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Abstract 

 

Inelastic Buckling Behavior of Concrete Reinforcing Bars under 

Monotonic Uniaxial Compressive Loading 

 

by 

 

Alexa Marie Mieses, MSE 

The University of Texas at Austin, 2002 

SUPERVISOR:  Oguzhan Bayrak 

 

 
The main objective of this research is to expand the experimental 

information available on the buckling behavior of longitudinal reinforcement. 

Compression tests on well-instrumented bars are performed and axial and lateral 

deformations are reported herein. To establish a constitutive relationship for 

reinforcing bars under axial compression, an experimental study on 108-#8 and 

54-#10 reinforcing bar specimens having unsupported length to bar diameter 

ratios (L/d) ranging between 4 and 12 and mid-span eccentricity to bar diameter 

ratio (e/d) between 0.0 and 0.5 was conducted. In addition, #8 and #10 bars with 

different material properties were tested to investigate the influence of strain 

hardening response on the post-buckling behavior of reinforcing bars. Finally, the 

results obtained are comparatively studied, and the effects of e/d ratio, L/d ratio, 

and material properties on reinforcing bar behavior are evaluated. 
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CHAPTER 1 
Introduction 

 

1.1 GENERAL OVERVIEW 

The capability of concrete framed structures to withstand strong ground 

motions during earthquakes or any other dynamic type loading depends primarily 

in the ability of the structure to develop reasonable ductility. This relates to the 

capacity of the structure to redistribute loads and to the ability of plastic hinges to 

absorb and dissipate energy without significant strength loss. As a result, building 

codes take a “strong column-weak beam” approach in which members are 

designed in order to form plastic hinges in the beams rather than in the columns. 

However, it has been observed in recent earthquakes and investigations (Bayrak 

and Sheikh 2001) that the formation of plastic hinges in columns is still possible 

and inevitable as seen in Figures 1.1 and 1.2. Therefore, the possibility of hinging 

in columns should be taken into consideration in design to ensure the stability of 

the structure as well as vertical load carrying capacity of the columns. 

When plastic hinges form in columns, buckling of the longitudinal 

reinforcement is often observed. This has been explained in a previous study due 

to the inadequacy of tie spacing requirements when ductility is required (Bayrak 

and Sheikh 2001). Since buckling of the longitudinal reinforcement is not 

considered in conventional sectional analysis of concrete column members, the 

load-carrying capacity and the ductility of the columns at large inelastic 

deformations are generally over predicted. 



 
Figure 1.1 Buckling of freeway support column’s reinforcement under the Simi 

Valley Freeway at the north end of the San Fernando Valley during the 

Northridge earthquake in California 1994 (photo: Ta-Liang Teng), from: 

http://www.scecdc.scec.org/slidesho.html 

 

Several research papers were studied to establish the availability of 

analytical models for longitudinal bar buckling in columns. The studies presented 

by Bresler and Gilbert (1961), Scribner (1986), Russo (1988), Papia et al. (1988), 

Mau and El-Mabsout (1989), and Monti and Nuti (1992) were investigated. Based 

on the literature survey conducted, it was determined that previous studies failed 

to include the effect of the interaction between the concrete core and the 

reinforcing cage. Recently, Bayrak and Sheikh (2001) developed an innovative 

plastic hinge analysis technique in which the interaction between the reinforcing 

cage and the concrete core and the buckling of reinforcing bars are incorporated 
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into the sectional analysis to predict the ultimate deformation capacity of column 

members. Bayrak and Sheikh (2001) reported that there is a limited amount of 

experimental data of reinforcing bars tested under compression. Therefore, further 

testing is required in order to develop a reasonable database to incorporate in 

analytical techniques. 

 

 
Figure 1.2 Longitudinal bar buckling in specimen RS-12HT tested by Bayrak 

and Sheikh (2001) 

1.2 BACKGROUND FOR RESEARCH 

When a reinforced concrete column is loaded axially in compression to 

failure, the concrete cover spalls after reaching a limiting strain value leaving the 

reinforcement exposed. This results in reduction of the cross sectional area 
3 
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causing additional straining of the transverse reinforcement and of the core. The 

pressure applied by the core to the longitudinal reinforcement and the inadequacy 

of hoop spacing may result in buckling of the longitudinal reinforcement. For this 

to be avoided, columns should be designed and detailed to provide a reasonable 

level of ductility when subjected to cyclic flexure and constant axial load. In this 

way, the maximum displacement capacity of frame concrete structures can be 

determined with a reasonable level of confidence. In addition, the capacity of the 

columns should be determined by taking into consideration the possibility of 

buckling of longitudinal reinforcement and the interaction of the concrete core 

with the reinforcing cage. 

The behavior of plastic hinges needs to be studied carefully in order to 

understand the overall behavior of reinforced concrete framed structures. The 

plastic hinge analysis technique developed by Bayrak and Sheikh (2001) aims to 

determine reasonable estimates of the maximum useful deformation capacities of 

plastic hinges that the members will undergo under strong ground motions. 

Although Bayrak and Sheikh (2001) outlined the governing equations that 

need to be used in the plastic hinge analysis, they did not recommend any closed-

form expression that can be employed in sectional analyses to simulate buckling 

of longitudinal bars. This was mainly due to the lack of a comprehensive database 

of reinforcing bar buckling. In order to address this problem, testing is required to 

enlarge the database of axial stress-strain relationships under compressive loading 

required for sectional analysis. As identified by the previous researchers 

mentioned in Chapter 2, this behavior depends on the size of the bars, the hoop 

spacing, and the material properties of the reinforcing steel. 



5 

 

1.3 OBJECTIVE OF RESEARCH 

The ultimate objective of the research, for which the present study is part 

of, is to contribute to the development of an analytical technique that predicts the 

immediate and long-term behavior of reinforced concrete columns, including 

repaired and upgraded columns. However, the present study focuses on enlarging 

the database of longitudinal bars tested under compressive loads.  

One of the goals of the research project is to develop a unified model that 

predicts the behavior of reinforcing bars under compression given the geometric 

and material properties. By developing a constitutive relationship for the 

reinforcing bars under compression, conventional sectional analyses can be 

extended to incorporate the buckling of longitudinal reinforcement phenomenon 

into the analyses.  The model should be verified by using experimental data from 

reinforced concrete column tests.  This model will enable an engineer to evaluate 

the pre and post buckling behavior of reinforcing bars under compression given 

the material properties and geometric nature of the problem and hence evaluate 

the impact of the rebar buckling on the deformation capacity of a reinforced 

concrete plastic hinge. This part of the investigation will require further 

experimental research to enlarge the available database of axial stress-strain 

relationships under compressive loading. Therefore, the present study will 

concentrate only on the study of inelastic buckling of longitudinal steel 

reinforcement.  

Bayrak and Sheikh tested 56 #6 reinforcing bars with a clear length-to-bar 

diameter ratio (L/d) ranging from 4 to 10 and with initial eccentricity at midspan-

to-bar diameter ratio (e/d) ranging from 0.0 to 0.3. A series of tests performed 

during this research include reinforcing steel bars with an L/d range of 4 to 12, an 

e/d range of 0.0 to 0.5, of varying material properties and bar size. This will 
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expand the required database on longitudinal bar buckling by 162 specimens. In 

addition, the specimens tested during this study are instrumented extensively to 

involve lateral deformation measurements. It is interesting to note that Bayrak and 

Sheikh (2001) did not measure lateral deformations of their test specimens. 

1.4 SCOPE AND OBJECTIVES OF THE THESIS 

The main objective of this thesis is to expand the experimental 

information available on the buckling behavior of longitudinal reinforcement 

(axial and lateral) by experimentally investigating buckling behavior of 

reinforcing bars. Compression tests on well-instrumented bars are performed and 

axial and lateral deformations are reported. The experimental setup follows that 

developed by Bayrak and Sheikh (2001), which simulates realistically the force 

and geometric boundary conditions of reinforcing bars in concrete members. 

To establish a constitutive relationship for reinforcing bars under axial 

compression, an experimental study on 108-#8 and 54-#10 reinforcing bar 

specimens having unsupported length to bar diameter ratios (L/d) ranging between 

4 and 12 and mid-span eccentricity to bar diameter ratio (e/d) between 0.0 and 0.5 

was conducted. In addition, #8 and #10 bars with different material properties 

were tested to investigate the influence of strain hardening response on the post-

buckling behavior of reinforcing bars. Finally, the results obtained are 

comparatively studied, and the effects of e/d ratio, L/d ratio, and material 

properties on reinforcing bar behavior are evaluated. 
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CHAPTER 2 
Background Information on Longitudinal Bar 

Buckling 

2.1 INTRODUCTION 

Reinforced concrete frames may undergo significant deformations when 

subjected to ground motions or any other type of cyclic loading. These 

deformations may result in buckling of the longitudinal reinforcement at zones 

where plastic hinges are expected. To avoid or minimize this, the members should 

be designed and detailed to provide a reasonable level of ductility. Currently, the 

inelastic behavior of longitudinal steel bars in compression members is not 

incorporated in conventional analysis procedures. Therefore, behavior of concrete 

members subjected to large inelastic curvatures and deformations is generally 

overestimated with respect to strength and ductility (Bayrak and Sheikh, 2001).  

Bar size, material strength, spacing and configuration of the transverse 

reinforcement are among the most important factors affecting the inelastic 

behavior of reinforcing bars, as pointed out by previous researchers. The inelastic 

behavior of reinforcing bars in a concrete member is a complicated phenomenon 

that involves different factors and may result in complicated modeling. Different 

researchers have studied this behavior, and their work will be discussed in this 

chapter in order to describe the evolution of knowledge in buckling of 

longitudinal steel in reinforced concrete. 

2.2 PREVIOUS RESEARCH 

Following is a series of previous research performed to study the buckling 

of longitudinal bars in concrete columns starting with the earliest study published. 
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The results and conclusions from previous research will be examined in order to 

explain the basis for the current research. 

2.2.1 Bresler and Gilbert (1961) 

This is the first information available on the topic of tie-spacing 

requirements and buckling behavior of longitudinal reinforcing steel of 

compressed concrete members. Bresler and Gilbert described the mechanism of 

failure of reinforced concrete columns, the analytical tie spacing and tie sizing 

resulting from the study of buckling of longitudinal reinforcement, and 

experimental work done with tie size requirements. They reviewed the design 

guidelines given in ACI Building Code 318-56 concerning tie spacing 

requirements and proposed a new design criterion that required further 

experimental verification. 

Based on a preliminary study, they proposed a hypothesis as for the 

mechanism of failure: the local strains in concrete cover increased as axial load 

increased until a limit strain value was reached. At the limit strain, the cover 

concrete cracked and spalled off. After spalling occurred, the cross-sectional area 

decreased, thus increasing the stress level in the remaining concrete core and the 

steel reinforcement. The longitudinal steel began to yield or buckled outward due 

to the additional stress. The loss of stiffness of the reinforcement would cause an 

additional increase in the stress concentration in the concrete core, which would 

result in a subdivision of the core into prisms because of the ties. The core 

maintained its integrity until it reached its ultimate strength and failed. The 

concrete in the core reached its ultimate strength rapidly after buckling of 

longitudinal reinforcement. In addition, it was indicated that the size and spacing 

of ties influenced the local state of stress in the concrete at the region next to the 
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ties, the strength of the concrete core, and the buckling strength of longitudinal 

reinforcement.  

The authors stated that the state of stress at the interface of the concrete 

cover and the lateral ties was one of the primary reasons for cracking and spalling. 

Axial loading of the concrete member produced lateral expansion of the concrete. 

Ties controlled this movement as well as prevented the displacement of 

longitudinal reinforcement of the longitudinal bars. The described effect would 

cause distortion of the cross section, resulting in spalling of the unconfined 

concrete (the cover). 

Bresler and Gilbert described two modes of failure of the concrete core: 

short compression members and long prisms. Short compression members i.e. 

(standard concrete cylinders) would fail in a “shear cone” failure due to axial 

loading and lateral restraint at the ends. Long prisms would fail along planes that 

were parallel to the longitudinal axis because of a large reduction of friction on 

the ends; furthermore, they would carry a smaller load before failure than the 

short compression elements. Large tie spacing would force the core to fail by 

longitudinal splitting; for this reason, Bresler and Gilbert recommended that 

lateral ties should be designed to be spaced so as to prevent this weaker mode of 

failure. 

To select appropriate tie spacing, Bresler and Gilbert recommended 

considering the buckling behavior of longitudinal reinforcement between tie 

spacing once the concrete cover was lost. Factors affecting the critical buckling 

force were the bar diameter, tie spacing, buckling mode, and mechanical 

properties of the steel. The spacing of the ties should be so as to permit the 

development of buckling of longitudinal reinforcement when steel reached its 

yield stress. To determine the critical buckling stress, Bresler and Gilbert assumed 

that the lateral ties had sufficient rigidity so that the lateral displacement of 



longitudinal bars at that point was insignificant. Bresler and Gilbert introduced the 

concept of tie spacing-to-bar diameter ratio (l/D) in the calculation of the critical 

buckling stress: 
2
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where C was the end restraint coefficient of the longitudinal bar, Et was 
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where B=1/2πC1/2 and fy was the yield stress of the longitudinal steel. The 

formulated equation depended on the mechanical properties of the material (Et 

and fy). Therefore, there was no possibility of having a constant l/D ratio; as the 

yield stress of the reinforcing bars increased, the required l/D ratio decreased.  

For the assumption of sufficiently rigid ties to be valid, the size of ties 

selected should have a minimum size corresponding to a minimum stiffness in 

order to prevent premature buckling of longitudinal reinforcement. Bresler and 

Gilbert modeled a bar with length 2l that was fixed at its ends, and had an elastic 

spring support at the middle. Using the Ritz method, they solved for the minimum 

stiffness required by the middle support to prevent lateral displacement at that 

point and developed an equation based on the relationship of the transverse and 

longitudinal steel diameters (d/D). 

The test setup for the experimental program performed by Bresler and 

Gilbert consisted of four columns measuring 8″ x 8″ x 60″, reinforced with #5 
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deformed bars of fy = 44.5 ksi and fu = 77.5 ksi for longitudinal reinforcement, #2 

deformed bars of fy = 52.1 ksi, and 1/16″-diameter steel wire of fy = 48.2 ksi for 

transverse reinforcement. Concrete with strengths (f’c) of 4 ksi and 6 ksi were 

used. Two columns were cast with each kind of concrete; one was reinforced with 

#2 bars outside the core and 1/16″ steel wire inside, and the second was reinforced 

with #2 bars both inside and outside the core. Load was applied axially in 20-kip 

increments. Axial shortening was measured at each increment up to a strain of 1.5 

milli strain (this strain was below the yield point of the longitudinal steel). After 

the tests were performed, it was observed that the load-deflection relationship was 

nearly linear within the strains measured with a slight decrease of stiffness in the 

upper values recorded. Failure path was as follows: no noticeable cracks up to 

ultimate load, then the column deformed inelastically while maintaining its 

ultimate load until cracking was visible, then the load began to drop, the cover 

spalled, the longitudinal steel buckled between ties, and the core exhibited “shear 

cone” failure. Secondary consequences of failure were: splitting of concrete at 

corner lap splices #2 ties without yielding and yielding and rupture of 1/16″ steel 

wire. The ultimate load was not affected. 

Bresler and Gilbert proposed the following design criteria and conclusions 

for lateral reinforcement after all tests and calculations were performed: 

- Tie spacing should be less than a distance equal to the smallest 

dimension of the column in order to develop the maximum 

strength of the core. 

- Tie spacing should be less than the value calculated using Equation 

2.2 in order to prevent premature buckling of longitudinal 

reinforcement. 

- The size of the ties should be based on an empirical equation, 

which was a function of tie and longitudinal bar geometries, to 



 12

prevent excessive deformation of the ties and reduction of the 

buckling stress capacity of the longitudinal reinforcement. 

- The size of transverse reinforcement inside the core (cross-ties) 

could be reduced without affecting the ultimate load capacity of 

the column, which would facilitate the placement of concrete on-

site. 

- Smaller tie sizes could be used and closer tie spacing than 

specified in ACI 318-56 should be provided for high-strength 

longitudinal steel. 

For the analytical part of the study, Bresler and Gilbert investigated the 

isolated longitudinal bar and neglected the effect of interaction between the 

longitudinal bar and the concrete core. They also did not consider possible 

imperfections in the system or possible buckling over several tie spacings, which 

might result in buckling of longitudinal bars before reaching their yield stress. It 

could also be concluded that, since axial deformation was not measured through 

the end of the test, results might not represent the entire load-deformation 

relationship for the column up to failure. It was stated that the different types of 

reinforcement arrangements did not affect the maximum load-carrying capacity; 

however, Bresler and Gilbert did not discuss the ductility resulting from the 

various rebar arrangements. 

