7 shows the properties of the X-type panel and the areas of the 

diagonal and the strut Ad and As, respectively.  
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Figure 10.7 Properties of the X-type top lateral bracing system 

The diagonal forces due to the horizontal component Fd,H can be found 

from Eq.9.3: 
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The diagonal forces due to the horizontal component Fd,H are the same for both 

the diagonal type 1 and type 2, and are the same in all panels.  

 In order to calculate the forces due to vertical bending, the cross-sectional 

properties of section P must first be calculated. The equivalent increase in each 

top flange area due to the presence of the X-type top lateral bracing system 

Aadd,each from Eq.9.19 is 
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The axial stress in top flange due to vertical bending in the middle of each panel 

can be calculated as follows: 

( ) ( ) 44.1
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I
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I
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The diagonal forces due to vertical bending Fd,B in both panels from Eq.9.15 are: 
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Due to vertical bending, both the type 1 and type 2 diagonals located in the same 

panel experience the same force, and thus: 

Fd1,B,25 = Fd2,B,25 = -1.29  k   and    Fd1,B,26 = Fd2,B,26 = - 7.55  k. 

 In order to calculate the forces due to torsional moment using the 

equivalent plate method (EPM), the shear flow q and the equivalent shearing 

force acting on the fictitious plate Fplate must first be determined. Both the 

magnitudes of q (Eq.9.26) and Fplate (Eq.9.27) in the middle of each panel can be 

calculated as follows: 

( ) 359.0
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( )( ) 0.431203586.0 2525, === aqFplate  k 

( )( ) 6.411203466.0 2626, === aqFplate   k 

The negative sign has been abandoned at this point in order to avoid confusion. 

The diagonal forces due to torsional moment in both panels can then be calculated 

using Eq.9.29.  
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The diagonal type 1 that is located on the negative torsional moment will 

experience a tensile force, whereas the diagonal type 2 will experience a 

compressive force. Using this convention, the forces in both the diagonal types 1 

and 2 in both panels can be expressed as follows: 

Fd1,T,25 = 30.4  k  and  Fd2,T,25 = -30.4  k 

Fd1,T,26 = 29.4  k  and  Fd2,T,26 = -29.4  k 

 Having calculated the forces due to each component, the total diagonal 

force in each diagonal located in the 25th and 26th panels can be determined as 

follows: 

Fd1,25 =  Fd1,H,25 + Fd1,B,25 + Fd1,T,25 = 1.54 + (-1.29) + 30.4 = 30.7  k 

Fd2,25 =  Fd2,H,25 + Fd2,B,25 + Fd2,T,25 = 1.54 + (-1.29) + (-30.4) = -30.2  k 

Fd1,26 =  Fd1,H,26 + Fd1,B,26 + Fd1,T,26 = 1.54 + (-7.55) + 29.4 = 23.4  k 

Fd2,26 =  Fd2,H,26 + Fd2,B,26 + Fd2,T,26 = 1.54 + (-7.55) + (-29.4) = -35.4  k 

 Table 10-4 summarizes the total diagonal forces in the 25th and 26th panels 

obtained from the analytical formulas and the UTRAP solutions. It can be seen 

that there is good agreement between the two methods. 

 

Table 10-4 Accuracy of analytical solution for diagonal forces- X-type system 

Bracing member Analytical formula UTRAP solution % discrepancy 

Fd1,25 30.7  K 30.56  K 0.46 % 

Fd2,25 -30.2  K -30.28  K -0.26 % 

Fd1,26 23.4  K 22.43  K 4.3 % 

Fd2,26 -35.4  K -35.34  K 0.17 % 
  

The strut forces due to the horizontal component Fs,H  from Eq.9.5 is: 
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The strut forces due to vertical bending are caused by the fact that the diagonal 

forces in the 25th and 26th panels are different because of non-uniform bending 

moment. The strut forces due to vertical bending Fs,B can be calculated from 

Eq.9.9. 

( ) 25.6)7071.0)(55.729.1(sin)( 26,,25,,, =−−−=+−= θBdBdBs FFF  k 

There is no force developed in the strut of the X-type system due to torsional 

moment (i.e. Fs,T = 0). So, the total strut force is: 

Fs = Fs,H + Fs,B + Fs,T = 1.94 + 6.25 + 0 = 8.19  k. 

The UTRAP solution for that strut force is 8.57 k, about 4.4 percent higher.  

10.1.2.2 Alternating-Diagonal top lateral bracing system 

Figure 10.8 shows the properties of the Alternating-Diagonal panel and 

the areas of the diagonal and the strut Ad and As, respectively. The diagonals 

located in the 25th and the 26th panels are type 1 and type 2, respectively. 
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Figure 10.8 Properties of the Alternating-Diagonal top lateral bracing system 

 

The diagonal forces due to the horizontal component Fd,H in the Alternating-

Diagonal system are assumed to be negligible. The equivalent increase in each top 

flange area due to the presence of the Alternating-Diagonal top lateral bracing 

system Aadd,each from Eq.9.25 is: 
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Even though both the X-type and the Alternating-Diagonal systems have the same 

equivalent plate thickness, Aadd,each in the Alternating-Diagonal system is only 

about 20 percent of that in the X-type system. The axial stress in the top flange 

due to vertical bending in the middle of each panel can be calculated as follows: 
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I
y

M c
Btfσ  ksi 

( ) ( ) 57.8
200026

115.51124.27932626,, −=×==
I
y
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Btfσ  ksi 

For panels 25th and 26th in the X-type system, the bending stresses calculated 

previously were -1.44 ksi and -8.40 ksi, respectively. The bending stresses in the 

Alternating-Diagonal system are slightly larger.  

The diagonal force due to vertical bending Fd,B in both panels can be 

found from Eq.9.24. 
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The diagonal forces due to vertical bending in the Alternating-Diagonal system 

are only about 43 percent of those previously calculated for the X-type system. 

This supports the fact that the Alternating-Diagonal system is not as effective as 

the X-type system from a vertical bending standpoint.  

 Since there is only one diagonal per panel in the Alternating-Diagonal 

system, as opposed to two in the X-type system, the diagonal force due to 

torsional moment Fd,T in the Alternating-Diagonal system is double of that in the 

X-type system. Mathematically, Fd,T in the 25th and the 26th panels are: 

(Fd1,T,25)Alternating-Diagonal = 2 (Fd1,T,25)X-type = 2 (30.43) = 60.86  k 

(Fd2,T,26)Alternating-Diagonal = 2 (Fd2,T,26)X-type = 2 (-29.4) = -58.8  k 

Having calculated the forces due to each component, the total diagonal 

forces in the 25th and 26th panels can be determined as follows: 

Fd1,25 =  Fd1,H,25 + Fd1,B,25 + Fd1,T,25 = 0 + (-0.553) + 60.86 = 60.3  k 

Fd2,26 =  Fd2,H,26 + Fd2,B,26 + Fd2,T,26 = 0 + (-3.23) + (-58.8) = -62.0  k 

 Table 10-5 shows the comparison between the predicted total diagonal 

forces and the UTRAP solutions. The discrepancies between the two results are 

only about two percent. 
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Table 10-5 Accuracy of analytical solution for diagonal forces – Alternating-

Diagonal system 

Bracing member Analytical formula UTRAP solution % discrepancy 

Fd1,25 60.3  K 61.52  K -2 % 

Fd2,26 -62.03  K -60.75  K 2.1 % 
  

Unlike in the X-type system, the struts in the Alternating-Diagonal system 

carry the entire horizontal component of the applied load. The strut force due to 

the horizontal component from Eq.9.7 is: 

( )( ) 125.4104125.0, === swF HHs  k 

The strut force due to the horizontal component in the Alternating-Diagonal 

system is more than double that in the X-type system.  

 From a bending perspective, the strut must carry the unbalanced diagonal 

forces due to non-uniform bending moment. In the Alternating-Diagonal system, 

the strut only carries half of the unbalanced diagonal forces because the top 

flanges carry the other half due to their lateral bending rigidity. The strut force 

due to vertical bending from Eq.9.20 is: 

( ) ( ) ( )( ) 337.17071.023.3553.0
2
1sin

2
1

26,,25,,, =−−−=+−= θBdBdBs FFF  k. 

This strut force due to vertical bending in the Alternating-Diagonal system is 

much smaller than that in the X-type system.  

 The strut in the Alternating-Diagonal system has to pick up a portion of 

the unbalanced diagonal forces due to non-uniform torsional moment as given by 

Eq.9.36. 

( ) ( ) ( )( ) 728.07071.08.5886.60
2
1sin

2
1

26,,225,,1, −=−−=+−= θTdTdTs FFF  k 

 The total strut force is: 
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Fs = Fs,H + Fs,B + Fs,T = 4.125 + 1.337 + (-0.726) = 4.73  k. 

The UTRAP solution for this strut force is 3.92 k, giving a 21 percent difference 

between the solutions.  

 

10.1.2.3 Single-Diagonal top lateral bracing system 

Figure 10.9 shows the properties of the Single-Diagonal panel and the 

areas of the diagonal and the strut Ad and As, respectively. Both diagonals located 

in the 25th and the 26th panels are type 1. 

 

θ       
120 in   

sin(θ) = cos(θ) = 0.7071 
Ad=10.3 in2 
As=10.3 in2 

10 ft 10 ft 

Panel 25th Panel 26th 

Fd1,25 Fd1,26 Fs 

 

Figure 10.9 Properties of the Single-Diagonal top lateral bracing system 

 

The diagonal forces in the Single-Diagonal system due to the horizontal 

component Fd,H and due to vertical bending Fd,B are negligible (Fd1,H,25 = Fd1,H,26 = 

Fd1,B,25 = Fd1,B,26 =0). Therefore, only the torsional moment develops diagonal 

forces in the Single-Diagonal system. The magnitudes of the diagonal forces are 

determined from Eq.9.37, which are the same as those in the Alternating-Diagonal 

system, and are shown in Table 10-6.  

Table 10-6 summarizes the predicted total diagonal forces, the UTRAP 

solutions, and the discrepancies between the results. 
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Table 10-6 Accuracy of analytical solution for diagonal forces – Single-

Diagonal system 

Bracing member Analytical formula UTRAP solution % discrepancy 

Fd1,25 60.86  K 59.96  K 1.5 % 

Fd2,26 58.8  K 57.09  K 3 % 
  

Comparing the total diagonal forces in the Alternating-Diagonal and the Single-

Diagonal systems (Table 10-5 and Table 10-6), it can be seen that the magnitudes 

are about the same. However, both diagonal forces in the 25th and the 26th panels 

in the Single-Diagonal system are tensile, whereas those in the Alternating-

Diagonal system are tensile and compressive, respectively. 