2.2.2 Scribner (1986) 

Scribner focused his study on developing and testing the inelastic response 

of flexural concrete members.  Scribner assumed that the buckling of the 

longitudinal bars could occur over a length larger than the spacing of transverse 

reinforcement. This assumption was based on the observations reported for 

previous research (Bresler and Gilbert, 1961). The length of these regions was 
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chosen to be equivalent to a length of approximately three times the spacing of 

transverse reinforcement. He developed an analytical model to represent the 

buckling of longitudinal reinforcement in concrete flexural members including the 

effect of longitudinal bar size, tie size, and beam dimensions.  In addition, 

laboratory tests were performed on six cantilever beams with different beam sizes 

and reinforcement arrangements by applying reversed inelastic moments to verify 

the applicability of the analytical model. 

In the analytical model, the longitudinal bar was assumed to buckle in a 

mode shape spanning three tie intervals, and was modeled as a fixed-fixed column 

supported by lateral springs at its third points. The selection of the model was 

based on previous observations of failure in which longitudinal reinforcement had 

buckled over regions where concrete cover had spalled, which was approximately 

the spacing of three ties. Throughout the derivation, an appropriate lateral 

stiffness and critical load to prevent buckling of longitudinal reinforcement were 

developed. In addition, a relationship between the longitudinal bar diameter and 

the tie diameter was established, which depended on the tangent modulus at a 

given strain, the unsupported lengths of the ties, and the longitudinal bars. It was 

concluded that a tie with half the diameter of the longitudinal reinforcement was 

required to prevent buckling for the configuration that was analyzed. 

In the experimental program, six doubly reinforced cantilever beams with 

enlarged end-blocks were constructed.  Specimens were grouped into three pairs; 

each pair had the same beam size, longitudinal reinforcing steel size and 

arrangement, and tie spacing. Within each pair, one beam had ties with a diameter 

less than half of that of the longitudinal reinforcement, and the second beam had 

ties with a diameter at least half as large as that of the longitudinal bars. In 

addition, the material properties of the concrete (i.e. f’c) and the reinforcing steel 



(i.e. fy, fu) were different for each pair. Table 2.1 provides the geometric and 

material properties of the specimens tested by Scribner. 

 

Table 2.1 Specimen dimensions and material properties for the experimental 

program of Scribner (1986). 

Note: a = shear span, d = effective depth, h = beam height, b = beam width, As = tension longitudinal reinforcement, A’s = 
compression longitudinal reinforcement, Av = transverse reinforcement (ties), f’c = compressive strength of concrete (from 
standard cylinder test), fy = tensile yield strength of steel, fu = ultimate tensile strength of steel. 

Sp
ec

im
en

 Dimensions (in) 

As
 A’s Av 

f’c 

(ksi) 

fy, fu (ksi) 

a d h b As
 A’s Av 

1-A 36 10.1 12.1 8.1 3-#6 3-#5 #2 @ 2.5″ 4290 63.6, 103 64.2, 106 56.0, 74.0 

1-B 36 10.2 12 8.1 3-#6 3-#5 #3 @ 2.5″ 3920 63.6, 103 64.2, 106 67.3, 102 

2-A 50 11.6 14.1 10 3-#8 3-#7 #3 @ 3″ 3860 69.4, 112 68.8, 116 67.3, 102 

2-B 50 11.9 14.1 10.1 3-#8 3-#7 #4 @ 3″ 4230 69.4, 112 68.8, 116 66.5, 101 

3-A 60 11.6 14.1 10.1 3-#9 3-#8 #4 @ 3″ 4010 62.8, 97.9 69.4, 112 67.3, 102 

3-B 60 11.6 14.1 10.1 3-#9 3-#8 #5 @ 3″ 4210 62.8, 97.9 69.4, 112 66.5, 101 

 

During testing, several modes of failure were observed. Specimen 1-A 

failed when the shear capacity of the hinging zone was exceeded, and the 

longitudinal reinforcement did not buckle. Specimen 1-B failed due to buckling of 

the longitudinal reinforcement in the hinging zone over a length approximately 

equal to the spacing of the stirrups. Specimens 2-A and 2-B failed due to buckling 

of the longitudinal reinforcement in the hinging zones over a length of 

approximately three times the stirrup spacing. The buckled shape of the bars in 

specimens 2-A and 2-B demonstrated the appropriateness of the analytical model 

and the inability of large ties to prevent buckling of longitudinal reinforcement. 

Specimens 3-A and 3-B exhibited a different failure mechanism than the other 

specimens because the longitudinal reinforcement was not developed adequately 
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within the large end-blocks, and both members failed due to loss of anchorage of 

longitudinal reinforcement.  

The data indicated that beams subjected to large flexural deformations had 

a greater possibility of experiencing buckling of longitudinal reinforcement than 

beams subjected to smaller displacements. In addition, the researchers reported 

that prediction of the flexural deformation capacity of a doubly reinforced beam 

was very difficult, if not impossible, mainly due to buckling of compression bars. 

Scribner concluded that ties with a diameter approximately equal to ½ 

times the diameter of the longitudinal reinforcement would be required to prevent 

buckling of longitudinal reinforcement in beams subjected to cyclic inelastic 

flexure. 

Conclusions from the experimental study performed by Scribner included 

two major observations: (1) the buckling shape assumed in the analytical model 

was observed in only one specimen, and (2) large ties prevented the type of 

buckling of the longitudinal bars suggested by their analytical study but did not 

prevent other types of buckling of longitudinal reinforcement. The latter was in 

agreement with the conclusion of Bresler and Gilbert, who stated that larger 

amount of transverse reinforcement did not affect the maximum capacity of the 

member. 

Scribner proposed the following design recommendations: (1) lateral ties 

should have a diameter of at least half as large as the diameter of longitudinal 

reinforcement, and (2) ties larger than those recommended by the ACI 318-83 

seismic provisions prevented only certain types of buckling of longitudinal 

reinforcement in members subjected to cyclic inelastic flexure. Using very large 

ties did not guarantee that longitudinal bars would not buckle under severe 

loading conditions. 
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2.2.3 Russo (1988) 

Russo developed an analytical method to determine the critical buckling 

load of the longitudinal bars in reinforced concrete elements subjected to large 

compressive strains. The proposed model represented the longitudinal bar as a 

beam of infinite length on equally spaced intermediate elastic supports having 

equal stiffness, which represent the transverse reinforcement of a concrete 

column. To account for the bounding effect of the concrete core, the problem was 

considered as one of unilateral instability with a half-wave buckled shape. This 

half-wave shape was obtained by analyzing the deflection curves satisfying the 

assumed condition. The instability was assumed to occur over a length larger than 

the hoop spacing. The model made it possible to calculate the length of the 

element that became unstable and to calculate the critical load. Two cases were 

presented: even and odd numbers of hoops. The number of supports or amount of 

hoops present in the longitudinal bar would shift the center of the longitudinal bar 

from a support to a point located at the center of the hoop spacing.  

The analytical problem was solved by formulating a differential equation 

for the deflection curve and imposing geometric and force boundary conditions. 

When the geometry, material properties, and stiffness of supports of a given bar 

were known, then the stiffness ratio could be calculated (stiffness ratio = stiffness 

of support / (the hoop spacing cubed x the hoop stiffness cubed)). The critical 

load was found by using an iterative process in which the length of instability was 

assumed, and the load was changed until the maximum value of the unstable 

length that satisfied the equations was found. The model was applied to a range of 

stiffness ratios between 0.04 and 10,000 in order to cover a large number of cases 

that were possible in an actual beam. 

After evaluating the proposed analytical model, Russo compared the 

results with the experimental work performed by Vallenas, Bertero, and Popov 
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(1977). The experimental model consisted of a compressed reinforced concrete 

element of size 254-mm x 254-mm with 8 longitudinal bars with a diameter of 

19.05-mm, 4.55-mm diameter stirrups spaced at 33.7-mm, and diamond shape 

internal hoops. When calculating the stiffness of the supports for the corner bars, 

one leg of the stirrup with a length equal to the spacing between corner bars was 

considered; it was assumed that all four corners buckled outward at the same time. 

Similarly, for intermediate bars, one leg was considered for the stiffness 

calculation of the supports, but the leg length was less than the spacing between 

corner-bars resulting in a larger stiffness.  

Russo took into account the initial imperfection possible along the bar; the 

tangent modulus was used for regions where the initial curvature coincided with 

the curvature of the assumed buckled configuration. For the cases where the 

curvatures did not coincide, a reduced modulus was introduced. Finally, the 

critical stress calculated was 33% larger than the experimental value obtained by 

Vallenas et al. (1977). The assumed length to be affected by instability (5.8 times 

the tie spacing) was in good agreement with the experimental observations, in 

which this length was measured to be at least the spacing between six hoops. 

Russo reached the following conclusions: (1) the models with even 

number of supports (stirrups) were weaker than the models with an odd number of 

supports; (2) buckling could occurr between two consecutive hoops only if the 

hoops were non-deformable; (3) the critical load and the length of the region 

affected by instability could be determined by using the diagrams that were 

developed with the analytical model; (4) the analytical model gave a good 

understanding of the physical phenomenon as seen in previous experiments  by 

Vallenas et al. 1977.  

The analytical work developed by Russo was restricted to the prediction of 

the critical buckling stress and the length of instability. Although it used the 
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overall length of the reinforcement and amount of stirrups, took into account 

initial imperfections, and considered different material properties, it was not 

aimed at evaluating the complete stress-strain relationships of bars under 

compression. 

2.2.4 Papia, Russo, and Zingone (1988) 

Papia et al. (1988) studied the failure of reinforced concrete elements 

under compression due to the instability of longitudinal reinforcement. They 

developed an analytical model that provided a general solution to the instability of 

longitudinal bars in concrete columns subjected to concentric loading. The model 

provided formulas to calculate the length of the region in which longitudinal bars 

would buckle and the critical load for buckling. The developed equations were 

applied to sections tested by previous researchers, and the results were compared 

in order to validate the model.  

The longitudinal bar was represented as a column with length L and built-

in ends. The column had intermediate unilateral elastic supports with spacing 

equal to the distance l between the transverse reinforcement. The intermediate 

supports had stiffness (α) that depended on the geometric and mechanical 

properties of the hoops. The equations developed were applicable for odd and 

even number of hoops. The transverse strain of the concrete core was assumed to 

be constant along the column, and the bar was considered to be straight because 

the authors deemed the effect of lateral pressure on the bar due to the confining 

concrete to be negligible.  

A parameter γ was introduced in order to incorporate stiffness of 

intermediate supports (α) in the calculation of the critical load. The parameter 

γ depended on the stiffness and spacing of hoops, as well as on geometric and 

mechanical properties of the longitudinal bars. The modulus of elasticity (E) 
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considered for the longitudinal bars was the instantaneous value that corresponded 

to the critical strain (εcr) that produced buckling. The analytical model suggested 

by Papia et al. employed a reduced modulus technique (Er) that depended on the 

elastic modulus of the steel (Es) and the modulus at strain hardening (Eh). A 

length of instability (the length at which buckling took place) to spacing of hoops 

ratio (L/l) was introduced to establish the effect of the structural configuration. As 

γ increased, the L/l ratio decreased, and the critical load increased. The critical 

load determined by the proposed model depended on the parameter γ. 

The developed analytical model of Papia et al. was compared to the 

experimental results obtained by Scott et al. (1982) and Sheikh and Uzumeri 

(1980). The comparison showed that the analytical model was valid, 

demonstrating that the failure of a compressed concrete element was always 

affected by the instability of the longitudinal bars, despite the size and spacing of 

the stirrups. It was also reported that the stirrups involved in the buckling of the 

longitudinal bars resulted in a local loss of confinement. As a result, the columns 

failed by crushing of the core. In addition, the calculated length of the region 

involved in buckling was quite consistent with the observations made during 

experiments. 

Papia et al. recognized that taking into account only the degree of 

confinement and yield stress of the hoops when evaluating the maximum load was 

not completely accurate because these assumptions neglected the instability load 

of the longitudinal bars. The interaction between the confined concrete core and 

reinforcing cage, a phenomenon that was observed in all the previous research 

reported herein, was ignored in the formulation provided by Papia et al. In 

addition, they concentrated on predicting the critical buckling load of the 

longitudinal bars and did not attempt to evaluate the complete stress-strain 

behavior of longitudinal bars. 
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2.2.5 Papia and Russo (1989) 

Papia and Russo related the failure of compressed concrete elements with 

the instability of the longitudinal steel reinforcement. They proposed an analytical 

procedure to be used to determine the ultimate strain of compressed concrete 

elements based on the limit stability condition of the bars, further developing the 

work of Papia et al. (1988) who developed a model to determine the critical load 

of the bar. The critical strain of the longitudinal reinforcement was assumed to 

correspond with the ultimate strain of the concrete element; this was obtained by 

assuming a variable elastic modulus in the strain-hardening region of the steel, 

adopted from the constitutive relationship proposed by Park and Paulay (1975). 

The effect of the slenderness of the longitudinal bars, hoop spacing, and hoop 

stiffness were the primary factors affecting the ultimate strain calculated from the 

proposed equation.  

Papia and Russo also analytically studied the effect of steel properties in 

the ultimate strain calculation by varying the material properties. An approximate 

analytical expression was also proposed for the ultimate strain calculation to be 

used in practical ductility calculations. The results of the proposed equation and 

the approximate expressions were then compared to the experimental and 

analytical results obtained by other authors to confirm the validity of the proposed 

theoretical approach.  

The ultimate compressive strain of confined concrete had a crucial effect 

on the ductility of the potential plastic hinge region developed in columns and 

piers under dynamic loads. Previous studies had shown deterioration of structural 

elements due to buckling of the compressed longitudinal bars (this was identified 

as ultimate state). Similar to Russo (1988), the analytical model of the 

longitudinal bar was characterized by a continuous beam element on elastic 

supports (representing hoops and concrete core together) buckling unilaterally. 
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The value for the instantaneous elastic modulus was determined from the average 

value of the tangent modulus in the range of strains expected, providing an 

accurate evaluation of the critical load. Because of the shape of the steel stress-

strain diagram in the hardening region, an equation for the critical strain was 

developed in which the variation of the tangent modulus in the strain-hardening 

region was considered. 

Papia and Russo established the relationship between the critical load and 

the stiffness parameters. A clear relationship between the tangent modulus and the 

reduced modulus was also identified. The proposed procedure of Papia and Russo 

was only applicable for strains in the reinforcement that resulted within the strain-

hardening region of the stress-strain relationship. For this to be true, the range of 

values of the geometric and material characteristics of the structural element that 

made it possible to be in the strain-hardening region needed to be determined. 

Then, the element had to satisfy the following conditions: (1) slenderness value 

(4l/d) must be less than the maximum slenderness value (2π(Ero/fy)1/2, Ero = 

reduced modulus at onset of strain hardening, fy = yielding of longitudinal 

reinforcement); and (2) the stiffness of the hoops must be so large that buckling of 

the longitudinal reinforcement could not occur before the strain of the 

longitudinal bars reached strain hardening. In order to meet this last condition, a 

minimum lateral stiffness was defined based on the minimum stiffness ratio of the 

longitudinal bar. 

To account for the effect of material steel properties, Papia and Russo 

considered eight types of steel. For all types, the critical strain was calculated in 

relation to different lateral stiffnesses of hoops, including several cases of 

engineering interest. Once the material properties and slenderness of the bar were 

established, a maximum critical strain could be obtained. 
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An approximate expression was developed for the case in which the 

critical strain was equal to the ultimate strain in concrete. This expression took 

into account the maximum slenderness of the bar, the yield strength of the 

longitudinal steel, and the hardening capacity of the steel used. The proposed 

approximate expression was intended for practical applications in engineering 

practice. 

Lastly, Papia and Russo compared the results of their theoretical and 

approximate equations with the experimental results of Sheikh and Uzumeri 

(1980) and Scott et al. (1982). Both experimental studies consisted of specimens 

with varying diameters and material properties for the longitudinal and transverse 

reinforcement. In addition, the results obtained using the empirical expressions 

developed by Kaar and Corley (1977) and Scott et al. (1982) were included for 

comparison purposes. The results showed that the procedure proposed by Papia 

and Russo determined the critical stress of the longitudinal bars with a better 

precision than their previous work, Papia et al. (1988), which led to a good 

approximation of the ultimate strain. Papia and Russo reported that the results 

provided by the Kaar and Corley (1977) expressions produced overly 

conservative values, while the Scott et al (1982) expression gave values closer to 

the experimental results but not conservative for all the specimens. 

Papia and Russo concluded that the proposed analytical procedure made it 

possible to determine the ultimate strain of compressed reinforced concrete 

elements, which was assumed to coincide with the strain that produced buckling 

of the longitudinal reinforcement. Papia and Russo observed the following when 

comparing the results of the experimental work: (1) the assumptions made were 

valid, (2) the critical strain of the longitudinal bars was calculated with a 

reasonable degree of accuracy, and (3) the analytical relationships used to define 

the critical loading coefficient, the reduced modulus, and the consecutive law of 
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steel proposed by Park and Paulay (1975) were adequate. For the developed 

theoretical approach, the lateral stiffness provided by the hoops was identified as 

the major influence to the calculation of the maximum strain of the compressed 

element, as opposed to the resistance provided by the confinement. In addition, a 

maximum value of strain that depended exclusively on the slenderness parameters 

of the longitudinal reinforcement was identified. The approximate analytical 

expression used to calculate the ultimate strain proved to be explicit and 

particularly useful in practical applications. 