 The strut forces due to the horizontal component of the applied load in 

both the Single-Diagonal and the Alternating-Diagonal systems are the same and 

are expressed as follows: 

(Fs,H)Single-Diagonal = (Fs,H)Alternating-Diagonal = wHs = 4.125  k 

Since there are no diagonal forces due to vertical bending, the strut force due to 

vertical bending is also zero (Fs,B = 0).  For torsional loading, the strut force from 

Eq.9.39 is 

( ) ( ) ( )( ) 3.427071.08.5886.60
2
1sin

2
1

26,,125,,1, −=+−=+−= θTdTdTs FFF  k 

Since the diagonal forces due to torsional moment in both the 25th and the 26th 

panels of the Single-Diagonal system are tensile, as opposed to having one strut in 

tension and one in compression in the Alternating-Diagonal system, the strut 

forces due to torsional moment in the Single-Diagonal system are much larger 

than those in the Alternating-Diagonal system. 

 The total strut force can then be calculated as follows: 

Fs = Fs,H + Fs,B + Fs,T = 4.125 + 0 + (-42.3) = -38.2  k. 
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The UTRAP solution for this strut force is –37.35 k (2.3 percent discrepancy).  

 

10.1.3 Deformation 

This section presents the rotation and the vertical and horizontal 

displacements of Model 3 with the three different top lateral bracing systems 

using the member sizes shown in Table 10-1. Figure 10.10 shows the rotation of 

the bottom flange along the length of Model 3 continuous curved girder obtained 

from the UTRAP. It should be noted since the rotation is very small, the rotation 

plot is not smooth. 
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Figure 10.10 Rotation – Analysis I 

Figure 10.10 shows that even though the equivalent plate thicknesses of 

section P in the three top lateral bracing systems are the same, the rotations are 

not the same. Although the maximum rotation of the girder with the X-type 
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system is larger than with the Alternating-Diagonal system, the rotation variation 

along the length is generally similar. The girder with the Single-Diagonal system 

experiences the largest midspan rotation, while the girder with the Alternating-

Diagonal system experiences the smallest midspan rotation. In addition, it can be 

seen that the rotation variations along the length with Single and Alternating-

Diagonal systems are significantly different. 

Figure 10.11 shows the vertical and horizontal deflections along the 

length. The vertical and horizontal deflections of the node located in the middle of 

the bottom flange are shown. The positive and negative horizontal deflections 

indicate the lateral movement toward and farther away from the center of 

curvature, respectively. The support B, located at 180 ft from the left support, is 

pinned (i.e. cannot move laterally). The horizontal displacements have been 

plotted on a reverse scale in order to physically correlate displacements with the 

plan view of the girder shown in Figure 10.2. The vertical displacements of a 

Model 3 girder are independent of the top lateral bracing system, whereas the 

horizontal displacements are not. The horizontal displacements with the X-type 

and the Alternating-Diagonal systems are about the same, while the horizontal 

displacements with the Single-Diagonal system are in the opposite direction and 

have a much larger magnitude. 

 In order to study the effect of changing the location of the pinned support 

on the horizontal displacements, Figure 10.12 shows the horizontal displacements 

of Model 3 with the exterior support (support A) pinned. 
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Figure 10.11 Deflections -  Analysis I  
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 Horizontal displacement 
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Figure 10.12 Horizontal displacements with the exterior support pinned 

Comparing the horizontal displacements in Figure 10.11 and Figure 10.12, shows 

that the horizontal displacement variations along the length are very sensitive to 

the support conditions. The horizontal displacements with an interior support 

pinned are opposite to those with an exterior support pinned. For both the X-type 

and the Alternating-Diagonal systems, the maximum horizontal displacement 

with the interior support pinned is approximately half of that with the exterior 

support pinned. However, with the Single-Diagonal system, the maximum 

horizontal displacement with the interior support pinned is approximately double 

that with the exterior support pinned. Pinning the exterior support instead of the 

interior support cause the X-type and the Alternating-Diagonal systems to 

laterally move away from the center of curvature (i.e. (-) horizontal displacement) 
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and causes the girder with the Single-Diagonal system to move toward the center 

of curvature. 

 

10.1.4 Total normal stresses 

This section discusses the maximum tensile and compressive total normal 

stresses in a girder with the different top lateral bracing systems using the member 

sizes shown in Table 10-1. The maximum total normal stresses are found from the 

total normal stresses on the entire cross-section along the length of the girder. 

Because the equivalent plate thicknesses and the spacing of the internal 

diaphragms for all three top lateral bracing systems are the same, both the 

maximum ordinary and distortional warping normal stresses must be the same. It 

should be noted, though, that the maximum bending normal stresses in a girder 

with the X-type system are slightly smaller than those in the Alternating-Diagonal 

and the Single-Diagonal systems. And the maximum bending normal stresses in 

girders with the Alternating-Diagonal and the Single-Diagonal systems are about 

the same.  

Table 10-7 summarizes the maximum total normal stresses for the Model 

3 continuous curved girder under a uniform load of 3.3 k/ft with the interior 

support (support B) pinned. The maximum compressive stress in the X-type 

system is smaller than that in the Alternating-Diagonal and the Single-Diagonal 

systems. This observation agrees with the fact that the bending normal stresses in 

a girder with the X-type system are slightly smaller than those with the 

Alternating-Diagonal or the Single-Diagonal systems. The maximum tensile and 

compressive total normal stresses with the Alternating-Diagonal system are larger 

than those with the Single-Diagonal system. These observations suggest that the 

localized normal stresses in the Alternating-Diagonal system are larger than those 
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in the Single-Diagonal system, since the bending normal stresses, the ordinary 

and the distortional warping normal stresses in both systems are practically the 

same. 

 

Table 10-7 Maximum total normal stresses 

Type of stresses X-type Alternating-Diagonal Single-Diagonal 

Compressive -32.35 Ksi -35.99 Ksi -35.31 Ksi 

Tensile 35.13 Ksi 38.53 Ksi 35.23 Ksi 
  

 Table 10-8 shows the total normal stress in Model 3 with the exterior 

support pinned. Comparing the maximum total normal stress with the interior and 

with the exterior support pinned (Table 10-7 and Table 10-8) shows that changing 

the location of the pinned support does not affect the total normal stress 

 

Table 10-8 Maximum total normal stresses in Model 3 with support A pinned 

Type of stresses X-type Alternating-Diagonal Single-Diagonal 

Compressive -32.35 Ksi -35.99 Ksi -35.31 Ksi 

Tensile 35.12 Ksi 38.53 Ksi 35.22 Ksi 
   

10.2 ANALYSIS II 

 

Having calculated the axial forces in each member of the top lateral bracing 

system in Analysis I, the members in each top lateral bracing system can be 

designed appropriately. Analysis II was performed using the required member 

sizes for each top lateral bracing system to carry the axial forces as determined 

from Analysis I.   
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10.2.1 Designing top lateral bracing members 

The third edition of the Manual of Steel Construction (LRFD) 

specification was used to determine the required member sizes. The unbraced 

length of the diagonals and the struts in all top lateral bracing systems are 14.1 ft 

and 10 ft, respectively. As compression members, both the diagonals and the 

struts are assumed to be pin-ended columns (k=1.0) in bending about both 

principal axes. Design of the diagonals in the X-type system is controlled by the 

compressive force. An effective length equal to the actual length of the diagonal 

(14.1 ft) was used in determining the column capacity. If the other diagonal is 

always in tension, an effective length equal to one half the diagonal length could 

be used. All connections are assumed to be bolted in single shear with the bolt 

threads excluded from the shear plane. Two rows of ¾ inch diameter A325 bolts 

are used. All members are assumed to be WT shapes.   summarizes the required 

member sizes of each top lateral bracing system based on the maximum tensile 

and compressive forces obtained from the Analysis I results. The corresponding 

equivalent plate thicknesses are also shown. 

The Single-Diagonal system requires the smallest diagonals, whereas the 

Alternating-Diagonal system requires the largest. However, the Alternating-

Diagonal system requires the smallest struts, whereas the Single-Diagonal system 

requires the same struts as the X-type. Using the member size shown in , the total 

weight of all bracing members in Model 3 with the X-type, the Alternating-

Diagonal, and the Single-Diagonal systems are 30.4 kip, 17.3 kip, and 16.9 kip, 

respectively. It should be noted that from a construction cost standpoint, the X-

type system is more expensive than the two other systems because it requires 

more connections.  
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Table 10-9 Properties of the top lateral system used in Analysis II 

 X-type Alternating-Diagonal Single-Diagonal 

Diagonals WT 6x13 (3.82 in2) WT 6x15 (4.40 in2) WT 5x11 (3.24 in2) 

Struts WT 5x11 (3.24 in2) WT 5x6 (1.77 in2) WT 5x11 (3.24 in2) 

teq section P 0.05738 in 0.03378 in 0.01843 in 

teq section N 0.05865 in 0.03407 in 0.01856 in 
  

The member sizes in the internal K-frames were kept the same as those 

used in Analysis I. 

 

10.2.2 Top lateral bracing forces 

 Figure 10.13 shows the diagonal forces in the three top lateral bracing 

systems for both Analysis I and Analysis II. Because the diagonal size in the X-

type system for both Analysis I and II are similar, only one result is presented for 

diagonal forces in the X-type system. Figure 10.13 shows that the diagonal forces 

in each top lateral bracing system for both Analysis I and Analysis II are about the 

same. Changing the member size does not affect the force in the member 

significantly. Therefore, the diagonal sizes shown in  are satisfactory. 

 Figure 10.14 shows the strut forces in each top lateral bracing system for 

both Analysis I and Analysis II. Like the diagonal forces, the strut forces in 

Analysis II are not significantly different that those in Analysis I.  
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Figure 10.13 Diagonal forces for Analysis I and II 
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  Forces in Struts
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Figure 10.14 Strut forces for Analysis I and II 

10.2.3 Deformation 

This section presents the effect of changing member size in the top lateral 

bracing system on the girder deformations. Figure 10.15 shows the twist along the 

length from Analysis II. Table 10-10 summarizes the maximum rotations of 

Model 3 in Analysis I and Analysis II.  