Papia and Russo concentrated their study on the characterization of the 

ultimate state of failure and not on the complete behavior that led to failure. Their 

work focused on the determination of the critical stress and strain at failure that 

made it possible for the longitudinal reinforcement to reach strain hardening 

before the concrete reached its ultimate strain. It was useful for the research 

presented herein, because it considered the effects of the hoop spacing and the 

different material properties of steel in the final behavior of longitudinal 

reinforcement. However, it did not mention the effect of initial imperfections of 

the system. 

2.2.6 Mau and El-Mabsout (1989) 

Mau and El-Mabsout developed a beam-column element using the finite 

element analysis method to determine the inelastic post-buckling behavior of 

reinforcing bars in concrete columns. They identified the slenderness ratio of the 

bar, as well as the tie spacing, as primary factors affecting the buckling and post-

buckling behavior of the longitudinal reinforcement. In this study, the elastic-

plastic-strain hardening behavior of steel and the stress reversal occurring after 

buckling were incorporated to determine more precisely the maximum load-

carrying capacity of the reinforcing steel.  
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The following assumptions were considered when developing the beam-

column element model: (1) the cross section of the beam-column was circular; (2) 

the beam-column had no initial crookedness and was concentrically loaded at the 

end; (3) before and after buckling occurred, plane sections remain plane; (4) shear 

deformations were negligible; (5) the transverse displacement (w) was such that 

(dw/dx) 2 << 1, where x = the longitudinal, or axial coordinate; (6) the axial strain 

was small relative to unity; and (7) the material behavior was elastic-plastic-strain 

hardening with a distinct plastic yield plateau. 

Based on the assumptions considered in the formulation, the authors 

defined the independent field of displacements, which included three (nodal) 

degrees of freedom at each of the two nodes. Then, the equilibrium condition 

equations were derived using the principle of virtual work, resulting in two 

equations for the beam-column element in two dimensions. An equation, that 

modeled the inelastic stress-strain law and also included a strain reversal rule was 

presented and imposed on the model. Numerical integration was emphasized to 

solve for forces and moments because of the complicated stress distribution over 

the circular cross section; the Simpson rule with 21 points across the section was 

used. Numerical integration was also used to solve for the equilibrium condition 

equations and for the two-point Gaussian quadrature formula over the length of 

the element.  

When proceeding to solve a given problem with a specified boundary 

condition, the first step was to assume a vector of nodal displacements. Then, the 

nodal forces were calculated to check nodal equilibrium, and the Newton-

Raphson method was used to iterate between the input nodal displacement and the 

equilibrium forces until the error between them was within the predetermined 

threshold error. The element was assumed to be loaded without premature 
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buckling, and the pre-buckling path was entirely linear and elastic. The only point 

of interest was the post-buckling path that began at yielding. 

The developed numerical model was applied, and the results were 

compared to the experimental results reported by Mander et al. (1984) to validate 

the assumption of the model and to verify its accuracy. The experimental work 

consisted of medium-strength reinforcing steel bars with 16 mm diameter with 

spacing-to-diameter ratios (S/D) of 5.5, 6, 6.5, 10, and 15 and respective 

slenderness ratios (L/r) of 11, 12, 13, 20, and 30. Strains were measured over a 

gage length of 30 mm. The numerical model was applied using material 

properties for medium-strength as well as high-strength reinforcing steel.  

Mau and El-Mabsout reported a case in which the material was assumed to 

be elastic-perfectly plastic for the medium strength reinforcing steel. Although 

this was not realistic for the behavior of reinforcing bars, it served as a basis for 

general comparison of the effect of varying length (L/r). The result from this 

assumption could be useful for the buckling of truly elastic-perfectly plastic short 

bars.  

The case that considered the elastic-plastic-hardening behavior of the 

material for both medium and high strength steel was of interest because the 

results represented a more realistic behavior and, therefore, were used to compare 

analyses results with experimental results. The comparison between the calculated 

values for medium-strength and the measured results demonstrated good 

agreement. In general, it was observed that the load-carrying capacity rose after 

an initial drop for the shorter bars (smaller L/r); as the unsupported length of the 

bar decreased, the compressive stress-strain behavior moved closer to the tension 

stress-strain curve. It was reported that the hardening behavior had a significant 

effect on the overall load-carrying capacity. Mander et al (1984) reported that a 

S/D of 6 was an appropriate design limit for tie spacing because it more resembled 
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the tension stress-strain curve for strains lower than 0.02. Mau and El-Mabsout 

agreed with Mander et al. (1984) and defined a critical slenderness ratio, which 

was a value corresponding to S/D at which the stress stays close to that of the 

yield point until the axial strain reached 0.04. This point was characteristic of 

ductile behavior of the material because of its capability of sustaining a load for a 

wide range of deformations. The value for this critical slenderness ratio (S/D) was 

8. For high strength steel, S/D = 7 corresponded to the 0.02 strain limit, and S/D = 

10 corresponded to the critical slenderness ratio. These were based on the 

analytical model and were not compared to any experimental data. The difference 

between the S/D ratios from one type of steel to another confirmed what Bresler 

and Gilbert (1961) mentioned that the S/D ratio required to prevent premature 

buckling was lower with higher values of yield strength. 

Mau and El-Mabsout also reported the transverse deflection of the bar 

under axial loading. In general, it was discussed that for smaller L/r, the 

displacement decreased after reaching a maximum point (yielding). The 

displacement started increasing again until reaching a second maximum point, 

and then continued decreasing. This second maximum point was defined as 

“second buckling” due to “straightening”. It was observed that the axial load vs. 

transverse displacement on a normalized scale was identical for all slenderness 

ratios. 

Mau and El-Mabsout drew the following conclusions: (1) the load-

carrying capacity dropped after the buckling at the yielding load for the elastic-

perfectly plastic case; (2) the post-buckling behavior was dominated by the 

formation of a plastic hinge early in the post buckling history; (3) the strain 

hardening behavior dominated the post-buckling path; (4) the post-buckling peak 

load may be higher than the yielding load; and (5) a critical slenderness ratio (L/r) 

could be defined by equating the peak load and the yielding load. 
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2.2.7 Mau (1990) 

In this paper, the author reported an extended application to the beam-

column finite element analysis model introduced earlier in Mau and El-Mabsout 

(1989). This time, the focus of the study was particularly on the effect of the tie 

spacing-to-diameter ratio (S/D) on the load carrying capacity of reinforcing steel. 

For these cases, a simplified model for the different stress-strain curves of high-

strength steels was used to identify the effect on the inelastic post-buckling 

behavior, particularly, on the selection of an appropriate S/D for design. In 

addition, the peak loading calculated using the finite element model was 

compared to those calculated using the tangent modulus theory explained by 

Bresler and Gilbert (1961).  

The load deflection curves were calculated for S/D values varying from 5 

to 15 with increments of 1. The report presented the results for S/D of 5, 10, and 

15. It was observed from the results that: for small S/D (i.e. 5), the axial load-

deflection curve followed that of the tension curve until axial strains reached 0.04; 

at large S/D values (i.e. 15), the steel became unstable after reaching the yield 

load and showed a constant decrease in the capacity on the post-buckling region; 

and for intermediate values of S/D (i.e. 10), the steel buckled at yield load but 

regained a portion of the capacity (slightly larger than the yielding load) for 

strains of 0.02 before becoming unstable. Subsequently, it was recognized in the 

study that the load carrying capacity was dependent of the post-buckling behavior. 

Strain hardening provided increased stiffness after first yield, and the S/D value 

was a major factor in characterizing the effect of the strain-hardening region. 

S/D = 7 was defined as the critical spacing-to-diameter ratio, consistent 

with the value previously reported for high-strength steels, (Mau and El-Mabsout, 

1989). It was recognized in the report that this value may vary with the material 

properties. The author simplified the stress-strain curve for high strength steel 
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with two straight lines for the linear elastic and plateau and two lines for the 

strain-hardening portion. A total of 27 cases with a series of S/D values (5, 6, and 

7) were studied. The 27 cases combined the different possibilities among the 

strain hardening ratio (equal to the ratio of the highest strain of the plateau region 

to the yielding strain), peak stress ratio (ratio of ultimate stress to yield stress), 

and the hardening modulus ratio (ratio of strain-hardening stiffness to elastic 

stiffness). It was concluded that S/D was more sensitive to the hardening modulus 

ratio and less sensitive to the peak stress ratio. 

The following conclusions were drawn from the study: (1) for reinforcing 

steel with elastic-plastic-hardening behavior under monotonic loading, the finite 

element studies showed that the axial load carrying capacity was greatly improved 

beyond the yield load if the tie spacing was smaller than S/D = 7; (2) for S/D 

ratios below 7 and for sections with sufficiently stiff ties, the axial load-deflection 

history of the reinforcing steel followed closely the material stress-strain curve; 

(3) the yield plateau had a negligible effect on the load carrying capacity; (4) the 

tangent modulus theory could be used to predict the inelastic buckling load, as 

well as to calculate sufficient stiffness of the tie (Bresler and Gilbert, 1961); (5) 

for S/D ratios larger than 7, the actual load-deflection path could be unstable after 

the yielding load; and (6) the load-carrying capacity of the reinforcing steel could 

not be predicted accurately by the tangent modulus theory. 

Similar to Mau and El-Mabsout (1989), Mau (1990) did not take into 

account the possibility of initial imperfections on the bars or the effect of non-

concentric loading on the reinforcing steel. 

2.2.8 Monti and Nuti (1992) 

Monti and Nuti studied the inelastic behavior of reinforcing steel under 

monotonic and cyclic loading. They performed experiments on different bar sizes 
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of different length and developed an analytical model of rebars accounting for 

inelastic buckling behavior. Monti and Nuti stated that the proposed model had 

three major advantages over previous models developed: (1) it had a simpler 

formulation which avoided extensive calculations, making it applicable in 

reinforced concrete design; (2) it had a stress-strain type formulation that 

introduced nonlinear effects more easily; and (3) it depended on parameters that 

were easy to calibrate even for inelastic buckling.  

The experimental program consisted of testing reinforcing bars with yield 

strength of 440 MPa under monotonic and cyclic loading. The varying parameters 

introduced for comparison were the tie spacing (S) and the bar diameter (D). The 

results were compared based on their tie spacing-to-bar diameter ratio (S/D) and 

the chosen values represented the most commonly used tie spacing (i.e. S/D = 5, 

8, 11). The bar diameters tested had diameters of 16, 20, and 24 mm. The tests 

were displacement-controlled. The paper reported the experimental stress-strain 

curves of rebars in tension and compression. 

The proposed analytical model incorporated cyclic behavior of reinforcing 

bars. A plasticity approach was used to derive the analytical model. The proposed 

model consisted of a finite stress-strain relationship for branches between two 

subsequent reversal points or loading branches in which the parameters were 

updated after each load reversal. These updating steps were done using four 

hardening rules: kinematic, isotropic, memory, and saturation. The last two rules 

accounted for the memory of the material to the plastic path followed and for the 

asymptotic character of hardening phenomena, respectively. Four parameters 

were needed to predict the cyclic behavior of reinforcing bars in the absence of 

buckling: yield stress, modulus of elasticity, hardening ratio, and a weighting 

coefficient. In the cases where buckling was critical more parameters were 

introduced and the model became more complicated. Material hardening models 
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were incorporated in the suggested analytical model to reproduce the behavior of 

nine rebar samples that were tested by the authors. An equation for the reduced 

modulus in the strain hardening region was developed. 

The analytical model was compared to the experimental results, plus it 

was compared with the results obtained by previous analytical models (i.e. 

Filippou, Bertero, and Popov – 1983 and Menegotto and Pinto – 1973). 

Monti and Nuti reported the following conclusions: (1) inelastic buckling 

of steel reinforcing bars occurred when the L/D ratio exceeded a critical value of 

5, while Mau and El-Mabsout (1989) reported the critical L/D ratio to be 7 for 

high-strength steels. This softening behavior resulted in the modification of 

monotonic and cyclic behavior. (2) The proposed model properly replicated 

symmetrical and non-symmetrical cyclic strain histories. The model proved to be 

more accurate than the Menegotto-Pinto (1973) model for cases with no buckling 

after yielding, and it had comparable accuracy with respect to the Filippou-

Bertero-Popov (1983) model. Monti and Nuti’s proposed model was the most 

accurate for cases with no buckling after yielding. 

The hysteretic analytical model proposed by Monti and Nuti was quite 

accurate in simulating the cyclic behavior of reinforcing bars that had no initial 

imperfections. However, the researchers did not address the actual physical 

problem encountered in a tied reinforced concrete column; the confined concrete 

core-reinforcing cage interaction and imperfections in the system were not 

considered. 

2.2.9 Bayrak and Sheikh (2001) 

Bayrak and Sheikh developed an analytical procedure and performed 

experimental research to predict the response of plastic hinges developed in 

concrete frames due to strong ground motions. Using a plastic hinge analysis 
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technique (which considered equilibrium, compatibility, and constitutive relations 

in a three-dimensional space), the analytical model was developed. The 

interaction between the concrete core and the reinforcement cage was considered 

in the analysis. Bayrak and Sheikh incorporated the behavior of longitudinal 

reinforcement under monotonic compression and developed stress-strain 

relationships by means of experimentation. The proposed analytical technique 

was compared with previous published models and also with results obtained 

from previous experiments of concrete columns. 

The analysis of plastic hinges consisted of performing conventional 

sectional analysis before the longitudinal bars started to buckle. After the bars 

started to buckle, the axial strain was determined using experimental results 

(Bayrak 1999), and the tie stress was determined using experimental data from 

compressive tests of tied columns (Sheikh 1978), in which average tie strains for a 

given axial strain were given. For the calculation of the average strains for a given 

axial strain, a confined concrete expansion ratio was introduced, which depended 

on the varying material properties. Equilibrium equations were then used to 

determine the total transverse forces acting on the longitudinal bars. Proper 

boundary conditions and shape functions for the forces acting on the longitudinal 

bars were applied to calculate the outward deflection of the bars at the midspan 

between two ties. The deflection calculated was divided by the bar diameter in 

order to obtain an initial imperfection-to-bar diameter ratio (e/d). With this e/d 

ratio and the tie spacing-to-bar diameter ratio (L/d) the appropriate stress-strain 

relationship under compression for the longitudinal bars could be selected and 

used in the sectional analysis. 

After the longitudinal bars began to buckle, four constitutive relationships 

were used: (1) a stress-strain relationship for unconfined concrete cover, (2) a 

stress-strain relationship for confined concrete core, (3) a stress-strain relationship 
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for longitudinal bars under tension, and (4) a stress-strain relationship for 

longitudinal bars with initial imperfections under compression.  

The experimental program that was performed to establish the constitutive 

relationship for reinforcing bars under compressive loading consisted of 56 Grade 

400 (U.S. Grade 60) reinforcing bars with designation 20M (20-mm diameter). 

Seven different L/d ratios (4 to 10 with increments of 1) were tested, and for each 

L/d ratio, four different e/d ratios (0.0 to 0.3 with increments of 0.1) were tested. 

Each combination of L/d and e/d ratios had two identical specimens in order to 

ensure reliability of the data. It was observed that for the same L/d ratio, the 

strength and ductility decreased with an increase on e/d ratio (initial 

imperfection). The critical L/d ratio, at which the load-carrying capacity was 

smaller than yielding, was reported to be 7. Mau and El-Mabsout (1989) reported 

this value to be 8 for medium-strength steel and 7 for high-strength steel, and 

Mander et al. (1984) reported it as 6. The yield strength for L/d ratios lower than 

the critical value could be achieved for e/d = 0.1. For structures that required high 

ductility, the critical L/d ratio should not be exceeded in regions were plastic 

hinging could occur. For structures that required moderate ductility, an L/d ratio 

lower than 8 was reported to be appropriate. 

When incorporating the interaction between the concrete core and the 

reinforcing cage in the 3D analysis, a tied column with diamond-shape internal 

arrangement of the transverse reinforcement was used. Critical tie spacing was 

defined as the tie spacing that resulted in zero confining pressure at the center 

between two ties. As the actual tie spacing was reduced from the critical value, 

the midspan deflection of the longitudinal reinforcement between ties was also 

reduced. Therefore, the e/d ratio was also reduced, improving the behavior of the 

longitudinal bars under compression as described above. The analytical model 

proposed was also applicable for cases in which more than one tie spacing was 
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involved in the rupture by ignoring the ruptured ties and modifying the spacing in 

the equations. 

The developed model was applied to predict the moment-curvature 

relationship of the four specimens tested by Sheikh and Khoury (1993). The use 

of the plastic hinge analysis technique resulted in fairly accurate predictions of the 

capacity, the ultimate curvature, and the maximum tip displacement of specimens 

tested by Sheikh and Khoury (1993). 

In general, the analytical model developed by Bayrak and Sheikh resulted 

in good estimates of the cyclic behavior of concrete columns. The model 

incorporated all factors considered in previous research plus a 3D model of the 

concrete core-reinforcing cage interaction that caused the buckling of longitudinal 

reinforcement. However, the experimental program for the reinforcing bars was 

not sufficient to create a comprehensive database such that closed form 

expressions could be developed for the stress-strain behavior of reinforcing bars 

under compression. Testing of other bar sizes and other types of steel was 

required to complement this plastic hinge model. 

2.3 SUMMARY AND CONCLUSIONS 

Previous research involving longitudinal bar buckling in reinforced 

concrete members was studied in this chapter. Many of the researchers 

concentrated their study on evaluating how buckling of longitudinal 

reinforcement affected the critical load-carrying capacity. Most of the work 

consisted of developing analytical models to represent the instability 

phenomenon. What all the previous researchers had in common was the 

recognition of the effect of the longitudinal bar size, tie size and spacing, and the 

material properties of steel (based on tension tests) in the buckling of longitudinal 

reinforcement in concrete members. 
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Bresler and Gilbert (1961) studied the effect of tie spacing and buckling of 

longitudinal reinforcement in concrete elements affected by the bar size, lateral 

stiffness, and material properties, but did not incorporate either the interaction 

with the core or the possibility of buckling along more than one spacing. On the 

other hand, Bresler and Gilbert (1961) were the first to recognize the deficiency of 

building codes for detailing reinforcement where ductility was required and also 

in establishing the importance of closer tie spacing in the zones where ductile 

behavior was expected.  

Most of the research focused on developing analytical models to represent 

the buckling of reinforcing bars. Scribner (1986) modeled the buckling of the 

reinforcing bar over three tie spacings in order to calculate the critical load for 

buckling. Russo (1988) developed a model for buckling over several tie spacings 

considering the stiffness provided by the transverse reinforcement in order to 

calculate the affected length and the critical load. Papia, Russo, and Zingone 

(1988), and Papia and Russo (1989) developed an analytical model for 

determining the critical strain of concrete based on the instability of the 

longitudinal bars. The analytical models of Mau and El-Mabsout (1989), Mau 

(1990), and Monti and Nuti (1992) were developed with the purpose of 

developing complete stress-strain behavior curves for reinforcing bars under 

compressive loads. Mau and El-Mabsout (1989) developed a finite element model 

to predict the buckling response under monotonic loading, while Monti and Nuti 

(1992) developed a model for buckling under cyclic loading.  

The interaction between the concrete core and the reinforcement was not 

considered in the analytical models mentioned above. Some of them represented 

the presence of the concrete core by assuming the problem as one of unilateral 

displacement. Bayrak and Sheikh (2001), on the other hand, developed an 

analytical model that takes into consideration the tie spacing, bar sizes, material 
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properties, initial imperfections, stress-strain relationships of compressed 

longitudinal bars, and the forces introduced by the concrete core to the 

longitudinal bars due to core-cage interaction.  

Various experimental tests have been performed through the years in order 

to validate analytical formulations. Bresler and Gilbert (1961) tested columns to 

prove that the spacing required by the building code was not appropriate. Scribner 

(1986) tested cantilever beams to demonstrate that displacements caused by 

flexure may also cause buckling of reinforcement even when axial loads were not 

present. Monti and Nuti (1992) tested reinforcing bars under monotonic 

compressive loading to develop stress-strain relationships for different bar sizes 

and lengths. Bayrak and Sheikh (2001) tested reinforcing bars of different lengths 

and initial imperfections to develop stress-strain relationships; also, they tested 

concrete columns in order to verify the applicability of the compressive stress-

strain curves that were obtained for the bars with sectional analysis. 

General conclusions may be reached based on previous research reported 

in the literature. Bresler and Gilbert (1961) and Scribner (1986) recognized that 

large ties did not guarantee the prevention of all types of buckling of longitudinal 

reinforcement nor did they affect the load-carrying capacity. Russo (1988) and 

Papia et al. (1988) concluded that buckling of longitudinal bars might involve 

more than one hoop spacing. Papia et al. (1988), Mau and El-Mabsout (1989), 

Monti and Nuti (1992), and Bayrak and Sheikh (2001) observed that as the 

spacing-to bar diameter ratio (L/d) decreased, the critical load to cause buckling 

increased. In addition, for those tests in which the complete stress-strain behavior 

was developed, a critical L/d ratio was recognized: for Mander et al. (1984) the 

critical ratio was 6, for Mau and El-Mabsout (1989) it was 8 for medium-strength 

steel and 7 for high-strength steel, for Monti and Nuti (1992) it was 5, and for 

Bayrak and Sheikh (2001) it was 7. In all of the tests and in all the analyses, it was 



 36

established that the strain hardening portion of the tensile behavior governed the 

post-buckling behavior of bars, and for most of the tests and analyses, a 

relationship for a reduced modulus in this region was used. For higher values of 

yield strength, a lower value of L/d ratio was required for buckling, e.g. Bresler 

and Gilbert (1961) and Mau and El-Mabsout (1989). 

As studied earlier, the work by Bayrak and Sheikh (2001) was considered 

a fairly complete study in modeling the reinforcing bar buckling in concrete 

columns. A careful examination of the results of Monti and Nuti (1992) and 

Bayrak and Sheikh (2001) revealed the fact that there was a small amount of 

experimental data available. Hence, the results were not enough to represent the 

compressive behavior of all commonly used bars. A larger database of stress-

strain behavior curves under compression was required to develop a constitutive 

relationship for simulating the behavior of reinforcing bars in compression. Bars 

with varying material properties that were commonly used must be tested so that 

such a constitutive relationship can be developed. As in previous research, these 

new specimens needed to be tested for different lengths, accounting for initial 

imperfections that may be introduced by the concrete core pressure in the initial 

stages of buckling. Such testing was carried out for this research project and will 

be reported in the following chapters. 
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CHAPTER 3 
Experimental Program 

3.1 INTRODUCTION 

As presented in Chapter 2, a number of studies have been conducted to 

determine the complete stress-strain behavior of steel reinforcing bars under 

compression, i.e. Mau and El-Mabsout (1989), Mau (1990), Monti and Nuti 

(1992), and Bayrak and Sheikh (2001). As recognized by previous researchers, 

considering the interaction between concrete and steel reinforcement better 

represented the real stress-strain behavior of longitudinal bars under dynamic 

loadings during column hinging. It was also demonstrated by Bayrak and Sheikh 

(2001) that the results obtained by testing reinforcing bars under monotonic 

compressive loading can be used to predict the behavior of concrete columns. 

Therefore, only reinforcing bars were tested for this project by applying 

monotonic uniaxial compressive loading.  

The experimental program of the present study followed the experimental 

procedures performed by Bayrak and Sheikh (2001); its purpose was to expand 

the database required in plastic-hinge analyses. In addition, the previous results 

performed on Grade 400 20M (#6) reinforcing bars (Bayrak and Sheikh, 2001) 

were incorporated in order to compare the results provided by different bar sizes 

and material properties. Once the experimental work is described and the tensile 

and compressive stress-strain relationships of the reinforcing steel are presented, 

then the results are compared based on length, size, material properties, and initial 

imperfections.  

The experimental program consisted of tests of Grade 60 steel reinforcing 

bars of sizes #8 and #10 under monotonic uniaxial tension and compression. The 



 38

compression test specimens varied depending on their geometric parameters, i.e. 

bar size, length, and initial eccentricity at midspan. The #8 bars selected were 

U.S. domestic Grade 60 steel and the #10 reinforcing bars were of weldable steel 

material with the same yield strength. 

3.2 TENSION TEST SPECIMEN PREPARATION AND PROCEDURE 

For the tension test, three (3) specimens were selected for each of the bar 

sizes to be studied. Preparation of specimens was performed in accordance with 

ASTM A370-97a. The test specimens measured 8-inches for the gage length, at 

least two bar diameters between the gage mark and the testing machine grip, plus 

at least 10-inches on each end to fill the grips with some excess to extend beyond 

the end of each grip. 

The bars were instrumented with long elongation strain gages to measure 

axial strains. The gauges were placed between the ribs of the bars by barely 

grinding the surface between the ribs. To capture large strain values in the strain-

hardening region, four gages were placed within the center of the specimens. The 

average of the readings was used to represent the final stress-strain curves. The 

average was acceptable to use, because all four readings from the strain gages 

were approximately the same, as expected for a pure tension test. The loads, and 

hence stresses were measured by using three load cells that were integrally 

installed in the test machine: a Satec System Universal Testing Machine with 600 

kip capacity. The measurements were recorded by a Data Acquisition system: HP 

75000 Series B, and were converted to engineering units by a custom data 

acquisition program. 

The average of three tests was used to obtain a typical tension stress-strain 

curve for each bar size. These curves were used to study the behavior of the bars 

under compression.  
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3.3 COMPRESSION TEST 

3.3.1 Selection of specimens 

As observed in previous studies, the compressive behavior of reinforcing 

steel depended on its unsupported length to bar diameter ratio (L/d), as well as its 

initial imperfections at midspan with respect to the bar size (e/d). Therefore, for 

the monotonic compression tests that were performed, a range of nine 

unsupported length-to-bar diameter ratios (L/d = 4, 5, 6, 7, 8, 9, 10, 11, and 12) 

and six initial eccentricities-to-bar diameter ratios (e/d = 0.0, 0.1,0.2, 0.3, 0.4, and 

0.5) were used for each bar size, resulting in 108 specimens of #8 bars and 54 

specimens of #10 bars. For the #8 bar tests, two specimens of each e/d – L/d 

combination were tested, and for the #10 bar tests, only one specimen was tested 

per combination. 

The specimen designation (i.e. 8L10e0.0) indicated the following: the first 

character (i.e. 8) indicated the bar size of the specimen tested, either #8 or #10. 

The second and third character, i.e. L10, indicated the L/d ratio of the specimen. 

The last two characters indicated the e/d ratio of the specimen (i.e. e0.0). The 

specimens also had a number, which identified the test performed. The tests were 

grouped by the same L/d ratio with different initial eccentricities (i.e. L/d = 12, e/d 

= 0.0, 0.1, 0.2, 0.3, 0.4, 0.5). The tests were performed starting with the largest 

L/d ratio group because less force was required to buckle longer bars. Table 3.1 

and 3.2 show the experimental program for #8 and #10 bar tests, respectively. 

 



Table 3.1 Experimental program for #8 bars, diameter (d) = 1.00-in 

 

Specimen L 

in 

e 

in 

L/d e/d Specimen L 

in 

e 

in 

L/d e/d Specimen L 

in 

e 

in 

L/d e/d 

#1-8L4e0.0 4 0.0 4 0.0 #37-8L7e0.0 7 0.0 7 0.0 #73-8L10e0.0 10 0.0 10 0.0 

#2-8L4e0.0 4 0.0 4 0.0 #38-8L7e0.0 7 0.0 7 0.0 #74-8L10e0.0 10 0.0 10 0.0 

#3-8L4e0.1 4 0.1 4 0.1 #39-8L7e0.1 7 0.1 7 0.1 #75-8L10e0.1 10 0.1 10 0.1 

#4-8L4e0.1 4 0.1 4 0.1 #40-8L7e0.1 7 0.1 7 0.1 #76-8L10e0.1 10 0.1 10 0.1 

#5-8L4e0.2 4 0.2 4 0.2 #41-8L7e0.2 7 0.2 7 0.2 #77-8L10e0.2 10 0.2 10 0.2 

#6-8L4e0.2 4 0.2 4 0.2 #42-8L7e0.2 7 0.2 7 0.2 #78-8L10e0.2 10 0.2 10 0.2 

#7-8L4e0.3 4 0.3 4 0.3 #43-8L7e0.3 7 0.3 7 0.3 #79-8L10e0.3 10 0.3 10 0.3 

#8-8L4e0.3 4 0.3 4 0.3 #44-8L7e0.3 7 0.3 7 0.3 #80-8L10e0.3 10 0.3 10 0.3 

#9-8L4e0.4 4 0.4 4 0.4 #45-8L7e0.4 7 0.4 7 0.4 #81-8L10e0.4 10 0.4 10 0.4 

#10-8L4e0.4 4 0.4 4 0.4 #46-8L7e0.4 7 0.4 7 0.4 #82-8L10e0.4 10 0.4 10 0.4 

#11-8L4e0.5 4 0.5 4 0.5 #47-8L7e0.5 7 0.5 7 0.5 #83-8L10e0.5 10 0.5 10 0.5 

#12-8L4e0.5 4 0.5 4 0.5 #48-8L7e0.5 7 0.5 7 0.5 #84-8L10e0.5 10 0.5 10 0.5 

#13-8L5e0.0 5 0.0 5 0.0 #49-8L8e0.0 8 0.0 8 0.0 #85-8L11e0.0 11 0.0 11 0.0 

#14-8L5e0.0 5 0.0 5 0.0 #50-8L8e0.0 8 0.0 8 0.0 #86-8L11e0.0 11 0.0 11 0.0 

#15-8L5e0.1 5 0.1 5 0.1 #51-8L8e0.1 8 0.1 8 0.1 #87-8L11e0.1 11 0.1 11 0.1 

#16-8L5e0.1 5 0.1 5 0.1 #52-8L8e0.1 8 0.1 8 0.1 #88-8L11e0.1 11 0.1 11 0.1 

#17-8L5e0.2 5 0.2 5 0.2 #53-8L8e0.2 8 0.2 8 0.2 #89-8L11e0.2 11 0.2 11 0.2 

#18-8L5e0.2 5 0.2 5 0.2 #54-8L8e0.2 8 0.2 8 0.2 #90-8L11e0.2 11 0.2 11 0.2 

#19-8L5e0.3 5 0.3 5 0.3 #55-8L8e0.3 8 0.3 8 0.3 #91-8L11e0.3 11 0.3 11 0.3 

#20-8L5e0.3 5 0.3 5 0.3 #56-8L8e0.3 8 0.3 8 0.3 #92-8L11e0.3 11 0.3 11 0.3 

#21-8L5e0.4 5 0.4 5 0.4 #57-8L8e0.4 8 0.4 8 0.4 #93-8L11e0.4 11 0.4 11 0.4 

#22-8L5e0.4 5 0.4 5 0.4 #58-8L8e0.4 8 0.4 8 0.4 #94-8L11e0.4 11 0.4 11 0.4 

#23-8L5e0.5 5 0.5 5 0.5 #59-8L8e0.5 8 0.5 8 0.5 #95-8L11e0.5 11 0.5 11 0.5 

#24-8L5e0.5 5 0.5 5 0.5 #60-8L8e0.5 8 0.5 8 0.5 #96-8L11e0.5 11 0.5 11 0.5 

#25-8L6e0.0 6 0.0 6 0.0 #61-8L9e0.0 9 0.0 9 0.0 #97-8L12e0.0 12 0.0 12 0.0 

#26-8L6e0.0 6 0.0 6 0.0 #62-8L9e0.0 9 0.0 9 0.0 #98-8L12e0.0 12 0.0 12 0.0 

#27-8L6e0.1 6 0.1 6 0.1 #63-8L9e0.1 9 0.1 9 0.1 #99-8L12e0.1 12 0.1 12 0.1 

#28-8L6e0.1 6 0.1 6 0.1 #64-8L9e0.1 9 0.1 9 0.1 #100-8L12e0.1 12 0.1 12 0.1 

#29-8L6e0.2 6 0.2 6 0.2 #65-8L9e0.2 9 0.2 9 0.2 #101-8L12e0.2 12 0.2 12 0.2 

#30-8L6e0.2 6 0.2 6 0.2 #66-8L9e0.2 9 0.2 9 0.2 #102-8L12e0.2 12 0.2 12 0.2 

#31-8L6e0.3 6 0.3 6 0.3 #67-8L9e0.3 9 0.3 9 0.3 #103-8L12e0.3 12 0.3 12 0.3 

#32-8L6e0.3 6 0.3 6 0.3 #68-8L9e0.3 9 0.3 9 0.3 #104-8L12e0.3 12 0.3 12 0.3 

#33-8L6e0.4 6 0.4 6 0.4 #69-8L9e0.4 9 0.4 9 0.4 #105-8L12e0.4 12 0.4 12 0.4 

#34-8L6e0.4 6 0.4 6 0.4 #70-8L9e0.4 9 0.4 9 0.4 #106-8L12e0.4 12 0.4 12 0.4 

#35-8L6e0.5 6 0.5 6 0.5 #71-8L9e0.5 9 0.5 9 0.5 #107-8L12e0.5 12 0.5 12 0.5 

#36-8L6e0.5 6 0.5 6 0.5 #72-8L9e0.5 9 0.5 9 0.5 #108-8L12e0.5 12 0.5 12 0.5 
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Table 3.2 Experimental program for #10 bars, diameter (d) = 1.27-in 