Comparing the maximum rotations for each top lateral bracing system in 

both Analysis I and Analysis II shows that the maximum rotation is very sensitive 

to the equivalent plate thickness.  Increasing the strut area in the X-type system 

from 2.4 in2 in Analysis I to 3.24 in2 in Analysis II does not affect the equivalent 

plate thickness, and thus does not change the maximum rotation. In the 

Alternating- Diagonal system, decreasing the diagonal area by 49% causes a 67% 

increase in the maximum rotation.  In the Single-Diagonal system, a 69% 
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Figure 10.15 Rotation -  Analysis II 

 

Table 10-10 Maximum rotation in Analysis I and Analysis II 

Top lateral bracing system Analysis Maximum rotation * 

Analysis I (Ad=3.82 in2) 0.0056 rad 
X-type 

Analysis II (Ad=3.82 in2) 0.0056 rad 

Analysis I (Ad=8.59 in2) 0.0048 rad 
Alternating-Diagonal 

Analysis II (Ad=4.40 in2) 0.008 rad 

Analysis I (Ad=10.3 in2) 0.0064 rad 
Single Diagonal 

Analysis II (Ad=3.24 in2) 0.0136 rad 

* Note: Only the absolute value is presented. The actual value of the largest rotation is negative, which 
means counter-clockwise rotation.   
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decrease in diagonal area results in a 210% increase in the maximum rotation. The 

additional rotation is not linearly proportional to the reduction in the diagonal 

area. The difference in the equivalent plate thickness among the three top lateral 

bracing systems is not the only factor causing the difference in the maximum 

rotation. As presented in Analysis I, the maximum rotations of Model 3 with the 

three different top lateral bracing systems are different even though the equivalent 

plate thickness are the same.  

 Figure 10.16 shows both the vertical and the horizontal deflections. In this 

case, the interior support (support B) is pinned. Comparing the deflections 

between Analysis I and Analysis II (Figure 10.11 and Figure 10.16) shows that 

changing the top lateral bracing member sizes does not alter the vertical 

displacement. However, it does alter the horizontal displacement. With the 

smaller equivalent plate thickness, the magnitude of the horizontal deflection with 

the Alternating-Diagonal system in Analysis II is larger (more positive) than that 

in Analysis I. However, the magnitude of the horizontal deflection with the 

Single-Diagonal system in Analysis II is smaller (less negative) than that in 

Analysis I. 

As seen in Figure 10.15 and Figure 10.16, the largest rotation and vertical 

displacement occur at the midspan (point C).  In order to provide a better physical 

understanding of the cross-section deformation, Figure 10.17 shows the deformed 

position at the midspan for the three different top lateral bracing systems. The 

deformed positions with the three different top lateral bracing systems are not 

significantly different. Even though the rotation with the Single-Diagonal system 

is more than double that with the X-type and Alternating-Diagonal systems, from 

an overall girder dimension perspective, one can hardly see the difference in the 

deformed position. This observation suggests that in evaluating the advantages 

and disadvantages of the top lateral bracing systems from the deformation 
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Figure 10.16 Deflections – Analysis II 
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Midspan deformation (at point C)
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Figure 10.17 Deformed position at the midspan (at 320 ft from support A) 

 

standpoint, percent difference should not be the sole criterion. Solely based on 

this criterion, the Single-Diagonal system is less suitable than the other systems. 

However, since the magnitudes of the rotations are very small, any of the three 

lateral bracing systems can be acceptable with regard to rotations. 

 Figure 10.18 shows the horizontal displacements for the exterior support 

(support A) pinned. Comparing the horizontal displacements with the exterior 

support pinned between Analysis I and Analysis II (Figure 10.12 and Figure 

10.18) shows that as the equivalent plate thickness decreases, the girder moves 

laterally toward the center of curvature (more positive horizontal displacement). 

Unlike in Analysis I, pinning the exterior support with the Alternating-Diagonal 

system decreases the magnitude of the horizontal displacement. So, the 
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advantages and disadvantages of having the exterior support pinned instead of the 

interior support depends on the equivalent plate thickness. 
 Horizontal displacement 
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Figure 10.18 Horizontal displacements with the exterior support pinned 

10.2.4 Total normal stresses 

In Analysis II, since the equivalent plate thicknesses of the three top 

lateral bracing systems are different, the ordinary warping normal stresses are not 

the same. However, the distortional warping normal stresses in all systems are the 

same because the spacing and member sizes of the internal diaphragms are the 

same. The maximum final total tensile and compressive normal stresses in each 

system are presented in Figure 10.19. The continuous curved girder has the 

interior support (support B) pinned. Analysis I results are also shown. Changing 

the top lateral bracing member sizes does not affect the maximum total normal 

stresses significantly. Girders with the X-type system and the Alternating-
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Diagonal system in Analysis II experience the smallest and the largest total 

normal stresses, respectively. 
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Figure 10.19 Comparison of total normal stresses from Analysis I and II 

 

10.3 ANALYSIS III 

 

Analysis III studied the effect of modifying the direction of the diagonal 

members from the Alternating-Diagonal to the Single-Diagonal system. For this 
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purpose, all member sizes in both systems are chosen to be the same. The 

diagonal and strut areas used in this analysis are 4.40 in2 and 3.24 in2, 

respectively. The internal diaphragms, consisting of a k-frame with 3.24 in2 

members, are used every 2 ft. It should be noted that the equivalent plate 

thicknesses of the systems are not the same. The equivalent plate thickness of 

section P and N in the Alternating-Diagonal system are 0.03159 in and 0.03317 

in, respectively, whereas those in the Single-Diagonal system are 0.02282 in and 

0.02302 in, respectively. In this case, changing the direction of the diagonal 

members from the Alternating-Diagonal to the Single-Diagonal system without 

altering the member size decreases the equivalent plate thickness.  

 

10.3.1 Top lateral bracing forces 

 Figure 10.20 and Figure 10.21 show the diagonal and strut forces, 

respectively, for a half length of Model 3. The diagonal forces are shown in both 

real and absolute terms. Figure 10.20 shows that changing the direction of 

diagonals from the Alternating-Diagonal to the Single-Diagonal system causes the 

forces in some diagonals to flip from compressive to tensile. However, from the 

absolute value comparison, it can be observed that changing the diagonal 

direction does not affect the magnitude of diagonal forces significantly. Since the 

Alternating-Diagonal system is more effective from a vertical bending 

perspective, there are small discrepancies between the absolute value of the 

diagonal forces in the systems. Changing the diagonal direction has significant 

effect on the strut forces as shown in Figure 10.21. The strut forces in the Single-

Diagonal system are much larger than those in the Alternating-Diagonal system. 
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Figure 10.20 Diagonal forces – Analysis III 
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Figure 10.21 Strut forces – Analysis III 

10.3.2 Deformation 

To aid the understanding of the effect of changing the diagonal direction 

on girder deformation, rotation and horizontal displacement between Model 3 

girders with the Alternating-Diagonal and the Single-Diagonal systems are 

presented. The vertical deflections are insensitive to the type of top lateral bracing 

system so will not be discussed. Figure 10.22 shows the rotations along the 

length. Figure 10.22 shows that the maximum rotation with the Single-Diagonal 

system is larger than that with the Alternating-Diagonal. Since all bracing 

members in both systems are the same, the difference in the maximum rotation 

between the Single-Diagonal and the Alternating-Diagonal systems is solely due 

to the difference in the diagonal direction. The lateral displacements of the top 

flanges in a girder with a Single-Diagonal system are significantly larger than 

those in a girder with an Alternating-Diagonal system as discussed in Chapter 6. 
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However, the bottom flange does not want to move laterally as much as the top 

flanges. Consequently, the larger lateral displacements of the top flanges are 

accompanied by larger rotations.  
 Rotation 
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Figure 10.22 Rotation – Analysis III 

 Figure 10.23 shows a comparison of horizontal displacements of the node 

located in the middle of the bottom flange of Model 3 between the Alternating-

Diagonal and the Single-Diagonal systems. Figure 10.23 shows that changing the 

orientation of diagonals from the Alternating-Diagonal to the Single-Diagonal 

system causes the bottom flange to move in the opposite direction. In addition, the 

magnitude of the horizontal displacement in a girder with the Single-Diagonal 

system is larger than in that with the Alternating-Diagonal system. 

10.3.3 Total normal stress 

Table 10-11 shows the maximum compressive and tensile normal stresses 

with the Alternating-Diagonal and the Single-Diagonal systems.  
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Figure 10.23 Horizontal displacements – Analysis III 

 

Table 10-11 Maximum total normal stresses 

Type of stresses Alternating-Diagonal Single-Diagonal 

Compressive -35.86 Ksi -35.06 Ksi 

Tensile 38.82 Ksi 35.74 Ksi 
  

Both the compressive and tensile stresses with the Single-Diagonal system are 

slightly smaller than those with the Alternating-Diagonal system. In general, 

changing the diagonal direction from the Alternating-Diagonal to the Single-

Diagonal system has a very small effect on the total normal stress. 
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10.4 SUMMARY 
 
This chapter presented an examination of the top lateral bracing forces in a 

continuous curved girder under a symmetric uniformly distributed load. There 

was good agreement between the predicted top lateral bracing forces and the 

UTRAP solutions for the three different top lateral bracing systems. 

The diagonals in the Single-Diagonal system can be designed with a 

smaller member size because the maximum compressive force is smaller than 

those in the X-type or Alternating-Diagonal systems. For systems with the same 

equivalent plate thickness, the X-type and Alternating-Diagonal systems show a 

similar torsional response, whereas the response of the Single-Diagonal system is 

quite different. Vertical displacements are similar for all three bracing systems. 

The maximum tensile and compressive total normal stresses in the X-type system 

are the smallest and those with the Alternating-Diagonal system are the largest.  

Changing the bracing member sizes does not affect the member forces 

significantly. In addition, both the vertical deflection and the total normal stress 

are generally insensitive to the member size. However, changing the member 

sizes does affect the rotation and the horizontal displacement. Using a smaller 

bracing member decreases the equivalent plate thickness and leads to a larger 

rotation.  