Specimen L, in e, in L/d e/d Specimen L, in e, in L/d e/d 

#1-10L4e0.0 5.08 0.0 4 0.0 #28-10L8e0.3 10.16 0.381 8 0.3 

#2-10L4e0.1 5.08 0.127 4 0.1 #29-10L8e0.4 10.16 0.508 8 0.4 

#3-10L4e0.2 5.08 0.254 4 0.2 #30-10L8e0.5 10.16 0.635 8 0.5 

#4-10L4e0.3 5.08 0.381 4 0.3 #31-10L9e0.0 11.43 0.0 9 0.0 

#5-10L4e0.4 5.08 0.508 4 0.4 #32-10L9e0.1 11.43 0.127 9 0.1 

#6-10L4e0.5 5.08 0.635 4 0.5 #33-10L9e0.2 11.43 0.254 9 0.2 

#7-10L5e0.0 6.35 0.0 5 0.0 #34-10L9e0.3 11.43 0.381 9 0.3 

#8-10L5e0.1 6.35 0.127 5 0.1 #35-10L9e0.4 11.43 0.508 9 0.4 

#9-10L5e0.2 6.35 0.254 5 0.2 #36-10L9e0.5 11.43 0.635 9 0.5 

#10-10L5e0.3 6.35 0.381 5 0.3 #37-10L10e0.0 12.7 0.0 10 0.0 

#11-10L5e0.4 6.35 0.508 5 0.4 #38-10L10e0.1 12.7 0.127 10 0.1 

#12-10L5e0.5 6.35 0.635 5 0.5 #39-10L10e0.2 12.7 0.254 10 0.2 

#13-10L6e0.0 7.62 0.0 6 0.0 #40-10L10e0.3 12.7 0.381 10 0.3 

#14-10L6e0.1 7.62 0.127 6 0.1 #41-10L10e0.4 12.7 0.508 10 0.4 

#15-10L6e0.2 7.62 0.254 6 0.2 #42-10L10e0.5 12.7 0.635 10 0.5 

#16-10L6e0.3 7.62 0.381 6 0.3 #43-10L11e0.0 13.97 0.0 11 0.0 

#17-10L6e0.4 7.62 0.508 6 0.4 #44-10L11e0.1 13.97 0.127 11 0.1 

#18-10L6e0.5 7.62 0.635 6 0.5 #45-10L11e0.2 13.97 0.254 11 0.2 

#19-10L7e0.0 8.89 0.0 7 0.0 #46-10L11e0.3 13.97 0.381 11 0.3 

#20-10L7e0.1 8.89 0.127 7 0.1 #47-10L11e0.4 13.97 0.508 11 0.4 

#21-10L7e0.2 8.89 0.254 7 0.2 #48-10L11e0.5 13.97 0.635 11 0.5 

#22-10L7e0.3 8.89 0.381 7 0.3 #49-10L12e0.0 15.24 0.0 12 0.0 

#23-10L7e0.4 8.89 0.508 7 0.4 #50-10L12e0.1 15.24 0.127 12 0.1 

#24-10L7e0.5 8.89 0.635 7 0.5 #51-10L12e0.2 15.24 0.254 12 0.2 

#25-10L8e0.0 10.16 0.0 8 0.0 #52-10L12e0.3 15.24 0.381 12 0.3 

#26-10L8e0.1 10.16 0.127 8 0.1 #53-10L12e0.4 15.24 0.508 12 0.4 

#27-10L8e0.2 10.16 0.254 8 0.2 #54-10L12e0.5 15.24 0.635 12 0.5 

 

3.3.2 Preparation of specimens 

The #8 bar specimens were cut using a chop saw and the #10 bar 

specimens, using a water cooled band saw; therefore, the #8 bars experienced a 

heating/slow cooling process that might affect the capacity of the end regions. 

The final length (LT) was equal to the corresponding length of a specimen for a 



given L/d ratio (L = L/d*d) plus an additional 8 inches that allowed the specimens 

to fit into the test setup supports. 

The initial eccentricity (e = e/d*d) was introduced by pushing at the 

middle length of the specimen using a steel T-shaped section with a welded rod 

on the tip of the web and triangular steel stiffeners at both faces of the section. 

Two rectangular blocks were fixed by four screws each to a 1” steel plate to 

support the bar in a horizontal position. The plate was previously drilled to locate 

the blocks in the correct position in order to allow the bars to span the 

corresponding length for a given L/d ratio and to bend them into the correct shape. 

Figure 3.1 shows a sketch of the setup used for the introduction of initial 

eccentricity to the specimens, and Figure 3.2 shows a picture of the built setup. 

 
 Figure 3.1 Sketch of the specimen preparation setup 
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Figure 3.2 Picture of specimen preparation setup 

 

The deflection introduced at midspan was monitored using a dial gage 

with 0.001 precision, which was located underneath the specimen and the steel 

plate. To achieve the desired eccentricity, a series of loading and unloading steps 

were followed. The bar was loaded in bending until the desired eccentricity was 

reached and then unloaded. The amount of recovered deflection was then 

recorded. This procedure was repeated until the deflection matched the desired 

eccentricity. The actual eccentricities accomplished are listed in Appendix A. The 

machine that was used in this test was a Southwark Emery universal test machine 

with 60-kip capacity. When the eccentricity obtained reached a value larger than 

approximately 0.004″, the specimen was discarded, and a new specimen was 

prepared. This criterion was established because of the closeness of the range of 

eccentricities selected for the experimental program. 
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3.3.3 Test setup, instrumentation, and procedure 

A custom-made setup was assembled for the monotonic compression test 

of the reinforcing steel. It consisted of two 1-inch thick steel plates with two 6-

inch deep high-strength steel blocks on each plate. The blocks were intended to 

represent rigid supports. Each block had 16 set screws (2 screws every 45° angle 

staggered up or down at each increment) to hold the bar in position and was 

attached to the base plates with high strength bolts. The specimen was anchored 4 

inches into each support, allowing a contact surface with the blocks of 2 inches. 

The upper plate had a threaded rod welded to its center to hold it in place. In 

addition, two screws were used to attach it to the machine. Because the lower part 

of the machine did not have holes to attach the plate, the lower plate was set in 

place using four clamps. The plates were tight in their position after aligning the 

blocks in order to ensure alignment of the specimens. Figure 3.3 shows a sketch 

of the compression test setup. 

The test setup was built to work in the same testing machine that was used 

for the tension tests. The load reading was obtained from the load cell of the 

testing machine. The voltage measurements were converted to engineering units 

by the Data Acquisition system and recorded using a program based on Microsoft 

Excel 2000, similar to the tension tests. The strain measurements were not taken 

using strain gages, because the grinding that was necessary to prepare the 

specimen for strain gauge installation would have negatively affected the results 

by disturbing the cross-sectional area of the bars. Furthermore, strain gage 

measurements are not representative of the overall displacement of the bar 

because of the deflection mode shape, which causes changes in strains and 

stresses along the bar (tension and compression zones are at same cross-sectional 

location). During testing, vertical and lateral deformations were monitored using 

linear potentiometers, as shown in Figure 3.3. Two linear potentiometers were 



used for the vertical displacement readings and one was used for the lateral 

displacement readings. 

6" (Typ.)

4" (Typ.)

1" (Typ.)

24" (Typ.)

Figure 3.3 Sketch of the compression test setup 

 

Before selecting the final testing procedure, several trial tests were 

performed on #8 bars with L/d = 12. From the results provided by these trials, the 

test speed and acquisition intervals were selected. The final testing procedure was 

as follows:  

(1) Locate the bars in the blocks putting a small amount of load 

(approximately 0.5 to 1.0 kip) in the specimen to ensure that 

the bar did not slip during the test.  

 45



 46

(2) Tighten setscrews on each block with a pneumatic torque-

wrench to ensure that each screw had the same amount of 

torque and to ensure that the bar was centered inside the block.  

(3) Verify that all instrumentation was located in place and 

readings were taken correctly.  

(4) Start the machine and the scanner, then load the bar at a 

medium-rate (approximately level 8 of the machine used) until 

the linear slope changes.  

(5) Decrease the load rate to low-rate (approximately level 12 of 

the machine used) to capture the strains in the initial stage of 

post-buckling.  

(6) After reaching a vertical displacement of approximately 0.3 

inch, increase load to the medium-rate used before until the 

vertical reading is no longer available (i.e. reaching the limit of 

the instrumentation) or the specimen fails.  

 

The machine used did not allow a displacement-controlled test and 

hence the load control feature of the test machine was used. All test data 

were recorded at one-second intervals continuously for the duration of the 

test. Figures 3.4 and 3.5 show the test setup for a #8 bar before and after 

testing, respectively. 

 



 
Figure 3.4 Test setup with a #8 bar specimen with L/d =10, e = 0.5 before test 

 

 
 

Figure 3.5 Test setup with a #8 bar specimen with L/d =10, e = 0.5 after test 
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CHAPTER 4 
Test Results 

4.1 TENSION TESTS 

As mentioned in Chapter 3, three specimens were tested in tension for 

each bar size studied herein. The average of the three tests was taken as the 

representative stress-strain behavior curve for the reinforcing bars. Figure 4.1 and 

4.2 show the test results from the three tests and the average curve for #8 and #10 

bars, respectively. 
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Figure 4.1 Tensile stress-strain curves of #8 reinforcing bars 
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Figure 4.2 Tensile stress-strain curves of #10 reinforcing bars 

 

The results obtained from the tension tests of the #8 and #10 bars were 

compared to those obtained by Bayrak and Sheikh (2001) for the Grade 400 20 

mm in diameter bars, that corresponds to a #6 bar. Bayrak and Sheikh (2001) also 

tested three specimens to obtain an average stress-strain curve. This comparison 

helps understand the difference in material behavior for a given bar size with 

respect to the strength, ductility, and strain hardening behavior. Figure 4.3 shows 

the stress-strain behavior obtained for the three types of bar (#6, #8, and #10). 
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Figure 4.3 Stress-strain curves for three different reinforcing bar sizes, #8, #10, 

and #6 (Bayrak and Sheikh 2001). 

 

The stress-strain curves for the #8 and #10 bars are not complete up to 

fracture (Figure 4.3). Measurements are given up to the capacity of the long-

elongation strain gages used, but there is enough data to reach strains beyond 

those at ultimate strength. The #8 and #10 bars had approximately the same 

yielding strength, while the #6 bars had 20% larger yield strength. The #8 bar has 

larger ultimate strength than the #10 bars, and the #6 lies in between those. All the 

bars showed different strain hardening behavior. As has been mentioned before in 

literature, smaller bars tend to harden more than larger bars in the process of 

fabrication, therefore, smaller bars will have more strain hardening than larger 

bars. This trend is demonstrated herein with the #8 and #10 Grade 60 steel (fyt = 
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60-ksi) US-fabricated reinforced bars. The #6 bars are of different grade of steel, 

Grade 400, which has a yielding strength of 400 MPa that is 58-ksi, but slightly 

different fabrication (produced in Canada). Table 4.1 gives the mechanical 

properties obtained from Figure 4.3. 

 

Table 4.1 Mechanical Properties of #6, #8, and #10 reinforcing bars. 

Bar designation εyt fyt (ksi) fut (ksi) fut/fyt 

#6 0.0026 76.2 100.7 1.32 

#8 0.0022 63.4 105.6 1.67 

#10 0.0022 64.4 92.5 1.44 

 

4.2 COMPRESSION TESTS 

The results are represented graphically as axial stress vs. axial strain and 

load vs. lateral deformation relationships. As mentioned in chapter 3, two 

specimens were tested per L/d-e/d combination for #8 bars, and single specimens 

for #10 bars. For #8 specimens, the average curve resulting from the two tests is 

reported. To calculate the average of the two tests, a program was written in 

MSExcel-Visual Basic; see Appendix B for the computer program developed to 

average various experimental curves. The graphic results obtained for all 

specimens in every L/d-e/d combination are presented in Appendix C. 

In the following sections, the effects of L/d ratio, e/d ratio, and bar size on 

specimen behavior are discussed and the results are reported. The variables used 

in the graphs and the starting points of measurements reported, shown further on, 

are illustrated with the model in Figure 4.4. 



P

V

L

e (at center)

 

fc = compressive axial stress 
εc = compressive axial strain 
ΔL = lateral deformation at midspan 
ΔV = vertical deformation 
P = axial load 
L = unsupported length 
e = initial eccentricity at midspan 

Figure 4.4 A typical test specimen and measurements 

4.2.1 Effect of e/d ratio 

In order to compare the effect of initial imperfection at midspan in the 

compressive axial behavior of reinforcing bars, all e/d ratios for the same L/d ratio 

were plotted on the same graph for the axial stress-strain and load vs. lateral 

deformation at midspan relationships. The results obtained for the #8 reinforcing 

bars are discussed first (Figures 4.5 to 4.22). Then, the results obtained for #10 

reinforcing bars are presented in Figures 4.23 to 4.40. 

In Figure 4.5, 4.6 and Table 4.2, it can be observed that for an L/d ratio of 

4 the compressive strength of #8 reinforcing bars decreases with increase in e/d 

ratio. For values of compressive strains less than 0.027, the load carried by the bar 

with e/d ratio of 0.0 was larger than that of the tension curve, and after that point 

the load carried by the bars tested in compression was less than that carried in the 

tension test. The capacities of the bars with e/d ratio of 0.1 and 0.2 followed the 

same path up to a strain of 0.043, beyond that point the load carried by the bar 

with e/d = 0.1 increased. Similarly, the curves with e/d ratios of 0.4 and 0.5 

followed very similar paths with little difference. Table 4.2 shows the numerical 

values corresponding to the yield strength in compression (fyc) (which is the 
 52
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largest stress measured in the linear elastic range), the increased capacity in the 

post-buckling inelastic region (fuc), and the ratio of the increased capacity after 

buckling and the yield strength in compression. The tensile yield strength was 

reached for an e/d ratio of 0.0 and was lower for all other e/d ratios. The ratio 

fuc/fyc for compression tests where e/d was smaller then or equal to 0.3, was very 

similar to that observed in the tension test (fut/fyt = 1.67). In general, there was no 

decrease of capacity after buckling of the bars, the capacity remained 

approximately constant after reaching fuc for all e/d ratios with L/d = 4. 

 

Table 4.2 Mechanical Properties of #8 reinforcing bars with L/d = 4. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax  (kip) @ ΔL
* (in) 

0.0 63.6 96.3 1.52 75.8 @ 0.39″ 
0.1 54.1 92.2 1.70 72.5 @ 0.64″ 
0.2 51.2 88.2 1.72 69.4 @ 0.49″ 
0.3 50.2 82.3 1.64 64.8 @ 0.87″ 
0.4 51.4 74.4 1.45 58.4 @ 0.98″ 
0.5 47.2 72.2 1.53 56.8 @ 0.94″ 
Tension test:        fyt = 63.4 ksi 

                  fut = 105.6 ksi 
                  fut/fyt = 1.67 

            *ΔL = the displacement corresponding to Pmax 

 

Figure 4.6 illustrates the load vs. lateral deformations at midspan for #8 

reinforcing bars with L/d = 4. The maximum compressive force (Pmax) decreased 

with increasing e/d ratio (Table 4.2), which means that as the initial imperfection 

was increased the capacity decreased. For the amount of lateral deflection 

recorded (up to 1”) the capacity of the reinforcing bars did not decrease. For some 

of the bars the last data point corresponded with fracture, which indicated that the 

#8 bars with L/d = 4 can sustain large inelastic deformations without losing 

strength. This behavior is also observed in Figure 4.5. 
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Figure 4.5 Axial stress-strain curves for #8 reinforcing bars with L/d = 4. 
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Figure 4.6 Axial load vs. lateral deformation curves of #8 bars with L/d =4. 
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Figure 4.7 illustrates the results for the axial compressive behavior of #8 

reinforcing bars with L/d ratio of 5. As can be seen in this figure, the axial 

capacity decreases with an increase in e/d ratio. In the curve for e/d = 0.0, a slight 

plastic plateau after yielding like for the tension test, but with lower capacity, can 

be observed. The behavior of the bars with e/d ratio of 0.1 and 0.2 were similar up 

to a strain level of about 0.045, beyond that point the capacity of specimens with 

e/d = 0.1 increased. In general, there was not much difference between the load-

carrying capacity and post-buckling behavior for the reinforcing bars with L/d = 5 

and e/d = 0.0, 0.1, and 0.2. This was mainly attributed to experimental scatter. 

The values in Table 4.3 demonstrate that the yield strength under compressive 

loading is lower than the tensile yield strength for all e/d ratios with L/d = 5. The 

increases of capacity after post-buckling for the specimens with e/d = 0.1 and 0.2 

were 55% and 56%, respectively. These values are very close to the percentage 

increase in stress due to strain hardening for #8 reinforcing bars under tension 

(fut/fyt = 1.67). However, the tensile capacity is about 27% higher than the 

compressive capacity. In general, the load carrying capacity of the bars with L/d = 

5 decreases with increased e/d ratio. Although the specimens displayed 

reasonably stable stress-strain response, the capacity decreased somewhat after 

reaching the maximum value in the post-buckling path. 
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Figure 4.7 Axial stress-strain curves for #8 reinforcing bars with L/d = 5. 