Changing the direction of the diagonal members from the Alternating-

Diagonal system to the Single-Diagonal system without altering the member size 

decreases the equivalent plate thickness. Consequently, the maximum rotation and 

the maximum horizontal displacement in a girder with the Single-Diagonal 

system are larger than that with the Alternating-Diagonal system. However, the 

maximum compressive and tensile total normal stresses in a girder with the 

Single-Diagonal system are slightly smaller than those in a girder with the 

Alternating-Diagonal system. 
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CHAPTER 11 
Continuous Curved Girder Behavior during the 

Pouring Sequence 
 
 

This chapter focuses on the top lateral bracing forces, girder deformations, 

and total normal stresses developed in a continuous girder during the pouring 

sequence. The Alternating-Diagonal and Single-Diagonal arrangements as shown 

in Figure 10.2 are evaluated for the Model 3 continuous curved girder with three 

different deck pouring sequences, denoted as A,B, and C. The only difference 

between the pouring sequences is the length of each concrete pour.  Each pouring 

sequence consists of five consecutive pours; the pour order in all cases is the 

same. The first and second pours place concrete at the beginning and end of the 

spans AB and DE, respectively. The third pour places concrete near the midspan 

of the span BD. The fourth and fifth pours place concrete in the vicinity of 

supports B and D, respectively. Between each pour, the concrete modulus and the 

shear stud stiffness are assumed to be increased by 1000 ksi and 250 k/in, 

respectively. However, during the entire pour, the concrete modulus and the shear 

studs stiffness are assumed to be not greater than 2000 ksi and 500 k/in, 

respectively. All of these values are based on the example problem shown in the 

UTRAP manual (Topkaya et.al., 2002). The details of each pouring sequence are 

presented in the following sections. 
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11.1 POURING SEQUENCE A 

 

Figure 11.1 shows details of pouring sequence A. There are two different 

cases, A-1 and A-2, used in this pouring sequence. In A-1, the member sizes in 

both the Alternating-Diagonal and the Single-Diagonal systems are the same. In 

A-2, the member sizes in each system are designed to carry the maximum forces 

in that member. The third edition of the Manual of Steel Construction (LRFD) 

specification is used as a guideline to determine the required member sizes.  

UTRAP can perform multiple analyses corresponding to each pour 

independently. In this case, the analyses corresponding to the order of pouring are 

denoted Analysis 1 through Analysis 5. The uniform load used in this pouring 

sequence is 3.3 k/ft. The results from each analysis are summed up sequentially to 

determine the maximum values.  

 

11.1.1 Case A-1 

In this case, a WT 6x20 was used for the diagonals and struts for both the 

Alternating-Diagonal and the Single-Diagonal systems.   

11.1.1.1 Diagonal forces 

Figure 11.2 and Figure 11.3 show the total diagonal forces in the 2nd and 

20th panels, respectively, after each concrete pour. There is concrete above the 2nd 

panel since the first pour, whereas there is no concrete above the 20th panel until 

the last pour. Figure 11.2 shows that the diagonal forces in the locations where the 

concrete has gained stiffness do not change significantly during subsequent pours. 

Figure 11.3 shows that the diagonal forces during concrete pour can change 

significantly. And the maximum forces can occur before the final pouring.  
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Coc.Mod* Std.Stiff** Load*** Coc.Mod Std.Stiff Load Coc.Mod Std.Stiff Load Coc.Mod Std.Stiff Load Coc.Mod Std.Stiff Load

1 85 0 0 3.3 1000 250 0 2000 500 0 2000 500 0 2000 500 0
2 180 0 0 0 0 0 0 0 0 0 0 0 3.3 1000 250 0
3 110 0 0 0 0 0 0 0 0 3.3 1000 250 0 2000 500 0
4 180 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.3
5 85 0 0 0 0 0 3.3 1000 250 0 2000 500 0 2000 500 0

ANALYSIS 5
DECK LENGTH (ft)

ANALYSIS 1 ANALYSIS 2 ANALYSIS 3 ANALYSIS 4

Note: 
*     Coc.Mod : Concrete modulus in ksi 
**    Std. Stiff : Shear stud stiffness in k/in 
*** Load : Magnitude of the uniform load  in k/ft 

A 

B 
C 

D 

E 

85 ft 

180 ft 
110 ft 

180 ft 

85 ft 

Pour 1 

Pour 4 
Pour 3 

Pour 2 

Pour 5 

 

Figure 11.1 Pouring sequence A 
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From the history of the forces in particular panel similar to the ones shown in 

Figure 11.2 and Figure 11.3, the maximum tensile and compressive forces can be 

obtained.  
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-40

-35

-30

-25

-20

-15

-10

-5

0
After pouring 1 After pouring 2 After pouring 3 After pouring 4 After pouring 5

Fo
rc

es
 (k

)

 
Figure 11.2 Total diagonal forces after each pour – effect of concrete stiffness 

Panel 20 - Single-Diagonal system
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Figure 11.3 Total diagonal forces after each pour 
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Figure 11.4 and Figure 11.5 show the envelopes of tensile-compressive 

diagonal forces due to pouring sequence and the diagonal forces due to the 

monolithic pour in the Alternating-Diagonal and the Single-Diagonal systems, 

respectively. Those envelopes were constructed by plotting the maximum tensile 

and compressive forces that the diagonal experiences during the entire pouring 

sequence. The number on the top of each bar graph indicates the pour order that 

produces the maximum forces. In the monolithic pour, a uniform load of 3.3 k/ft 

is applied to the entire girder at one time (i.e. similar with the analysis shown in 

Chapter 10). Some diagonals (e.g. diagonals in panel 1 through 5) will only 

experience tensile or compressive forces. In this case, only the maximum 

magnitude is of interest.  The envelopes of the tensile and compressive diagonal 

forces in the Alternating-Diagonal system are like a mirror image to one another. 

The maximum tensile diagonal force with the Single-Diagonal system is about the 

same as that with the Alternating-Diagonal system, whereas the maximum 

compressive diagonal force with the Single-Diagonal system is significantly 

smaller. From a design standpoint, WT 6x15 and WT 5x13 can be used as a 

diagonal with the Alternating-Diagonal and Single-Diagonal systems.   

Figure 11.4 shows that the maximum tensile and compressive diagonal 

forces in the Alternating-Diagonal system due to pouring sequence A are slightly 

smaller than those due to a monolithic pour. However, under pouring sequence A, 

the diagonals near the exterior supports (supports A and E) experience larger 

tensile and compressive forces than those under a monolithic pour.  From a design 

standpoint, WT 6x15 can be used as a diagonal member under both pouring 

sequence A and the monolithic pour.  

Figure 11.5 shows that the maximum tensile diagonal force under pouring 

sequence A is only slightly smaller than that due to a monolithic pour. On the 

other hand the maximum compressive diagonal force under pouring 
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Figure 11.4 Diagonal force envelopes – Alternating-Diagonal 
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Figure 11.5 Diagonal force envelopes – Single-Diagonal
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sequence A is about two times larger than that due to a monolithic pour. From a 

design standpoint, a WT 5x11 can be used for the diagonals under a monolithic 

pour, and a WT 5x13 should be used with pouring sequence A. Comparing the 

diagonal sizes in the Alternating-Diagonal and the Single Diagonal systems shows 

that modifying the diagonal direction from the Alternating-Diagonal to the Single-

Diagonal system results in a smaller diagonal member. 

In addition, an analysis of the data shows that largest tensile diagonal 

force resulted from the third concrete pour. This indicates that the length of the 

third pour will determine the maximum tensile diagonal force. As the length 

increases, the maximum tensile diagonal force becomes larger. In addition, most 

of the diagonal compressive forces in the Single-Diagonal system are developed 

after the first and second concrete pours. This observation suggests that changing 

the length of the first and second concrete pours may change the maximum 

compressive diagonal force due to the pouring sequence. The modification of 

pouring sequence A is discussed in Section 11.3. 

11.1.1.2 Strut forces 

 Figure 11.6 shows the envelopes of tensile and compressive strut forces 

due to pouring sequence A in Alternating-Diagonal and Single-Diagonal systems. 

During the entire concrete pour, the struts in the Single-Diagonal system 

experience an abrupt change from tension to compression, whereas the struts in 

the Alternating-Diagonal system do not experience significant forces. The strut 

forces in the Alternating-Diagonal are several times smaller than those in the 

Single-Diagonal system. 

 Figure 11.7 shows a comparison between the tensile-compressive strut 

force envelopes due to pouring sequence A and the strut forces due to a 

monolithic loading for the Alternating-Diagonal system. The maximum tensile 
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and compressive strut forces in the Alternating-Diagonal system due to the 

pouring sequence are slightly larger than those due to a monolithic pour. 

However, since all the forces are small (less than 8 kip in both tension and 

compression), the same member size (i.e. WT 5x6) can be used for struts in both a 

monolithic pour and pouring sequence A.   
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Figure 11.6 Envelope of tensile and compressive strut forces  

 

Figure 11.8 compares the strut force envelopes due to pouring sequence A 

and the strut forces due to a monolithic loading for the Single-Diagonal system. 

Figure 11.8 shows that the maximum tensile strut forces due to a pouring 

sequence is about two times larger than that due to a monolithic pour. However, 

the maximum compressive strut forces due to a pouring sequence are slightly 

smaller. From a design standpoint, a WT 5x11 can be used as a strut under 

pouring sequence A and a monolithic pour. Modifying the diagonal direction from 
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the Alternating-Diagonal to the Single-Diagonal system results in larger struts 

(from a WT 5x6 to a WT 5x11).  
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Figure 11.7 Strut force envelopes - Alternating-Diagonal 
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Figure 11.8 Strut force envelopes - Single-Diagonal 
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11.1.1.3 Deformation 

Figure 11.9 shows the rotations of the bottom flange along the length after 

each concrete pour and the rotation due to a monolithic loading. Even though the 

member sizes of both the diagonal and the strut in both top lateral bracing systems 

are the same, the maximum rotation with the Single-Diagonal system is larger. 

For both top lateral bracing systems, the maximum rotation after the last concrete 

pour (after pour 5) is smaller than that due to a monolithic loading.  

Figure 11.10 shows the vertical deflections along the length after each 

concrete pour and those due to a monolithic loading. Vertical deflections are 

insensitive to the type of top lateral bracing system. The total vertical deflections 

after the last concrete pour are smaller than those due to a monolithic pour. This is 

one of the consequences of using a pouring sequence as opposed to a monolithic 

pour.  

 Figure 11.11 shows the horizontal displacements under pouring sequence 

A and a monolithic loading. The positive and negative horizontal deflections 

indicate the lateral movement toward and away from the center of curvature, 

respectively. Support B, located 180 ft from the left support, acts as laterally fixed 

support (no horizontal rotation at support B). Since the displacements with the 

Alternating-Diagonal system are much smaller than those with the Single-

Diagonal system, the displacement scales in the plots are different. The horizontal 

displacement values have been plotted on a reverse scale in order to physically 

correlate displacements with the plan view of the girder shown in Figure 10.2. 