 

Table 4.3 Mechanical Properties of #8 reinforcing bars with L/d = 5. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 58.8 79.9 1.36 62.7 @ 0.32″ 
0.1 50.6 78.5 1.55 62.4 @ 0.43″ 
0.2 49.6 77.4 1.56 61.3 @ 0.53″ 
0.3 50.1 71.2 1.42 55.8 @ 0.59″ 
0.4 49.5 68.4 1.38 53.7 @ 0.60″ 
0.5 48.7 65.5 1.35 51.5 @ 0.76″ 
Tension test:    fyt = 63.4 ksi 

              fut = 105.6 ksi 
              fut/fyt = 1.67 

            *ΔL = the displacement corresponding to Pmax 

 

Figure 4.8 illustrates the load vs. lateral deformation at midspan for #8 

reinforcing bars with L/d = 5. As can be observed in this figure, the maximum 

force, Pmax, decreases with increasing e/d ratio (Table 4.3). Strain corresponding 
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to maximum load, Pmax, increases with increasing e/d ratio. It is interesting to 

observe that for reinforcing bars with e/d ratios of 0.0 and 0.1, the stress-strain 

curve in compression looks similar to the tensile stress-strain curve. Mau and El-

Mabsout (1989) reported that for reinforcing bars with smaller slenderness ratios 

“first buckling” (or first peak) load was followed by a capacity decrease, and a 

“second buckling” (or second peak) load was observed before capacity dropped 

once again. This phenomenon was referred to as “straightening” by Mau and El-

Mabsout (1989), in which the “second buckling” occurred at a higher load than 

the yield load due to stiffening of the reinforcing bar caused by strain hardening. 

When the behavior of #8 reinforcing bars with L/d = 5 and e/d = 0.0 is examined 

(Figure 4.8) occurrence of “first buckling” and “second buckling” loads can be 

observed. 
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Figure 4.8 Axial load vs. lateral deformation curves of #8 bars with L/d =5 
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The compressive behavior of #8 reinforcing bars with L/d ratio of 6 shows 

similar trends to that of bars with L/d = 5 (Figure 4.9). With increasing e/d values, 

the maximum load carrying capacity of the specimen decreased. For initially 

straight specimens, a yield plateau was observed followed by a strain hardening 

region. The path followed by the bars with e/d ratio of 0.0 and 0.1 overlap at a 

strain of 0.024. The decrease in yield stress with increasing e/d ratios is more 

noticeable for specimens with L/d = 6 in comparison to those of specimens with 

L/d = 5 and L/d = 4 (Tables 4.2, 4.3, and 4.4). The load carrying capacity of 

specimens with e/d = 0.0 is about the same (3% lower) as the load carrying 

capacity of a specimen tested in tension. Otherwise, the capacity decreases with 

increasing e/d ratios. It is important to recognize that post-buckling capacities of 

specimens with L/d = 6 are about 17 to 30 % larger than the corresponding 

capacities at yield. All specimens with L/d = 6 are able to deform inelastically up 

to an axial strain of 0.06 without losing strength. 
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Figure 4.9 Axial stress-strain curves for #8 reinforcing bars with L/d = 6. 
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Table 4.4 Mechanical Properties of #8 reinforcing bars with L/d = 6. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 61.7 72.1 1.17 55.9 @ 0.35″ 
0.1 55.1 71.6 1.30 56.2 @ 0.35″ 
0.2 50.7 67.0 1.32 52.6 @ 0.47″ 
0.3 50.6 64.2 1.27 50.3 @ 0.54″ 
0.4 44.9 58.7 1.31 46.1 @ 0.62″ 
0.5 43.6 55.7 1.28 43.8 @ 0.73″ 
Tension test:    fyt = 63.4 ksi 

              fut = 105.6 ksi 
              fut/fyt = 1.67 

            *ΔL = the displacement corresponding to Pmax 

 

 

The axial load vs. lateral deformation behavior of specimens with L/d = 5 

and e/d = 0.0 is similar to that of specimens with L/d = 6 and e/d = 0.0 (Figures 

4.8 and 4.10). At large lateral deformations (0.8″-1.0″) the axial load vs. lateral 

deformation behavior of all specimens, regardless of the initial imperfections, 

becomes practically identical. The peak load Pmax occurs at a larger lateral 

deflection as the e/d ratio increases. It is interesting to recognize that the general 

trend observed in the axial force vs. lateral deformation behavior of the test 

specimens was previously encountered by Timoshenko (1961). 
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Figure 4.10 Axial load vs. lateral deformation curves of #8 bars with L/d =6. 

Once again, for #8 reinforcing bars with L/d = 7, the load carrying 

capacity decreased with increasing initial imperfection. As can be seen in Figure 

4.11, the response of bars with e/d = 0.0 and 0.1 are very similar. This similarity 

is attributed to experimental scatter. The stress-strain response of specimens with 

e/d = 0.2 merged with that of e/d = 0.1 at a strain of 0.0751. The compressive 

stress-strain relationships obtained for reinforcing bars with e/d ratios of 0.3, 0.4, 

and 0.5 yield considerably different results (Figure 4.11). The stress-strain curves 

for all reinforcing bars with L/d = 7 converged to the same post-buckling path of 

instability to reach a level of stress of approximately 40 ksi. For an L/d ratio of 7, 

none of the e/d cases reached the tensile yield strength at a strain of 0.0022, as 

observed in specimens tested in tension. The differences in yield strength are 

between 8 to 34% (Table 4.5) and the yield stress in compression occurred at 

lower strain values than 0.0022 as the e/d ratio increased. Only bars with e/d = 0.0 

and 0.1 reached the tensile yield strength (63.4 ksi) at larger strains. The post-

buckling capacity increased by about 11 to 19% from that at yield for bars with 
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e/d ratios of 0.0, 0.1, and 0.2. For other e/d ratios, it increased by about 27 to 

23%. The curves for reinforcing bars with e/d of 0.0, 0.1, and 0.3 showed stable 

responses for strains up to 0.038, and for bars with e/d of 0.3, 0.4, and 0.5 up to a 

strain of about 0.044. For specimens with L/d = 7, the range of strains over which 

stresses were sustained without any significant loss were lower than observed for 

specimens with L/d = 6. 

Table 4.5 Mechanical Properties of #8 reinforcing bars with L/d = 7. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 58.4 65.1 1.11 50.7 @ 0.33″ 
0.1 56.8 65.5 1.15 52.3 @ 0.36″ 
0.2 53.1 63.4 1.19 49.8 @ 0.44″ 
0.3 45.4 57.8 1.27 45.4 @ 0.56″ 
0.4 43.8 54.3 1.24 42.7 @ 0.69″ 
0.5 41.9 51.7 1.23 40.6 @ 0.72″ 
Tension test:      fyt = 63.4 ksi 
                            fut = 105.6 ksi 
                            fut/fyt = 1.67 

            *ΔL = the displacement corresponding to Pmax 
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Figure 4.11 Axial stress-strain curves for #8 reinforcing bars with L/d = 7. 
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Axial load vs. lateral deformation relationships for #8 reinforcing bars 

with L/d = 7 are presented in Figure 4.12. The peak load of the specimen with e/d 

= 0.0 was slightly lower than that of the specimen with e/d = 0.1. This is 

attributed to experimental scatter. Otherwise, the capacities decreased as the e/d 

ratios increased, and the peak load, Pmax, occurred at larger lateral deflections with 

increasing e/d ratio (Table 4.5). The “second buckling” phenomenon was 

observed for specimens with L/d = 7 with e/d = 0.0 and 0.1. Similar to the stress-

strain curves in compression, the path followed by all specimens with L/d = 7 in 

the axial load vs. lateral displacement curves for all e/d ratios converged to the 

same post-buckling path (Figure 4.12). 
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Figure 4.12 Axial load vs. lateral deformation curves of #8 bars with L/d =7. 

 

Figure 4.13 illustrates the axial stress-strain behavior in compression for 

#8 reinforcing bars with L/d  = 8 where the reduced capacities with increased e/d 
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ratios were observed once again. For this set of specimens the difference in load 

carrying capacity for various e/d ratios is more pronounced. The post-buckling 

paths of reinforcing bars with e/d ratios 0.0 and 0.1 merged at a strain of 

approximately 0.073, while those of the bars with e/d ratios 0.2 and 0.3 merged at 

a strain of approximately 0.071, and those of the bars with e/d ratios 0.4 and 0.5 

merged at approximately 0.087. All stress-strain curves for specimens with L/d = 

8 converged to the same post-buckling path with a stress level of approximately 

32 ksi (lower than that of the bars with L/d = 7) (Figures 4.11 and 4.13). For 

reinforcing bars with L/d  = 8, decreases in yield stress were observed for all in all 

e/d values. These stresses were about 5 to 31% lower than the tensile yield stress. 

The post-buckling capacity of #8 reinforcing bars increased by about 6 to 18% 

from that at yield (Figure 4.13). No significant decrease in the post-buckling 

stress-strain responses of the test specimens with L/d =8 was observed prior to an 

axial strain of about 0.027. 
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Figure 4.13 Axial stress-strain curves for #8 reinforcing bars with L/d = 8. 
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Figure 4.14 shows the load vs. lateral deformation curves obtained for all 

#8 reinforcing bars with L/d = 8. In this figure, it can be seen that the load 

carrying capacities decrease as the e/d ratios increase. The lateral deflections at 

which the peak loads occurred in the specimens with L/d = 8 are similar to those 

for L/d = 7 (see Table 4.5 and 4.6). The “second buckling” phenomenon is 

observed in reinforcing bars with L/d = 8 and e/d = 0.0. It is interesting to observe 

the convergence of all the axial force-lateral deformation responses of the 

specimens at large (0.6″-0.8″) lateral deformations. As can be seen in Figure 4.14, 

the effect of the initial midspan eccentricity on the post-buckling response of the 

test specimens decreases with increasing lateral deformations. The convergence of 

the curves shown in Figure 4.14 at large lateral deflections is more noticeable for 

this set of curves. 
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Figure 4.14 Axial load vs. lateral deformation curves of #8 bars with L/d =8. 
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Table 4.6 Mechanical Properties of #8 reinforcing bars with L/d = 8. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 60.3 63.8 1.06 49.9 @ 0.29″ 
0.1 55.6 62.2 1.03 48.8 @ 0.32″ 
0.2 50.4 58.0 1.15 45.3 @ 0.43″ 
0.3 49.0 55.3 1.13 43.9 @ 0.49″ 
0.4 46.0 53.1 1.15 41.0 @ 0.60″ 
0.5 43.7 51.7 1.18 40.6 @ 0.69″ 
Tension test:        fyt = 63.4 ksi 

                  fut = 105.6 ksi 
                  fut/fyt = 1.67 

            *ΔL = the displacement corresponding to Pmax 

 

For a given strain, reduction of strength with an increase in e/d ratio can 

be observed in the axial stress-strain curves of #8 reinforcing bars with L/d = 9  

(Figure 4.15 and Table 4.7). As can be observed in Figure 4.15, the differences 

observed in axial stress-strain curves for various e/d ratios are discernable. The 

stress-strain curves converged to a stress of approximately 26 ksi at large inelastic 

deformations. This stress value is approximately 20% lower than that for L/d = 8. 

The decrease in compressive yield strength can be observed in Figure 4.15 and 

Table 4.7. For rebar specimens with e/d = 0.0 the yield strength was merely lower 

by 4.5% than the tensile yield strength. The decrease in yield stress was between 

16 to 41% for other e/d ratios. Post-buckling capacity of the #8 reinforcing bars 

with L/d = 9 increased by about 2%, 7%, 10%, 14%, 16%, and 18% with respect 

to the corresponding yield stress for e/d ratios of 0.0 to 0.5 respectively (Figure 

4.15 and Table 4.7). The increase in capacity due to strain hardening for 

reinforcing bars with L/d = 9 and e/d = 0.0 is noticeably lower than the increases 

observed for previous cases of L/d ratios. In general, the maximum stress 



achieved by specimens with L/d = 9 remained virtually unchanged up to strains of 

about 0.021 for all e/d ratios. 

 

Table 4.7 Mechanical Properties of #8 reinforcing bars with L/d = 9. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 60.5 61.6 1.02 49.5 @ 0.01″ 
0.1 53.4 57.4 1.07 45.0 @ 0.32″ 
0.2 49.7 54.8 1.10 43.3 @ 0.42″ 
0.3 45.0 51.4 1.14 40.8 @ 0.48″ 
0.4 41.1 47.8 1.16 37.6 @ 0.57″ 
0.5 37.5 44.3 1.18 34.8 @ 0.74″ 
Tension test:        fyt = 63.4 ksi 

                  fut = 105.6 ksi 
                  fut/fyt = 1.67 

            *ΔL = the displacement corresponding to Pmax 
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Figure 4.15 Axial stress-strain curves for #8 reinforcing bars with L/d = 9. 
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The axial load vs. lateral deformation behavior observed for reinforcing 

bars with L/d = 9 is similar to that discussed before for previous L/d cases (Figure 

4.16). The lateral deflections at which the peak loads occurred are similar to those 

for L/d = 8 (Tables 4.6 and 4.7). For specimens with e/d = 0.0, the maximum load, 

Pmax, occurred at “first buckling” load rather than the “second buckling” load. All 

axial load vs. lateral deformation curves converged at approximately 1″. At this 

point, it is interesting to observe that as L/d ratios increased from 4 (lowest tested 

in this study) to 9, axial load vs. lateral deformation response of the test 

specimens with varying degree of initial imperfections became markedly different 

than each other. Conversely, as the unsupported length of the bars increase and 

hence the inelastic buckling case under consideration moves closer to the elastic 

buckling range, initial imperfections influenced specimen behavior in a 

pronounced manner. 
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Figure 4.16 Axial load vs. lateral deformation curves of #8 bars with L/d =9. 
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Number 8 reinforcing bars with L/d = 10 showed noticeable instability 

under compression at lower strain values than the previously studied L/d cases 

(Figure 4.17 and Table 4.8). For reinforcing bars with e/d = 0.0, the load carrying 

capacity could not be recovered after yielding in compression, even though the 

yield strength in compression was only 3.6% lower than the tensile yield strength 

(Table 4.8). For specimens with L/d = 10 and e/d = 0.0, it can be observed that the 

capacity was maintained up to εc ≈ 0.015 after a sudden drop at yield strain. This 

is attributed to strain hardening. For all other e/d cases, post-buckling capacities 

increased by about 1, 5, 11, 14, and 13% with respect to the yield stress for e/d 

ratios of 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. In general, all bars with L/d = 10 

maintained the maximum stress in the post-buckling path for strains of about 

0.015. All stress-strain curves with L/d = 10 converged down to a stress of 

approximately 24 ksi, approximately 8% lower than that for L/d = 9 (Figures 4.15 

and 4.17). The yield strength under compression was lower than that in tension by 

about 14 to 41% for reinforcing bars with various e/d ratios (Table 4.8). 

 

Table 4.8 Mechanical Properties of #8 reinforcing bars with L/d = 10. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip @ ΔL
* (in) 

0.0 61.1 59.0 0.97 46.9 @ 0.00″ 
0.1 54.4 54.8 1.01 43.0 @ 0.32″ 
0.2 48.6 51.2 1.05 40.1 @ 0.43″ 
0.3 43.1 47.7 1.11 37.5 @ 0.48″ 
0.4 40.5 46.2 1.14 36.2 @ 0.58″ 
0.5 37.4 42.2 1.13 33.1 @ 0.70″ 
Tension test:        fyt = 63.4 ksi 

                  fut = 105.6 ksi 
                  fut/fyt = 1.67 

            *ΔL = the displacement corresponding to Pmax 
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Figure 4.17 Axial stress-strain curves for #8 reinforcing bars with L/d = 10. 

 

As can be seen in Figure 4.18, the peak load for the specimen with e/d = 

0.0 occurred at the “first buckling” load. For this case, there was no increase in 

capacity after “first buckling” resulting in considerable instability after reaching 

Pmax. For all other e/d ratios, the capacity increased to reach the peak load after 

the loss of the initial linear stiffness. The Pmax values occurred at the same 

deflections as for specimens with L/d = 9, except for e/d = 0.0 (Tables 4.7 and 

4.8). The axial load vs. lateral deformation curves converged at around a lateral 

deformation of 1″. This is very similar to the corresponding lateral deformation 

measured for specimens with L/d = 9 (ΔL = 1″). 
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Figure 4.18 Axial load vs. lateral deformation curves of #8 bars with L/d =10. 
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Instability after yielding is observed in a pronounced manner for #8 

reinforcing bars with L/d = 11 and e/d = 0.0 and 0.1. This time, the capacity 

rapidly decreased after yielding in compression resulting in an unstable post-

buckling path (Figure 4.19). The yield strengths under compression for e/d = 0.0 

and 0.1 were 8.8 and 15% lower than the tensile yield stress (fyt = 63.4 ksi), 

respectively. For the rebars with other e/d ratios, the strength slightly increased 

after yielding in compression in the post-buckling path by about 1, 11, 15, and 

17% for specimens with e/d = 0.2, 0.3, 0.4, and 0.5 (Table 4.9). The increased 

strength was sustained for strains up to about 0.012 for rebars with e/d = 0.2 and 

0.3. For reinforcing bars with e/d = 0.4 and 0.5, the maximum strength was 

sustained up to strains of about 0.015. This observation is very similar to that for 

specimens with L/d = 10 (Figures 4.17 and 4.19). The yield stress in compression 

for bars with e/d = 0.2, 0.3, 0.4, and 0.5 was lower than the tensile yield stress by 



about 27, 36, 41 and 48%, respectively. Finally, stress-strain curves with L/d = 11 

converged to a stress of about 20 ksi at large strains (εc ≈ 0.12). This stress level is 

approximately 17% lower than that for reinforcing bars with L/d = 10. 