With the Alternating-Diagonal system, the final horizontal displacements under 

pouring sequence A are smaller than those under a monolithic pour. However, the 

maximum magnitude of horizontal displacement during the entire pouring 

sequence exceeds that under a monolithic pour. The final horizontal 

displacements with the Single-Diagonal system under pouring sequence A and a 
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monolithic pour are about the same, while the maximum magnitudes during the 

pouring sequence are smaller than those under a monolithic pour. Therefore, the 

consequences of the pouring sequence from a horizontal displacement perspective 

depend on the type of top lateral bracing system. 
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Figure 11.9 Rotations of the bottom flange along the length  
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Figure 11.10 Vertical deflections along the length  
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Figure 11.11 Horizontal displacement along the length  
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11.1.1.4 Total normal stress 

Figure 11.12 shows the maximum compressive and tensile total normal 

stresses after each concrete pour and under a monolithic pour for the Alternating-

Diagonal system. The maximum stresses are obtained from the examination of 

total normal stresses in all nodes on the cross-section and along the length of the 

girder. For example, the maximum tensile stress after pour 1 occurs in the bottom 

flange at 60 ft from support A, whereas that after pour 5 occurs in the top flange 

at 462 ft from support A. Figure 11.12 shows that both the maximum tensile and 

compressive total normal stresses during pouring sequence A occur after the last 

pour. The maximum compressive and tensile total normal stresses after the last 

concrete pour are about 14 % and 2.8 % smaller, respectively, than those due to 

monolithic pouring. 
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Figure 11.12 Maximum total normal stresses with Alternating-Diagonal system 
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 Figure 11.13 shows the maximum compressive and tensile total normal 

stresses with the Single-Diagonal system after each concrete pour and under a 

monolithic pour. The maximum compressive and tensile total normal stresses 

with the Single-Diagonal system occur after the fifth concrete pour. The 

maximum compressive and tensile total normal stresses during pouring sequence 

A are 14.5 % and 1.9 % smaller, respectively, than those due to a monolithic pour.  

Single-Diagonal

-19.82
-22.07

-28.8 -29.56 -30.03

-35.12

14.37

22.46

34.86 35.55

15.99

33.77

-40

-30

-20

-10

0

10

20

30

40

After pouring 1 After pouring 2 After pouring 3 After pouring 4 After pouring 5 Monolithic
pouring

N
or

m
al

 s
tre

ss
 (K

si
)

Compressive
Tensile

 

Figure 11.13 Maximum total normal stresses with Single-Diagonal system 

 

The maximum total normal stresses with the Alternating-Diagonal are larger than 

those with the Single-Diagonal. This observation is true for both a pouring 

sequence and a monolithic loading. 
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11.2 CHANGE IN TOP DIAGONAL SIZE 

 

Case A-2 studies the effect of changing member size on girder rotations 

and horizontal displacements. Since changing the top lateral bracing member size 

does not affect top lateral bracing forces, girder vertical deflections, and the total 

normal stresses significantly, this section will not discuss these parameters. The 

only difference between Case A-2 and Case A-1 is the member size used in the 

top lateral bracing system. The member size used in Case A-2 is selected based on 

the area required to carry the force in that member as shown in Table 11-1.  

 

Table 11-1 Member sizes used in Case A-2 

Alternating-Diagonal Single-Diagonal Member 
type Pouring 

sequence A 
Monolithic 

pouring 
Pouring 

sequence A 
Monolithic 

pouring 

Diagonal WT 6x15 
(Ad=4.40 in2) 

WT 6x15 
(Ad=4.40 in2) 

WT 5x13 
(Ad=3.81 in2) 

WT 5x11 
(Ad=3.24 in2) 

Strut WT 5x6 
(As=1.77 in2) 

WT 5x6 
(As=1.77 in2) 

WT 5x11 
(As=3.24 in2) 

WT 5x11 
(As=3.24 in2) 

   

 Figure 11.14 shows rotations of the bottom flange along the length of 

Model 3 with pouring sequence A and a monolithic pour. Comparing the rotations 

in Case A-1 and Case A-2 shows that using a smaller member size results in a 

larger rotation in Case A-2. The additional rotation is not linearly proportional to 

the area reduction of top lateral bracing member. Since the diagonal sizes used in 

both pouring sequence A and a monolithic pour are the same, the difference 

between the maximum rotation with the Alternating-Diagonal system due to 

pouring sequence A and a monolithic loading is not as large as that with the 

Single-Diagonal system.   
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Figure 11.14 Rotation of the bottom flange along the length  
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 Figure 11.15 shows horizontal displacements of the node located in the 

middle of the bottom flange during pouring sequence A and due to a monolithic 

pour. Figure 11.15 shows that the horizontal displacements of the bottom flange 

with the Alternating-Diagonal and the Single-Diagonal systems after the fifth 

concrete pour and under a monolithic pour are opposite. The maximum horizontal 

displacement with the Alternating-Diagonal system after the fifth concrete pour is 

slightly smaller than that due to a monolithic pour. However, with the Single-

Diagonal system, the maximum horizontal displacement after the fifth concrete 

pour is larger. Comparing the horizontal displacements in Case A-1 and Case A-2 

shows that the area reduction of the top lateral bracing member results in a more 

positive horizontal displacement. This observation agrees with the fact that as the 

equivalent plate thickness decreases, a girder moves laterally toward the center of 

curvature (more positive horizontal displacement). Since the horizontal 

displacement becomes more positive as the top lateral bracing members get 

smaller, the maximum magnitude of the horizontal displacement with the 

Alternating-Diagonal system in Case A-2 is larger than that in case A-1, whereas 

with the Single-Diagonal system, the maximum magnitude of the horizontal 

displacement in Case A-2 is smaller. 

11.3 CHANGE IN POURING SEQUENCE 

 

This section focuses on the effect of changing the pouring sequence on top 

lateral bracing forces. Two different pouring sequences, denoted B and C and 

shown in Figure 11.16 and Figure 11.17, respectively, are studied. The only 

difference between pouring sequences A, B, and C is the length of each concrete 

pour. Pouring sequence B examines the effect of reducing the length of the first 

and second pours, and pouring sequence C studies the effect of reducing the 
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length of the third pour. The length of the third pour in pouring sequence B is kept 

about the same as in pouring sequence A. The only difference between pouring 

sequences B and C is the length of the third, fourth, and fifth concrete pours. WT 

6x20 is used for the diagonals and struts in both the Alternating-Diagonal and 

Single-Diagonal systems, in both pouring sequences B and C.  
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Figure 11.15 Horizontal displacement along the length 
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Note: 
*     Coc.Mod : Concrete modulus in ksi 
**    Std. Stiff : Shear stud stiffness in k/in 
*** Load : Magnitude of the uniform load in k/ft 

A 
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Pour 1 
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Pour 3 
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Pour 5 

Coc.Mod* Std.Stiff** Load*** Coc.Mod Std.Stiff Load Coc.Mod Std.Stiff Load Coc.Mod Std.Stiff Load Coc.Mod Std.Stiff Load
1 50 0 0 3.3 1000 250 0 2000 500 0 2000 500 0 2000 500 0
2 210 0 0 0 0 0 0 0 0 0 0 0 3.3 1000 250 0
3 120 0 0 0 0 0 0 0 0 3.3 1000 250 0 2000 500 0
4 210 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.3
5 50 0 0 0 0 0 3.3 1000 250 0 2000 500 0 2000 500 0

ANALYSIS 5
DECK LENGTH (ft)

ANALYSIS 1 ANALYSIS 2 ANALYSIS 3 ANALYSIS 4

 
Figure 11.16 Pouring sequence B 
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Note: 
*     Coc.Mod : Concrete modulus in ksi 
**    Std. Stiff : Shear stud stiffness in k/in 
*** Load : Magnitude of the uniform load in k/ft 
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5 50 0 0 0 0 0 3.3 1000 250 0 2000 500 0 2000 500 0

ANALYSIS 5
DECK LENGTH (ft)

ANALYSIS 1 ANALYSIS 2 ANALYSIS 3 ANALYSIS 4

 

Figure 11.17 Pouring sequence C
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11.3.1 Diagonal forces 

 Figure 11.18 and Figure 11.19 show the envelope for both tensile and 

compressive diagonal forces in the Alternating-Diagonal and Single-Diagonal 

systems, under pouring sequences B and C, respectively. Generally, diagonals in 

the Single-Diagonal system experience much smaller compressive forces than 

those in the Alternating-Diagonal system, whereas diagonals located in span BD 

(panels 19 through 46) in both systems experience about the same maximum 

tensile forces. The maximum total compressive diagonal force in the Single-

Diagonal system is clearly much smaller than that in the Alternating-Diagonal 

system. However, the maximum total tensile diagonal force in the Single-

Diagonal system, which occurs near the intermediate supports (Supports B and 

D), is slightly larger than that in the Alternating-Diagonal system. WT 6x15 and 

WT 5x11 can be used for diagonals in the Alternating-Diagonal and the Single-

Diagonal systems, respectively. However, in order to use a WT 5x11 in the 

Single-Diagonal system, a 3-inch bolt spacing must be used in the connection to 

prevent tension rupture, whereas when using a WT 6x15 in the Alternating-

Diagonal system, a 2.5-inch bolt spacing can be used. 

The envelope of compressive diagonal force in the Single-Diagonal 

system under pouring sequence B is significantly smaller than that under pouring 

sequence A. An analysis of forces after each concrete pour indicates that 

compressive diagonal forces after the first and second concrete pours in pouring 

sequence B are significantly smaller than those in pouring sequence A. Since the 

compressive diagonal forces in the Single-Diagonal system are developed during 

the first and second pour, reducing the length of the first and second pour in 

pouring  sequence B results in a significantly smaller  compressive envelope. And 
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since the length and second pour in both pouring sequence B and C are the same, 

the compressive envelopes under both pouring sequences are the same.  
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Figure 11.18 Envelope of tensile and compressive diagonal forces – Sequence B 
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Figure 11.19 Envelope of tensile and compressive diagonal forces – Sequence C  
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An analysis of forces after each concrete pour indicates that significant 

tensile diagonal forces are developed after the third concrete pour in both systems. 

Since the length of the third concrete pour in pouring sequence B are larger than 

that in pouring sequence C, the envelopes of tensile forces in both systems under 

pouring sequence B are larger.  

 

11.3.2 Strut forces 

Figure 11.20 and Figure 11.21 show the envelope for both tensile and 

compressive strut forces in the Alternating-Diagonal and Single-Diagonal 

systems, under pouring sequence B and C, respectively. The envelopes for the 

Alternating-Diagonal system under pouring sequences A, B, and C are about the 

same. The tensile envelope for the Single-Diagonal system under pouring 

sequences B and C are about the same, whereas the compressive envelope under 

pouring sequence B is significantly larger. Comparing the envelopes for the 

Single-Diagonal under pouring sequences A and B shows that the tensile 

envelope under pouring sequence B is smaller and the compressive envelope 

under pouring sequence B is larger. Comparing the envelopes for the Single-

Diagonal system under pouring sequences A and C shows that the compressive 

envelopes are about the same, whereas the tensile envelope under pouring 

sequence C is smaller. The strut forces in the Single-Diagonal system are more 

sensitive to the length of concrete pour than those in the Alternating-Diagonal 

system.   

11.3.3  Summary 

Table 11-2 summarizes the maximum results under monolithic pouring 

and pouring sequences A, B, and C. In all cases, the maximum magnitudes of 
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Figure 11.20 Envelope of tensile and compressive strut forces – Sequence B  
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Figure 11.21 Envelope of tensile and compressive strut forces – Sequence C  
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compressive diagonal forces in the Alternating-Diagonal system are about the 

same as the maximum magnitudes of tensile forces, whereas the maximum 

magnitudes of compressive diagonal forces in the Single-Diagonal system are 

smaller than the maximum magnitudes of tensile forces. The maximum 

compressive diagonal force in the Single-Diagonal system is sensitive to the 

length of the first and second pours. As the length decreases, the maximum 

compressive force decreases. The maximum tensile diagonal forces in both 

systems are sensitive to the length of the third pour. As the length increases, the 

maximum tensile diagonal force increases. Depending on the pouring sequence, 

the maximum diagonal forces in both systems can be larger or smaller than those 

due to a monolithic pouring.  

In all cases, the maximum strut forces in the Alternating-Diagonal system 

are significantly smaller than those in the Single-Diagonal system. Reducing the 

length of the first and second pour decreases the maximum tensile strut forces in 

the Single-Diagonal system and reducing the length of the third pour decreases 

the maximum compressive strut forces.  

The maximum total normal stresses in both systems during pouring 

sequence can be larger or smaller than those under a monolithic pouring. 

Shortening the third pour reduces the maximum compressive total normal stresses 

in both systems. The maximum tensile total normal stresses are not as sensitive to 

the pouring sequence as the maximum compressive total normal stresses are. The 

maximum vertical displacement and rotation in both systems during pouring 

sequence can be larger or smaller than those under a monolithic pouring. In 

general, increasing the length of the third pour results in larger vertical deflections 

and rotations. With a short third pour, the maximum rotation and vertical 

deflection during pouring sequence are smaller than those under a monolithic 

loading    
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Table 11-2 Summary of maximum results 

Alternating-Diagonal top lateral bracing system Single-Diagonal top lateral bracing system 

Diagonal 
forces (k) 

Strut 
forces (k) 

Total 
normal 

stress (ksi) 

Diagonal 
forces (k) 

Strut 
forces (k) 

Total 
normal 

stress (ksi) 

Analysis 
Cases 

+ - + - + - 

Vert. 
displ. 
(inch) 

Rotation 
(radian) 

+ - + - + - 

Vert. 
displ. 
(inch) 

Rotation 
(radian) 

Monolithic 
pouring 61.0 -60.2 5.9 -2.0 38.7 -35.9 16.0 0.0065 63.9 -16.8 15.5 -37.9 35.6 -35.1 16.0 0.0103 

Pouring 
sequence A-1 57.8 -57.7 7.2 -6.4 37.6 -30.7 14.6 0.0060 56.0 -45.1 33.9 -35.6 34.9 -30.0 14.6 0.0090 

Pouring 
sequence B 65.5 -64.9 6.4 -10.0 39.0 -36.2 17.3 0.0076 78.6 -17.5 13.2 -49.8 36.0 -35.3 17.4 0.0132 

Pouring 
sequence C 59.6 -59.4 8.3 -6.0 37.7 -28.9 14.8 0.0061 63.7 -17.5 15.0 -37.2 34.7 -28.2 14.8 0.0095 

 
Note: (+) : Tensile forces / stresses 
          (−) : Compressive forces / stresses 
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11.4 SUMMARY 

 

This chapter presented the effect of the pouring sequence on the top lateral 

bracing forces, deformations, and total normal stresses in a three-span bridge with 

the Alternating-Diagonal and the Single-Diagonal systems. The results due to the 

pouring sequence are compared with those due to a monolithic pour. Depending 

on the length of each concrete pour, the maximum top lateral bracing forces, 

deformations, and total normal stresses during pouring sequence can be larger or 

smaller than those under a monolithic pouring. 

The maximum diagonal compressive forces in the Single-Diagonal system 

occur in the exterior spans and are sensitive to the length of the first and second 

pour. As the first and second pours get longer, the maximum diagonal 

compressive forces in the Single-Diagonal system become larger. From this 

perspective, the recommended pouring sequence is the one with short first and 

second pours. Unlike in the Single-Diagonal system, the maximum compressive 

force in the Alternating-Diagonal system occurs near the midspan of the middle 

span and is insensitive to the length of the first and second pour. The maximum 

tensile diagonal forces in both systems are sensitive to the length of the third pour. 

As the length increases, the maximum tensile diagonal force becomes larger. For 

this reason, the recommended pouring sequence is the one with a short third pour. 

The maximum rotation and vertical deflection of a girder are sensitive to 

the length of the third pour. As the length of the third pour increases, the 

maximum rotation and vertical deflections become larger. As long as the third 

pour is kept short, the maximum rotation and vertical deflection due to a pouring 

sequence are smaller than those due to a monolithic loading.  
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The maximum compressive total normal stresses in a girder are sensitive 

to the length of the third pour, whereas the maximum tensile total normal stresses 

are not. As the length of the third pour gets longer, the maximum compressive 

total normal stress increases.  

It can be concluded that in order to get a positive consequence from a 

pouring sequence, one needs to keep the first, second, and third pours short. 
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CHAPTER 12 
Conclusions and Future Research 

 

12.1 CONCLUSIONS 

 

The purpose of this research was to study the general behavior of steel 

trapezoidal box girders during construction. Parametric studies using the UTRAP 

program were performed to examine the effect of different parameters on top 

lateral bracing forces, stresses, and deformations of a single trapezoidal box girder 

system.  Whenever possible, hand methods were presented to predict the UTRAP 

solutions.  More detailed findings and recommendations are summarized in the 

following sections. 

 

12.1.1 Cross-sectional forces 

In a curved girder, there is an interaction between support torque and 

midspan bending moment. This thesis presented derivations of the exact formulas 

to predict the midspan bending moment and the support torque using equilibrium 

and geometry. The final forms of the formulas are simple. In addition, the 

approximate formulas were also shown, and it can be concluded that for a simply-

supported curved girder, the approximate formulas presented in this thesis are 

slightly better than the M/R method in predicting the support torque and midspan 

bending moment. However, it was shown that the M/R method can be applied 

very well in a continuous curved girder, for which no simple closed-form formula 

can be derived. 
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12.1.2 Internal diaphragm spacing 

In order to limit the distortional normal stress at the junction of the web 

and the top flange to less than 5 percent of the bending normal stress, the ratio of 

the maximum distortional rotation less than the maximum rigid body rotation, and 

the maximum change in a diagonal length due to distortion to less than 2 percent 

of the maximum vertical deflection, the recommended maximum internal 

diaphragm spacing is 1/5 of the span length. It is not necessary to use an internal 

diaphragm spacing less than 30 feet. This recommendation is conservative for a 

girder within the limit of the parametric studies (i.e. maximum length and central 

angle of 180 ft and 0.3 radians, respectively, and a width to depth ratio of about 

1). For a girder outside these limits, a simplified analytical method to calculate the 

distortional normal stress as a function of internal diaphragm spacing and cross-

section dimensions was developed. 

 

12.1.3 Top lateral bracing system 

In evaluating different top lateral bracing systems, one needs to consider 

member force, girder deformation, and normal stress aspects. The following 

sections provide more detailed discussions of these issues. 

12.1.3.1 Member forces 

The forces in the top lateral bracing system result from three components: 

the horizontal component of the applied load due to sloping webs, the vertical 

bending of the girder, and the torsional moment. Most of the horizontal 

component of the applied load due to sloping webs is carried by the strut. 

Compared to the forces from the other components, this force is the smallest. 

From a vertical bending standpoint, only the X-type system makes a 

significant contribution to the overall girder bending stiffness. Both the 
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Alternating-Diagonal and the Single-Diagonal systems can be assumed to not 

contribute to the overall girder bending stiffness. Consequently, there are 

significant forces induced in the X-type system due to vertical bending, whereas 

there are only small forces induced in the Alternating-Diagonal and Single-

Diagonal systems.  

From a torsional moment perspective, diagonals in the Alternating-

Diagonal system carry significantly higher forces than those in the X-type system 

because there is only one diagonal resisting the forces as opposed to two. 

Diagonals in the Single-Diagonal system carry approximately the same forces as 

those in the Alternating-Diagonal system, except that all of the diagonals are in 

tension, allowing smaller member sizes. This observation is only true in a simply 

supported curved girder. In a continuous curved girder, some diagonals will 

experience a compressive force in a Single-Diagonal system due to the 

complexity of the torsional moment diagram. However, the maximum 

compressive diagonal force in a Single-Diagonal system is significantly smaller 

than that in an Alternating-Diagonal system. Therefore, a smaller member size 

can be used as the diagonal in a Single-Diagonal system. It should be noted that 

all strut forces in the Single-Diagonal system are compressive that are 

significantly larger than those in the Alternating-Diagonal system. 

12.1.3.2 Girder deformations 

In a straight girder, the vertical deflections of a pseudo-closed section with 

the Alternating-Diagonal or the Single-Diagonal top lateral bracing system are the 

same as those of an open section. However, the vertical deflections in a pseudo-

closed section with the X-type system are slightly smaller. In addition, it was 

demonstrated that struts are very effective in preventing bending distortion 

because they prevent the spreading of the webs. 
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In a curved girder, the vertical deflections and rotations of a pseudo-closed 

section are several times smaller than those of an open section. It was shown that 

the changes in the maximum vertical deflection and rotation of a girder with an 

equivalent plate thickness larger than 0.03 inches are not very sensitive to the 

change in equivalent plate thickness. From vertical deflection and rotation 

standpoints, the minimum recommended equivalent plate thickness is 0.03 inches. 

This thesis showed that the vertical deflection is not sensitive to the type 

of top lateral bracing system, whereas the rotation is sensitive. The rotation 

variation along the length of a girder with the X-type and the Alternating-

Diagonal systems having the same equivalent plate thickness are generally the 

same. Depending on panel length, changing the diagonal orientation from the 

Alternating-Diagonal to the Single-Diagonal system results in different rotation 

variation and larger maximum rotation. As the panel length increases, the 

difference of the maximum rotation in the two systems becomes larger. For this 

reason, the maximum recommended panel length in a Single-Diagonal system is  

equal to the top width of the girder.  