 

Table 4.9 Mechanical Properties of #8 reinforcing bars with L/d = 11. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip @ ΔL
* (in) 

0.0 57.8 --- --- 44.9 @ 0.00″ 
0.1 54.1 --- --- 42.5 @ 0.12″ 
0.2 46.6 47.2 1.01 37.3 @ 0.37″ 
0.3 40.8 45.4 1.11 35.6 @ 0.55″ 
0.4 37.1 42.7 1.15 33.7 @ 0.57″ 
0.5 32.9 38.8 1.17 30.4 @ 0.69″ 
Tension test:        fyt = 63.4 ksi 

                  fut = 105.6 ksi 
                  fut/fyt = 1.67 

            *ΔL = the displacement corresponding to Pmax 
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Figure 4.19 Axial stress-strain curves for #8 reinforcing bars with L/d = 11. 
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Figure 4.20 illustrates that #8 reinforcing bars with L/d = 11 and e/d = 0.0 

and 0.1 had no increase in the load carrying capacity after “first buckling”, did not 

display ductile behavior, and after “first buckling” the load-carrying capacity 

decreased steadily. For all the test specimens with L/d = 11, the path followed 

after reaching Pmax was unstable regardless of the initial eccentricity. For 

specimens with e/d ratios ranging from 0.2 to 0.5, the capacity increased slightly 

after the linear elastic portion. The maximum load, Pmax, occurred at somewhat 

lower lateral deflections for specimens with e/d = 0.1, 0.2, and 0.3 than specimens 

with comparable e/d ratios and L/d = 10. However, specimens with L/d = 10 and 

e/d = 0.4 or 0.5 reached their maximum load carrying capacities at strains similar 

to those experienced by specimens with L/d = 10 and comparable e/d ratios. As 

can be seen in Figure 4.20, all curves converge to the “same” unstable descending 

path. Specimens with e/d = 0.1 showed slightly lower stress values than the other 

specimens (Figure 4.20) and this is attributed to experimental scatter. 

0

10

20

30

40

50

0 0.3 0.6 0.9 1.2 1.5 1.8

ΔL (in)

Bar size: #8
d = 1.0 in
L = 11.0 in
L/d = 11

e/d = 0.0

e/d = 0.1

e/d = 0.2
e/d = 0.3

e/d = 0.4
e/d = 0.5

 
Figure 4.20 Axial load vs. lateral deformation curves of #8 bars with L/d =11. 
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Figure 4.21 illustrates axial stress-strain responses for specimens with L/d 

= 12. As can be seen in this figure, all specimens with L/d = 12 displayed very 

unstable post-buckling paths. The yield stresses in compression for specimens 

with L/d = 12, e/d = 0.0 and 0.1 were 7% and 16% lower than the tensile yield 

stress. Reinforcing bars with e/d = 0.2 had a 1% increase in load-carrying capacity 

at a strain of 0.007. The yield stress in compression for specimens with L/d = 12 

and e/d = 0.2 was 27% less than tensile yield stress. The specimens with e/d  = 

0.3, 0.4, and 0.5 reached their maximum stress level after yielding in compression 

at a strain of about 0.0096, which was 36% less than the corresponding values for 

specimens with L/d = 10 and 11. The yield stress in compression for specimens 

with e/d = 0.3, 0.4, and 0.5 was 35, 43, and 48% lower than the tensile yield 

stress, respectively. The increase in strength after the initial yielding for these 

cases was about 4, 8, and 10%, respectively (Table 4.10). The axial stress-strain 

curves converge to a stress level of approximately 17.5 ksi at the end of the post-

buckling path. 
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Figure 4.21 Axial stress-strain curves for #8 reinforcing bars with L/d = 12. 
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Table 4.10 Mechanical Properties of #8 reinforcing bars, L/d = 12. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 59.0 --- --- 39.4 @ 0.00″ 
0.1 53.5 --- --- 43.0 @ 0.10″ 
0.2 46.5 47.0 1.01 35.3 @ 0.36″ 
0.3 41.1 42.7 1.04 33.2 @ 0.47″ 
0.4 35.8 38.7 1.08 30.4 @ 0.57″ 
0.5 32.8 36.1 1.10 27.3 @ 0.68″ 
Tension test:        fyt = 63.4 ksi 

                  fut = 105.6 ksi 
                  fut/fyt = 1.67 

            *ΔL = the displacement corresponding to Pmax 

 

The axial load vs. lateral deformation relationships of #8 reinforcing bars 

with L/d = 12 and e/d = 0.0 are shown in Figure 4.22. As can be observed in this 

figure, specimens with L/d = 12 displayed unstable responses and they were not 

able to maintain the maximum load at yield. It is interesting to note that the family 

of curves presented in Figure 4.22 shows more scatter than the previous curves. 

This is mainly attributed to experimental scatter. However, it is still possible to 

state that the post-buckling responses of all specimens with L/d = 12 are in a 

reasonably narrow band at large deformations. For all reinforcing bars with L/d = 

12 the maximum load, Pmax, occurs at approximately the same lateral deflection as 

those specimens with L/d = 11 (Figures 4.20 and 4.22). 
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Figure 4.22 Axial load vs. lateral deformation curves of #8 bars with L/d =12. 

 

Having completed the first phase of the experimental program, where #8 

reinforcing bars with L/d ratios ranging from 4 to 12 and e/d ratios ranging from 

0.0 to 0.5 were tested, the following conclusions were reached: 

• For a given L/d ratio, as the L/d ratio increased, the behavior of the 

test specimens deteriorated and they showed less ductility and 

energy dissipation capacity. 

• For a given L/d ratio, as the e/d ratio increased, the behavior of the 

test specimens depended highly on the strain hardening response of 

a representative reinforcing bar tested in tension. Hence, it was 

decided that in order to make recommendations on the maximum 

unsupported length of longitudinal bars in the potential plastic 

hinge regions of reinforced concrete columns, reinforcing bars 

displaying various fut/fyt ratios needed to be tested. 
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The fut/fyt ratio of specimens tested by Bayrak and Sheikh (2001) was 1.32 

and that of the reinforcing bars tested during the first phase of the study was 1.67. 

Prior to making any design recommendations, it was decided that #10 bars with a 

different fut/fyt ratio needed to be tested. In this way, not only the size of the 

specimen was to be changed but also material properties were going to change as 

well. In this way, an extensive database could be formed and design 

recommendations and analytical models could be based on this rather extensive 

database. 

Figure 4.23 illustrates the results obtained for #10 bars with L/d = 4. 

Regardless of the e/d ratio, specimens displayed very stable responses and the 

load-carrying capacity did not decrease, although the buckled bars showed as 

much as 1.2″ of lateral deformation. The axial stress-strain curve obtained for the 

bar with e/d = 0.0 showed similar behavior to the tensile stress-strain curve. The 

yield stress in compression for this L/d-e/d combination was 0.2% lower than the 

tensile yield stress, and the yield plateau was significantly shorter than the tensile 

yield plateau. For the reinforcing bars with e/d = 0.1, 0.2, and 0.3, the stress-strain 

response followed the tensile stress-strain curve up to strains of about 0.018, 

0.022, and 0.015, respectively. For reinforcing bars with e/d = 0.1, 0.2, 0.3, 0.4, 

and 0.5, the yield stress in compression was about 8.8, 15, 16, 30, and 31% lower 

than the tensile yield stress, respectively. For specimens with e/d = 0.0, 0.1, and 

0.2, the increase in capacity in the post-buckling region was similar to that in 

tension. For specimens with e/d = 0.4 and 0.5, the capacity increases in the post-

buckling region were 60% and 53% (Table 4.11).  

 



Table 4.11 Mechanical Properties of #10 reinforcing bars, L/d = 4. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax  (kip) @ ΔL
* (in) 

0.0 64.3 93.7 1.46 118.6 @ 0.45″ 
0.1 58.7 83.8 1.43 106.7 @ 0.74″ 
0.2 54.5 81.1 1.49 102.7 @ 0.55″ 
0.3 54.4 75.7 1.39 95.9 @ 0.81″ 
0.4 45.2 72.2 1.60 91.3 @ 1.22″ 
0.5 44.6 68.4 1.53 86.6 @ 1.26″ 
Tension test:        fyt = 64.4 ksi 

                  fut = 92.5 ksi 
                  fut/fyt = 1.44 

            *ΔL = the displacement corresponding to Pmax 
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Figure 4.23 Axial stress-strain curves for #10 reinforcing bars with L/d = 4. 

 

Similar to #8 reinforcing bars with L/d = 4, #10 reinforcing bars with L/d 

= 4 had very stable axial load vs. lateral deformation responses, where the axial 

load increased with increasing lateral deformations regardless of the initial 

 77



eccentricity (Figure 4.24). The maximum compressive force (Pmax) (within the 

recorded data range) decreased with increasing e/d ratio (Table 4.11). For some of 

the bars the last data point was marked by fracture, which indicated that #10 bars 

with L/d = 4 could sustain large inelastic deformations without strength loss. 
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Figure 4.24 Axial load vs. lateral deformation curves of #10 bars with L/d = 4. 

 

Axial stress-strain response of initially straight #10 reinforcing bars with 

L/d = 5 was very stable, but at large axial strains (εc > εt-sh), axial stress carried in 

compression was not as high as that carried in tension (Figure 4.25). For this L/d-

e/d combination, the yield stress in compression was 1.1% larger than the tensile 

yield stress and the specimen with L/d = 5 and e/d = 0.0 was able to deform 

without any strength loss up to an axial strain of about 0.075. For axial strains 

smaller than 0.016, the axial stress-strain behavior of the specimen with L/d = 5 

and e/d = 0.1 was similar to the tensile stress-strain response. Specimens with e/d 
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= 0.0 and 0.1 were able to deform up to a strain of about 0.068 without losing 

strength. Specimens with higher e/d ratios were able to deform without strength 

loss up to strains of about 0.075. The tensile yield stress was reached by the 

specimen with e/d = 0.0 at the expected tensile yield strain of 0.0022. The axial 

compressive stresses were about 8, 17, 24, 30, and 38% less than the tensile yield 

stress for specimens with e/d ratios of 0.1, 0.2, 0.3, 0.4, and 0.5, respectively 

(Table 4.12). As can be observed in Table 4.12, the ultimate strength of 

specimens tested in tension was 4.4% higher than the yield stress. However, the 

ultimate strengths of the bars tested in compression were 22% to 35% higher than 

the corresponding compressive stresses. 
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Figure 4.25 Axial stress-strain curves for #10 reinforcing bars with L/d = 5. 
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Table 4.12 Mechanical Properties of #10 reinforcing bars, L/d = 5. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 65.0 79.1 1.22 99.6 @ 0.29″ 
0.1 59.2 74.2 1.25 94.1 @ 0.38″ 
0.2 53.1 68.9 1.30 87.3 @ 0.49″ 
0.3 48.9 63.4 1.30 80.3 @ 0.68″ 
0.4 44.8 60.1 1.34 76.1 @ 0.87″ 
0.5 39.9 53.8 1.35 68.2 @ 1.00″ 
Tension test:        fyt = 64.4 ksi 

                  fut = 92.5 ksi 
                  fut/fyt = 1.44 

            *ΔL = the displacement corresponding to Pmax 
 

Figure 4.26 illustrates the axial load vs. lateral deformation behavior of 

#10 reinforcing bars with L/d = 5. As can be observed in Table 4.12 and Figure 

4.26, the maximum compressive force, Pmax, decreased with increasing e/d ratio. 

For a given e/d ratio, the load carrying capacity decreased with increasing lateral 

deformations. It is interesting to note that the maximum loads carried by 

specimens with L/d = 5 occurred at smaller lateral deformations than those 

experienced by specimens with L/d = 4 (Figures 4.24 and 4.26). With increasing 

e/d ratio, the amount of lateral displacement required to reach the maximum 

compressive load increased. For #10 rebars with L/d = 5, the “second buckling” 

phenomenon was not observed. However, for #8 reinforcing bars with L/d =5 

“second buckling” was observed (Figure 4.8). 



0

20

40

60

80

100

120

0 0.5 1 1.5 2

ΔL (in)

e/d = 0.0
e/d = 0.1

e/d = 0.2
e/d = 0.3

e/d = 0.4
e/d = 0.5

Bar size: #10
d = 1.27 in
L = 6.35 in
L/d = 5

 
Figure 4.26 Axial load vs. lateral deformation curves of #10 bars with L/d = 5. 

 

As can be seen in Figure 4.27, #10 rebar with L/d = 6 and e/d = 0.0 had a 

stress-strain behavior that was very similar to the tensile stress-strain behavior for 

strains smaller than 0.019. The improvement of the load-carrying capacity in the 

post-buckling branch due to strain hardening was about 11 to 42 % for specimens 

with L/d = 6 (Table 4.13). All specimens with L/d = 6 displayed very stable stress-

strain responses and there was no capacity loss observed prior to axial strains 

smaller than 0.04. Yield stresses of reinforcing bars tested in compression were 8, 

20, 24, 31, and 46% lower than the tensile yield stress for specimens with e/d 

ratios of 0.1 to 0.5. 
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Table 4.13 Mechanical Properties of #10 reinforcing bars, L/d = 6. 

E/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 66.7 74.3 1.11 94.1 @ 0.26″ 
0.1 59.4 69.7 1.17 88.3 @ 0.41″ 
0.2 51.5 64.6 1.26 81.8 @ 0.58″ 
0.3 48.7 59.4 1.22 75.4 @ 0.67″ 
0.4 44.2 53.7 1.21 68.0 @ 0.76″ 
0.5 344.8 49.4 1.42 62.6 @ 0.92″ 
Tension test:        fyt = 64.4 ksi 

                  fut = 92.5 ksi 
                  fut/fyt = 1.44 

            *ΔL = the displacement corresponding to Pmax 
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Figure 4.27 Axial stress-strain curves for #10 reinforcing bars with L/d = 6. 

 

The peak loads for the reinforcing bars with L/d = 6 were recorded at 

lateral deformations similar to those for L/d = 5 (Tables 4.12 and 4.13). The peak 

load occurred at larger lateral deflections as the initial eccentricity increased. The 
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reinforcing bar with e/d = 0.0 had a bifurcation type behavior. The rebar carried 

the increasing load up to the “first” peak without buckling, then the load dropped 

to the bifurcation point with zero lateral deflection, and then the capacity started 

increasing and the “second” peak was reached while the rebar was buckling 

laterally (Figure 4.28). The post-buckling paths of the #10 reinforcing bars with 

L/d = 6 converged to the same curve at large lateral deformations. 
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Figure 4.28 Axial load vs. lateral deformation curves of #10 bars with L/d = 6. 

 

An examination of the family of curves presented in Figure 4.29 reveals 

the fact that axial compressive behavior of #10 reinforcing bars with L/d = 7 show 

instability over a wider range of axial strains than those of the #10 bars with L/d = 

4, 5, and 6. At large axial strains, the curves for all e/d ratios converge to a stress 

level of about 30 ksi. Initially straight bars had stress-strain behavior similar to the 

behavior in tension up to a strain of 0.01. The ultimate strength of the initially 

straight bar tested in compression was 2% higher than the compressive yield 
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stress. For the other e/d ratios, the yield stress in compression was lower than that 

in tension by about 10, 20, 30, 37, and 46% for e/d ratios of 0.1, 0.2, 0.3, 0.4, and 

0.5. The post-buckling capacities increased by about 9 to 28% with respect to the 

corresponding yield stress for e/d ratios of 0.1 to 0.5 (Table 4.14). 
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Figure 4.29 Axial stress-strain curves for #10 reinforcing bars with L/d = 7. 

 

Table 4.14 Mechanical Properties of #10 reinforcing bars, L/d = 7. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 66.2 67.7 1.02 85.8 @ 0.24″ 
0.1 58.1 63.6 1.09 80.6 @ 0.34″ 
0.2 51.7 58.0 1.12 73.4 @ 0.48″ 
0.3 45.0 53.4 1.19 67.7 @ 0.60″ 
0.4 40.8 49.7 1.22 63.0 @ 0.71″ 
0.5 34.9 44.8 1.28 56.7 @ 0.86″ 
Tension test:        fyt = 64.4 ksi 

                  fut = 92.5 ksi 
                  fut/fyt = 1.44 

            *ΔL = the displacement corresponding to Pmax 
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The maximum compressive loads reached by the #10 bars with L/d = 7 

were about 8-kips less than those obtained for specimens with L/d = 6 and 

occurred at lower lateral displacement values (Figure 4.30 and Table 4.14). For 

the specimen with L/d = 7 and e/d = 0.0, two peak loads (i.e. buckling loads) were 

encountered. The path followed by the axial load vs. lateral displacement curves 

for all e/d ratios try converged to the same post-buckling path with increasing 

lateral deformations. 
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Figure 4.30 Axial load vs. lateral deformation curves of #10 bars with L/d = 7. 