 Horizontal displacement in a curved girder is also sensitive to equivalent 

plate thickness. Using a smaller member size will cause the girder to move 

laterally toward the center of curvature. From a support lateral displacement 

perspective, the minimum recommended equivalent plate thickness is 0.03 inches. 

12.1.3.3 Normal stresses 

This thesis presented an analytical formula for determining the required 

strut spacing in order to limit the additional normal stresses due to lateral bending 

of the top flanges. It was shown that the required strut spacing depends on the 

applied load and the dimensions of the top flanges. 
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The maximum tensile and compressive total normal stresses in a girder 

with the X-type system are the smallest and those with the Alternating-Diagonal 

system are the largest. Bending normal stresses in a girder with the X-type system 

are smaller than those with the Alternating-Diagonal or the Single-Diagonal 

system. It was shown that changing the diagonal direction from the Alternating-

Diagonal to the Single-Diagonal systems results in slight reductions of the 

maximum tensile and compressive total normal stresses. 

The top lateral bracing system is effective in reducing warping normal 

stresses. In order to limit the ordinary warping normal stress at the junction of the 

web and the top flange to less than 2.5 percent of the bending normal stress, the 

minimum recommended equivalent plate thickness is 0.05 inches. 

12.1.3.4 Recommendation 

The best top lateral bracing system for a straight girder under a 

symmetrical uniform loading (i.e. no torsional loading) is the strut-only system 

(i.e. open section). The required strut spacing to limit additional normal stress can 

be determined using the closed-form formulas given in this thesis. 

The best top lateral bracing system for a curved girder is the X-type 

system. Unfortunately, it usually costs more because it requires more connections. 

The second best system is the Single-Diagonal system. If the X-type system is 

undesirable, the recommended design procedure for selecting a top lateral bracing 

system is as follows: 

1. Try Single-Diagonal system with panel length approximately the same as 

girder top width and equivalent plate thickness greater than 0.05 inches. 

2. Check girder rotation and bracing forces. 

3. If the rotation is too large, increase the member size or change to 

Alternating-Diagonal system that automatically reduces rotation. 
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Changing to Alternating-Diagonal system will result in a significant 

increase in the maximum compressive force. 

 

12.1.4 Pouring sequence 

It is important to evaluate the pouring sequence because the maximum top 

lateral bracing forces and deformations during the concrete pour can be larger 

than those after the pour. The recommended pouring sequence with the pour order 

shown in this thesis is the one with short first, second, and third pours.  

 

12.2 FUTURE RESEARCH 

 

The recommended internal diaphragm spacing presented in this thesis was 

developed based on the assumption that there is no web stiffener. Previous 

research indicates that web stiffeners are very effective in controlling cross-

section distortion and distortional normal stress. A new recommendation for 

internal diaphragm spacing with the presence of web stiffeners should be studied. 

It was shown that the presence of internal diaphragms increases bending normal 

stress. However, the reason behind this behavior has not been resolved in this 

thesis. In addition, the analytical formula cannot predict the distortional normal 

stress at the tip of the top flange. Therefore, further research is required to develop 

an analytical formula that can predict the distortional normal stress at the top 

flange tip.  

Currently, UTRAP lateral boundary conditions are fixed and free. The 

fixed boundary condition prevents warping displacements. As a result, there is a 

rigid body lateral movement even in a simply supported curved girder as shown in 

Chapter 6. The real girder has elastomeric bearings at its supports. These bearings 
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have some lateral stiffness and permit warping displacements. In order to imitate 

the real support, further research is needed to modify UTRAP program so that it 

can offer a support with some lateral stiffness (i.e. spring support).  
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APPENDIX A 
Determination of Local Plate Bending Stress 
 

Appendix A presents the derivation of local plate bending stress due to 

distortional loading in a simplified model of a rectangular box section. The 

distortional loading component on a general box section causes the distortional 

deformation and the local plate bending moment Mplate shown in Figure A.1. 

 

Distortional 
loading 

Distortional 
deformation 

Local plate bending 
moment, Mplate 

Mplate 

 

Figure A.1 Distortional deformation and local plate bending moment 

The derivations in this appendix deal with open-section rectangular box girders, 

which have no top plate. Since the equivalent plate thickness in this model is zero, 

the inflection point of the web is located at the junction of the web and the top 

flange. Figure A.2 shows the model under a horizontal load V, turned upside 

down for familiarity. The depth and width of the model are h and b, respectively. 

The moment of inertias of the web and the bottom flange are Iw and Ibf. 
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Figure A.2 Simplified model under a horizontal load 

 

Total horizontal displacement ∆ of the model is the sum of the horizontal 

displacement due to cantilever bending of the column (web) ∆cantilever and that due 

to bending of the beam (bottom flange) ∆beam as follows: 

      ∆ = ∆cantilever + ∆beam                
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where E is the Young’s modulus and G is the ratio of the web stiffness to the 

bottom flange stiffness (
( )
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==

 

). From Eq.A.1, V can be 

solved as follows: 
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In the simplified model, the maximum local plate bending moment occurs 

at the junction of the web and the bottom flange and is denoted Mplate,b. This 

moment is 

            hVM bplate 2, =     (A.3) 

Since the web thickness tw is smaller than the bottom flange thickness tbf , the 

maximum local plate bending stress occurs in the web and is denoted σplate,w. This 

stress is 
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Substituting Eq.A.2 into Eq.A.4 results in the following expression: 
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Normalizing σplate,w to the yield stress Fy and assuming the bottom flange is very 

stiff compared to the web (i.e. G=0) results in the following equation: 
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 If the distortional deformation is limited so that ∆ is smaller than 2.5 

percent of the midspan vertical deflection δmid and the yield stress Fy is 50 ksi, 

Eq.A.6 can be written as follows: 
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where L is the girder length. Eq.A.7 shows that the local plate bending stress is 

proportional to (δmid/L) and inversely proportional to (h/tw) and (h/L). For even 

extreme values for these variables, σplate,w is less than 0.1 percent of Fy, and can 

thus be safely ignored. 
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APPENDIX B 

Derivation of Support Torque and Midspan 
Bending Moment 

 
Appendix B gives a complete derivation of support torque and midspan 

bending moment presented in Chapter 3 by using force equilibrium, geometric 

relation, and integration process. 

 

B.1 SUPPORT TORQUE 

 

Figure B. 1 shows all notations used in a complete derivation of support 

torque and midspan bending moment. 
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Figure B. 1  Simply-supported curved girder under the uniform load 
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The first component of torque, T, can be found by taking sum of torque at 

midspan. From torque equilibrium, the midspan torque is known to be zero and T 

is  
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Integral of “Torque from uniform load” in Eq. B.1 can be evaluated as follows: 
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Substituting Eq.B.2 to Eq.B.1, T can be written as follows: 
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Eq.B.3 is the expression of T, as can be seen in Eq.3.7. 

For a non-skewed support, support torque TR can be found from geometry 

as follows: 
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Eq.B.4 is the expression TR, as seen in Eq.3.8.  
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B.2 MIDSPAN BENDING MOMENT 

 

Midspan bending moment Mmid in a simply supported curved girder can be 

found by taking the moment equilibrium about midspan and is  
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Integral of “Moment from uniform load” in Eq.B.5 can be evaluated as follows:   

( )∫ ∫
Φ Φ

=
2

0

2

0

2    sin        sin  φφφφ dRwdRRw  

                                =  







+






 Φ− 1

2
 cos  2Rw    (B.6) 

Substituting Eqn.(A.6) into Eqn.(A.5), midspan bending moment Mmid, can 

be written as follow: 
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Eq.B.7 is the expression of midspan bending moment Mmid, as can be seen in 

Eq.3.10. 
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APPENDIX C 
 Determination of Torsional Moments in 

Continuous Curved Girder using the M/R Method 
 

Appendix C shows all intermediate steps to determine torsional moment in 

a continuous curved girder using the M/R Method (Tung and Fountain, 1970), 

shown in Figure 3.22. The required procedures to determine torsional moment in 

a continuous curved girder are as follows: 

1. Straighten the entire curved girder to its full developed length and 

determining the bending moments of the girder. Figure C. 1 shows the 

bending moment of a three-equal-span Model 2 straight girder shown in 

Figure 3.11.  

2. Consider one span at a time, apply the distributed M/R loads on the simply 

supported straight conjugate beam. Figure C. 2 shows the M/R loadings on 

the left exterior and interior spans. The radius of curvature in this example 

is 450 ft.  

3. Determine the shear forces in each span of the conjugate beam under the 

M/R loading. These shear forces correspond to the torsional moments in 

the real girder. For simplification in determining the shear forces, the M/R 

loading can be decomposed into parabolic and straight line components as 

shown in Figure C. 3. The shear forces in each span of the conjugate beam 

are shown in Figure C. 4.  

4. Calculate the total torsional moments in the girder by superimposing the 

torsional moments due to parabola and straight line components of the 

M/R loading. Figure C. 5 shows the torsional moment in the left exterior 
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and interior spans of Model 2 continuous curved girder. For comparison, 

the UTRAP solution is also shown.   

 

Bending moment diagram of Model 2 straight girder
(L=480 ft (three-equal-span), w=3.3 K/ft)
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Figure C. 1  Bending moment diagram 

 



 371 

M/R Loading on the left exterior span
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Figure C. 2  M/R loadings on the left exterior and interior spans 
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Decomposition of M/R Loading on the left exterior span
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Decomposition of M/R Loading on the interior span
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Figure C. 3 Decomposition of the M/R loading into parabolic and straight line 

components 
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Shear force of the conjugate beam = torsional moment of the real beam
(Left exterior span)
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Figure C. 4 Torsional moments of the girder 
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Torsional Moment diagram 
(L=480 ft (3-equal-span), R=450 ft, w=3.3 K/ft)
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Figure C. 5 Torsional moments in the left exterior and interior spans 
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APPENDIX D 

Equivalent Plate Thickness Formulas 
 

 

The torsional analysis of a quasi-closed section is usually performed using 

the Equivalent Plate Method (EPM). Based on the EPM, top lateral bracing 

system may be replaced by an equivalent wall element of constant thickness teq in 

the analysis. This thickness is determined by comparing the angle of shear in the 

panel of equivalent wall element, shown in Figure D. 1(a), with the angle of shear 

in the panel of bracing, shown in Figure D. 1(b), due to same loading. It should be 

noted that s and a shown in Table D- 1 are panel length (i.e. strut spacing) and top 

width of girder, respectively. 

 

γ 
s 

a a 

γ 

(a) (b) 
 

Figure D. 1 Angle of shear in the panel of equivalent wall element and panel of 

bracing 

Based on strain energy equivalency, Kollbrunner and Basler (1969) 

derived the formulas to determine the equivalent plate thickness teq for different 

types of top lateral bracing system. Those formulas are shown in Table D- 1. 
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Table D- 1 Equivalent plate thickness for different types of top lateral bracing 

systems 

Type of top lateral bracing system Equivalent plate thickness 
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where: 

a : Top width of girder (measured between centerline of top flange) 

s : Panel length (spacing of strut) 

d : Diagonal length : 22 sad +≅  

AtfL, AtfR  :  Cross-sectional area of left and right top flange, respectively 

Ad : Cross-sectional area of diagonal bracing member 

As : Cross-sectional area of strut bracing member 

E : Bracing member Young’s modulus 

G : Bracing member shear modulus  
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APPENDIX E 
Determining Shear Center Location of an Open-

section Trapezoidal Box Girder 
 
 

Appendix E presents more detailed explanations on how to use the force 

method and the numerical method to locate the shear center of an open-section 

trapezoidal box girder. 

 

E.1       FORCE METHOD 

 

 Figure E. 1 shows the simplified general representation of an open-section 

trapezoidal box girder whose dimensions will be used in the derivation of the 

closed-form solution. In general, the shear center of an open-section trapezoidal 

box girder is located some distance ey below the bottom flange. The shear center 

of a singly symmetric section like a trapezoidal box girder is located on the y-axis 

(axis of symmetry). In order to locate the shear center along the y-axis (i.e. 

determine ey), the shear force in the direction of the x-axis Vx is applied through 

the shear center and the shear stress distribution is determined as shown in Figure 

E. 2.  

The magnitude of shear stress τ at any point in the cross-section is 

        
tI

QV

Y

Yx=τ     (E.1) 

The shear stresses at points 1 through 3 are 
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Notations: 
 
a     : Girder top width 
btf : Top flange width 
ttf : Top flange thickness 
s : Slope of sloping web 
bw : Sloping web width, measured from centroid of top flange to centroid of bottom flange  
tw : Sloping web thickness 
bbf : Bottom flange width 
tbf : Bottom flange thickness 
d : Girder depth, measured from centroid of top flange to centroid of bottom flange 
Atf  : Cross-section area of top flange  
Aw : Cross-section area of web 
Abf : Cross-section area of bottom flange 
ey : Distance between shear center and the centroidal axis of bottom flange 
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Figure E. 1 Notations for an open-section trapezoidal box girder 
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 Y 

τ6 = τmax 
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Figure E. 2 Shear stress distribution and shear flow in an open trapezoidal 

cross-section 
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where IY is the moment of inertia about the Y-axis. 

The general equation for the shear stress along the sloping web τw shown 

in Figure E. 3 is 
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Figure E. 3 Shear stress diagram along the sloping web 

It should be noted that s in Eq.E.5 is the coordinate system along the 

sloping web (i.e. s = 0 is at the junction between web and top flange and s = bw is 

at the junction between web and bottom flange). Shear stress at point 3, τ3, can be 
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calculated by plugging in s = 0 into Eq.E.5 and τ4, can be calculated by plugging 

in s = bw into Eq.E.5.  

The shear flow q on a cross-section is constant even though the thickness 

of the section wall varies. Therefore, shear flow at point 5, q5, must equal to the 

shear flow at point 4, q4. And τ5 is  
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Having calculated τ5, the shear stress at point 6, τ6, can be calculated and 

expressed in Eqs. E.7. It should be noted that τ6 is the shear stress at the neutral 

axis (Y-axis) and it is the maximum shear stress.  
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For a thin-walled cross-section, the shear stress due to bending τ is 

assumed to be constant across the thickness of the wall. Therefore, the equivalent 

force F of the shear stress τ acting on the wall thickness t is 

       F = (Area under τ-diagram) (t)     (E.8) 

 

Knowing the shear stress distribution diagram (shown in Figure E. 2(a)) and the 

values of τ1 through τ6, the equivalent shear force F on each element can be 

calculated and expressed in Eqs.E.9 through E.15. 
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Knowing F1 through F4 and using the advantage of symmetrical shear 

stress distribution, F5 through F7 are 

                F5 = F3    (E.13) 

     F6 = F1    (E.14) 

(E.9) 

(E.10) 

(E.11) 

(E.12) 
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     F7 = F2    (E.15) 

All seven equivalent shear forces (F1 through F7) must be statically equivalent to 

the resultant force VX acting through the shear center. In other words, the 

following relationships must be satisfied: 

 

Σ Fx = 0  ⇒   F1 - F2 + F3 cosθ + F4 + F5 cosθ + F6 – F7 = VX (E.16) 

Σ Fy = 0  ⇒   F3 sinθ = F5 sinθ  ⇒   F3 = F5    (E.17) 

 

In addition, the moment of the shear force VX about any point in the cross-section 

is equal to the moment of all seven equivalent shear forces (F1 through F7) about 

the same point. This moment relationship provides an equation from which the 

distance ey to the shear center can be found. It is usually convenient to take the 

moment about the shear center, where the moment produced by VX is zero. For an 

open-section trapezoidal box girder, the sum of moment about shear center is  

 

(F1 – F2 + F6 – F7) (d + ey) + F4 ey - 2 F3 w = 0    

      2 (F1 – F2) (d + ey) + F4 ey – 2 F3 w = 0   (E.18) 

 

where w is the perpendicular distance from the sloping web to the shear center as 

shown in Figure E. 4 and is expressed in Eq.E.19 as follows: 
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Figure E. 4 Perpendicular distance from sloping web to the shear center 

Distance ey can be found by plugging in F1, F2, F3, F4, and w into equation 

E.18.  The final closed-form solution of ey is  
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E.2        NUMERICAL METHOD 

 

This section presents a more detailed procedure and numerical example 

for determining the shear center location for an open-section trapezoidal box 

girder by using a numerical method proposed by Heins (1975). In order to apply 

the numerical method, the reference point (i.e. starting point of element’s flow 

vector for the entire cross-section) and the element’s flow vector needs to be 

determined first. Figure E. 5(a) shows the simplified representation of an open-

section trapezoidal box girder and Figure E. 5(b) shows the chosen reference 

point and element’s flow vector. The choice of flow direction is arbitrary. 

Table E- 1 shows the required input that needs to be determined to use the 

numerical method. The dimensions used in Table E- 1 are shown in Figure E. 1. 

For simplification, it is sufficient to use the dimensions of the centroidal axis of 

each element. The procedure to determine the shear center location using the 

numerical method can be summarized as follows: 

1. Find the centroid of the cross-section (i.e. determine yc using Eq.4.1) 

2. Find the moment of inertia about the y-axis Iy. 

3. List the x and y-coordinates of all points on the cross-section (columns (2) 

and (3) in Table E- 1). The origin of the x-y coordinate system is chosen at 

the centroid.  

(E.20) 
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Figure E. 5 Selected element’s flow vector on open-section trapezoidal box 

girder 
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4. List the thickness and length of each element (columns (4) and (5) in 

Table E- 1) 

5. Calculate the perpendicular distance ρ from the centroid of the cross-

section to the tangent line between the end points of each element (column 

(6) in Table E- 1). The sign of ρij is defined as positive if the centroid of 

cross-section resides on the left-hand side of the element ij, whose flow 

vector goes from point i to point j.   

6. Calculate wij = ρij * Lij for each element. 

7. Determine the absolute value of w at each point by summing the wij values 

and assuming wA = 0, where A is the reference point.  

8. Determine Iwx using Eq.4.9. 

9. Determine the location of shear center with respect to centroid of cross-

section using Eq.4.8. 

 Table E- 2 shows the numerical example of finding the shear center of 

Model 1, which is shown in Figure E. 6. 
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Figure E. 6 Cross-section dimension of the open-section of Model 1 
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Table E- 1  Required input to determine shear center using numerical method 

            (1)                         (2)                                (3)                          (4)                           (5)                              (6) 
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From Chapter 4, the distance between the centroidal axis and the centroidal axis 

of its top flange is 38.19 inches. 

The location of the shear center with respect to the centroid y0 is 

           
y

wx

I
I

y −=0     (E.21) 

where Iy =  120976 in4. Iy value corresponds to the dimensions of the centroidal 

axis of each element. It is slightly different than Iy obtained using Eq.4.3. Having 

calculated both Iwx and Iy, y0 can be calculated as follows: 

      inch 6.48
120976
5883770

0 −=−=−=
y

wx

I
I

y  

 

Therefore, the shear center of Model 1 is located 48.6 inches below the centroid 

of the cross-section or 26.8 inches below the centroidal axis of the bottom flange. 
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Table E- 2  Numerical example to find shear center for Model 1 

Point X Y tij Lij tij Lij ρij wij w wi . Xi wj . Xj wi . Xj wj. Xi (wiXi+wjXj)tL (wiXj+wjXi)tL

A -43.00 38.19 0

1.50 5.0 7.5 -38.2 -191 0 7256 0 8211 54419 61580

B -38.00 38.19 -191

0.500 61.4 30.7 29.1 1784 7256 -39815 4774 -60519 -999434 -1711154

C -25.00 -21.81 1593

1.50 50.0 75.0 21.8 1091 -39815 67079 39815 -67079 2044781 -2044781

D 25.00 -21.81 2683

0.500 61.4 30.7 29.1 1784 67079 169734 101960 111667 7269226 6557506

E 38.00 38.19 4467

1.50 5.0 7.5 -38.2 -191 169734 183857 192068 162478 2651933 2659093

F 43.00 38.19 4276

B -38.00 38.19 -191

1.50 5.0 7.5 -38.2 -191 7256 12604 6301 14514 148951 156113

G -33.00 38.19 -382

E 38.00 38.19 4467

1.50 5.0 7.5 38.2 191 169734 153704 147401 176992 2425783 2432946
H 33.00 38.19 4658

Sum 166 13595660 8111302  

Iwx can be found by using Eq.4.9 as follows: 

( ) ( ) ( ) ( )8111302
6
113595660

3
1

6
1

3
1

+=+Σ++Σ= ijijijjiijijjjiiwx LtxwxwLtxwxwI  = 5883770 in5 
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APPENDIX F 
Table for Area Integration of Two Linear Functions 

 
Table F- 1 Table of area integration of two functions F1 and F2: dAFF
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Note: A : Area = L * thickness of the element 
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