 

Figure 4.31 illustrates the axial stress-strain behavior in compression for 

#10 reinforcing bars with L/d = 8. For the initially straight bar, the compressive 

yield stress was similar to the tensile yield stress (0.6% difference). However after 

this stress was reached, the bar became unstable and capacity was lost rapidly. 

Previously, for #8 bars with L/d = 8 and e/d = 0.0 the specimens recovered some 

of the capacity and hence the behavior was more ductile. The #10 bar with e/d = 
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0.1 displayed axial stress-strain behavior in which maximum stress was 

maintained up to a strain of 0.022. The rebars with e/d ratios = 0.2, 0.3 and 0.4 

maintained the maximum axial stress levels up to a strain of about 0.018. The 

specimen with e/d = 0.5 did not show any decrease in strength up to an axial 

strain of 0.022. All stress-strain curves converged to the same post-buckling stress 

of approximately 26 ksi at large axial deformations. The bars with e/d ratios of 0.1 

to 0.5 showed decreasing yield stress values that were 7 to 48% lower than the 

tensile yield stress. The post-buckling capacity of the #10 reinforcing bars with 

L/d = 8 increased by about 3, 9, 14, 10, and 27% with respect to the yield stress 

for e/d ratios of 0.1, 0.2, 0.3, 0.4, and 0.5 respectively (Table 4.15). 
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Figure 4.31 Axial stress-strain curves for #10 reinforcing bars with L/d = 8. 

 

 86



 87

Table 4.15 Mechanical Properties of #10 reinforcing bars, L/d = 8. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 64.8 --- --- 82.0 @ 0.00″ 
0.1 60.3 62.3 1.03 78.9 @ 0.34″ 
0.2 49.8 54.2 1.09 68.7 @ 0.46″ 
0.3 45.9 52.1 1.14 66.1 @ 0.59″ 
0.4 44.7 49.0 1.10 62.1 @ 0.69″ 
0.5 33.4 42.4 1.27 53.7 @ 0.88″ 
Tension test:        fyt = 64.4 ksi 

                  fut = 92.5 ksi 
                  fut/fyt = 1.44 

            *ΔL = the displacement corresponding to Pmax 

 

Figure 4.32 shows the load vs. lateral deformation relationships of the #10 

reinforcing bars with L/d = 8. The lateral deflections at which the peak loads 

occurred were similar to those of specimens with L/d = 7 (Tables 4.14 and 4.15). 

As can be seen in this figure, the specimen that was initially straight had a higher 

peak stress than the other specimens. However, the post-buckling response of this 

specimen showed lower stresses than the other specimens at large inelastic 

deformations. The convergence of the axial load vs. lateral deformation curves at 

large lateral displacements can be observed in Figure 4.32.  
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Figure 4.32 Axial load vs. lateral deformation curves of #10 bars with L/d = 8. 

 

The stress-strain curves of #10 bars with L/d = 9 tested under monotonic 

compression are presented in Figure 4.33. A careful examination of this figure 

illustrates that the initially straight specimen was able to reach the tensile yield 

point. However, the capacity dropped quickly thereafter and the post-buckling 

path is unstable (Figure 4.33). At an axial strain of 0.009, the stress-strain curves 

of the initially straight bar and bars with e/d = 0.1 crossed and after this point the 

behavior of these bars was fairly similar. For the bar with e/d = 0.1, the yield 

stress was about 7% lower than the yield stress in tension and the capacity did not 

increase after yielding. The maximum stress in the post-buckling branch was 2% 

less than the yield stress. The specimens with e/d = 0.2 to 0.5 had compressive 

yield stress values lower than the tensile yield stress by about 24 to 45% (Table 

4.16). For these cases, the maximum capacity in the post-buckling region 
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increased by about 7 to 17% with respect to corresponding yield stresses. All 

stress-strain curves converged to a stress level of approximately 23 ksi (Figure 

4.33). 
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Figure 4.33 Axial stress-strain curves for #10 reinforcing bars with L/d = 9. 

 

Table 4.16 Mechanical Properties of #10 reinforcing bars, L/d = 9. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 63.7 --- --- 80.7 @ 0.00″ 
0.1 60.2 59.2 0.98 76.3 @ 0.14″ 
0.2 49.1 52.7 1.07 66.7 @ 0.47″ 
0.3 42.6 46.9 1.10 59.5 @ 0.60″ 
0.4 40.9 45.1 1.10 57.1 @ 0.71″ 
0.5 35.4 41.3 1.17 52.4 @ 0.85″ 
Tension test:        fyt = 64.4 ksi 

                  fut = 92.5 ksi 
                  fut/fyt = 1.44 

            *ΔL = the displacement corresponding to Pmax 
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Axial load vs. lateral deformation behavior of #10 bars with L/d = 9 is 

presented in Figure 4.34. The behavior of #10 bars with L/d = 9 (Figure 4.34) and 

#8 bars with L/d = 9 (Figure 4.33) was very similar. The axial load vs. lateral 

deformation behavior for #10 bars with e/d = 0.0 resulted in lower load-carrying 

capacity than the other e/d cases after buckling (Figure 4.34). The maximum 

compressive loads for all e/d cases were about 2 kips less than the loads obtained 

for #10 bars with L/d = 8, except for #10 bars with e/d = 0.3 and 0.4 for which the 

loads were about 5 kips (Tables 4.15 and 4.16). For #10 bars with L/d = 8 and 9, 

the maximum capacities under compression occurred at approximately the same 

lateral displacements. The region where all the curves converge to a single curve 

is very well defined and starts at approximately 1.0″ (Figure 4.34). 
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Figure 4.34 Axial load vs. lateral deformation curves of #10 bars with L/d = 9. 
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Stress-strain relationships of #10 reinforcing bars with L/d = 10 are 

presented in Figure 4.35. As can be seen in this figure, this group of test 

specimens experienced noticeable instability at lower strains resulting in a severe 

decrease in load-carrying capacity. The bar with e/d = 0.0 reached the tensile 

yield point, but the load-carrying capacity was lost after yielding (Table 4.17). 

The yield stress for the specimen with e/d = 0.1 was 13% lower than the tensile 

yield stress. The specimens with other e/d ratios experienced a slight increase in 

stress after reaching the yield point. This increase ranged from 5 to 16% (Table 

4.17). The yield stress in compression was about 25 to 52% lower than that in 

tension. The stress-strain curves converged to the same level of stress (18.6 ksi) at 

large inelastic deformations. This stress level is approximately 20% lower than 

that for #8 bars with the same L/d ratio. 
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Figure 4.35 Axial stress-strain curves for #10 reinforcing bars with L/d = 10. 

 

 91



 92

Table 4.17 Mechanical Properties of #10 reinforcing bars, L/d = 10. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 63.7 --- --- 80.7 @ 0.01″ 
0.1 55.9 --- --- 70.8 @ 0.13″ 
0.2 48.4 50.9 1.05 64.5 @ 0.42″ 
0.3 39.8 44.1 1.11 55.9 @ 0.56″ 
0.4 36.2 40.8 1.13 51.7 @ 0.71″ 
0.5 30.8 35.7 1.16 45.3 @ 0.85″ 
Tension test:        fyt = 64.4 ksi 

                  fut = 92.5 ksi 
                  fut/fyt = 1.44 

            *ΔL = the displacement corresponding to Pmax 

 

Figure 4.36 illustrates the axial load vs. lateral displacement relationships 

recorded for #10 reinforcing bars with L/d = 10. The maximum compression loads 

for all e/d cases occurred at lateral deformation levels comparable to those 

experienced by #10 bars with L/d = 8 and 9 (Tables 4.15, 4.16, and 4.17). For 

most e/d cases, the capacity increased after the loss of initial linear stiffness until 

the peak load was reached.  Number 10 reinforcing bars with L/d = 10 and e/d = 

0.0 and 0.1 had a linear-elastic response until the peak load was reached; load-

carrying capacities were lost thereafter due to instability. All the curves converged 

to the same post-buckling path at around a lateral deformation of 1.0″ (similar to 

#10 bars with L/d = 9). 
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Figure 4.36 Axial load vs. lateral deformation curves of #10 bars with L/d = 10. 

 

For #10 bars with L/d = 11 and e/d = 0.0 and 0.1, the strength was lost 

after yielding in compression making the post-buckling path unstable (Figure 

4.37). The yield stress for #10 bars with e/d = 0.0 and 0.1 was lower than the 

tensile yield stress by about 4.8 and 12%, respectively (Table 4.18). For #10 bars 

with e/d = 0.2 to 0.5, the capacities increased slightly after yielding in 

compression (Figure 4.37). The yield stresses for these cases were lower than the 

tensile yield stress by about 29 to 48%. The maximum axial stress in the post-

buckling response of bars with e/d = 0.2, 0.3, 0.4, and 0.5 increased from the 

corresponding yield stress by about 8, 6, 10, and 11% (Table 4.18). Eventually, 

capacities were lost due to buckling. The stress-strain curves for bars with L/d = 

11 converged to a stress of 17.7 ksi. This stress level was 5% lower than that of 

#10 bars with L/d = 10. 
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Figure 4.37 Axial stress-strain curves for #10 reinforcing bars with L/d = 11. 

 

Table 4.18 Mechanical Properties of #10 reinforcing bars, L/d = 11. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 61.3 --- --- 77.6 @ 0.02″ 
0.1 56.7 --- --- 71.8 @ 0.15″ 
0.2 44.7 46.9 1.05 59.4 @ 0.40″ 
0.3 40.7 43.3 1.07 54.9 @ 0.56″ 
0.4 36.2 39.7 1.10 50.3 @ 0.69″ 
0.5 31.6 35.9 1.14 45.6 @ 0.86″ 
Tension test:        fyt = 64.4 ksi 

                  fut = 92.5 ksi 
                  fut/fyt = 1.44 

            *ΔL = the displacement corresponding to Pmax 

 

For the cases with e/d = 0.0 and 0.1 there was no increase in capacity after 

“first buckling” (Figure 4.38). The Pmax values for the bars with L/d = 11 and 10 

occurred at similar lateral deflections. The maximum loads carried by #10 bars 
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with L/d = 11 were in average 2 kips lower than those carried by #10 bars with 

L/d = 10 (Tables 4.17 and 4.18). All curves converged to the same post-buckling 

path at a lateral deformation of about 1″. 
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Figure 4.38 Axial load vs. lateral deformation curves of #10 bars with L/d = 11. 

 

Figure 4.39 illustrates stress-strain behavior of #10 reinforcing bars with 

L/d = 12. As can be seen in this figure, all the axial stress-strain curves showed 

significant instability. The maximum capacities were lost soon after yielding, 

which indicated that for cases with such large unsupported lengths, reinforcing 

bars do not display any ductility. The specimen with e/d = 0.0 had a yield stress 

4% higher than the tensile yield stress, but showed significant instability after that 

point. For the specimen with e/d = 0.1, the yield stress was 8% lower than that in 

tension. For all other e/d cases yield stresses were lower than that in tension by 

about 29 to 48%. After yielding, the stress in the specimens with e/d ratios of 0.2, 

0.3, 0.4, and 0.5 increased by about 8, 6, 10, and 11%, respectively (Table 4.19). 
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These increases occurred between axial strains of 0.0022 and 0.006. For strains 

larger than 0.006 axial stresses dropped rapidly (Figure 4.39). All curves 

converged to a stress of about 16.4 ksi at the end of the post-buckling path. 

0

20

40

60

80

100

0 0.03 0.06 0.09 0.12 0.15 0.18
εc (in/in)

Tension curve

Bar size: #10
d = 1.27 in
L = 15.24 in
L/d = 12

e/d = 0.0
e/d = 0.1
e/d = 0.2

e/d = 0.3
e/d = 0.4

e/d = 0.5

 
Figure 4.39 Axial stress-strain curves for #10 reinforcing bars with L/d = 12. 

 

Table 4.19 Mechanical Properties of #10 reinforcing bars, L/d = 12. 

e/d fyc (ksi) fuc (ksi) fuc/fyc Pmax (kip) @ ΔL
* (in) 

0.0 67.2 --- --- 85.1 @ 0.00″ 
0.1 59.0 --- --- 74.8 @ 0.13″ 
0.2 45.7 49.1 1.08 62.3 @ 0.36″ 
0.3 41.5 44.2 1.06 56.0 @ 0.57″ 
0.4 35.9 39.5 1.10 50.1 @ 0.72″ 
0.5 33.7 37.4 1.11 47.4 @ 0.86″ 
Tension test:        fyt = 64.4 ksi 

                  fut = 92.5 ksi 
                  fut/fyt = 1.44 

            *ΔL = the displacement corresponding to Pmax 
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The axial load vs. lateral deformation relationships obtained for #10 bars 

with L/d = 12 are presented in Figure 4.40. As can be seen in this figure, after 

reaching the maximum load, lateral deformations increased rapidly and significant 

instability was experienced by #10 bars with L/d = 12. The peak load for all e/d 

cases occurred at approximately the same lateral displacements as for the previous 

L/d case discussed (L/d =11). The maximum loads were smaller than those 

measured for the previous L/d case by about 7, 3, 2, and 1 kip for e/d ratios of 0.0, 

0.1, 0.2, and 0.3 (Table 4.19). 
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Figure 4.40 Axial load vs. lateral deformation curves of #10 bars with L/d = 12. 
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4.2.2 Effect of L/d ratio 

To discuss how the L/d ratio affects the post-buckling behavior of concrete 

reinforcing bars, the data presented previously in Section 4.2.1 will be rearranged 

herein by combining the cases with the same e/d ratios in the same axial stress-

strain plot. Figures 4.41 and 4.42 illustrate the axial stress-strain response for all 

#8 specimens and #10 specimens, respectively. 

For #8 reinforcing bars, it is observed that load-carrying capacity and 

ductility decrease as the clear span between supports increases (Figure 4.41). For 

initially straight bars (e/d = 0.0), the yield strength is achieved for L/d ratios up to 

6 at strains within the yield plateau for a bar tested in tension. For an e/d ratio of 

0.1, the yield strength is achieved for an L/d ratio of 4 at strains within the yield 

plateau. For L/d ratios of 5 and 6, the yield strength is achieved at strains 

comparable to those at the beginning of strain hardening in tension. For e/d ratios 

of 0.2 and 0.3, the yield strength is achieved by L/d = 4 at a strain between the 

yield plateau and strain hardening in tension, and by L/d = 5 and 6 at strains 

corresponding with the beginning of strain hardening in tension. For larger 

magnitudes of initial eccentricities at midspan, the yield strength is not be 

achieved. Only reinforcing bars with L/d = 4 and 5 sustain the load for a larger 

range of strains at a level of loading equal to the yield strength. In general, for all 

e/d ratios, the bars with an L/d ratio less than 6 have the ability to achieve large 

inelastic deformations with minimal or no decrease in load-carrying capacity. 

Therefore, the behavior can be classified ductile even though the capacities in the 

post-buckling branch for these bars are lower than that in the strain hardening 

region in tension. For some of the e/d cases (e/d = 0.0, 0.1, 0.2, and 0.3), 

specimens with an L/d ratio of 7 reach the yield strength at larger strain values (εc 

≈ 0.015). In these cases, the specimens sustain tensile stresses around the tensile 

yield stress for strain levels of 0.05. This can be classified as moderate level of 



ductility. Larger L/d ratios have significant instability problems once the 

maximum load is reached. These specimens do not sustain the load in a stable 

manner, and load-carrying capacity drops gradually with increasing strains. 
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Figure 4.41 Axial stress-strain curves of #8 bars with different e/d ratios. 
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As can be seen in Figure 4.42, similar observations can be made for #10 

reinforcing bars tested under compression. In this section, the differences 

observed between #8 and #10 bars are discussed. For #10 bars with e/d = 0.0 and 

L/d = 4, a capacity greater than that in tension is observed. Initially straight bars 

with L/d ratios of 5 and 6 reach the yield strength almost exactly at the same strain 

as in tension. It is interesting to note that the ductility observed in similar cases for 

the #8 bars is lower. For an e/d ratio of 0.1, the yield strength is achieved for L/d 

ratios of 4, 5, and 6 at strains within the yield plateau of the tension test. Although 

this observation is similar to that in #8 bars, it is interesting to note that #10 bars 

show lesser ductility than their #8 companions. For specimens with e/d = 0.2, a 

substantial amount of ductility is observed for cases where L/d = 4 and 5. These 

specimens display stress levels higher than the yield stress observed in the tension 

test. In addition, after reaching the maximum stress these specimens are able to 

maintain most (if not all) of their load-carrying capacity for large inelastic 

deformations. Number 10 bars with L/d = 6 barely reach the tensile yield stress, 

but this occurs at a strain of approximately 0.02. Number 10 bars with e/d = 0.2 

and L/d ratios greater than or equal to 7 display lower ductility and do not 

maintain their load-carrying capacity with increasing axial deformations. For 

specimens with e/d = 0.3, the yield strength is achieved only by #10 bars with L/d 

= 4. The stress-strain curve for the #10 bar with e/d = 0.3 and L/d = 4 follow a 

similar path at the initial stages of the strain hardening region for the specimen 

tested in tension. This combination of length to initial eccentricity results in a 

reasonably stable behavior in compression. For larger magnitudes of initial 

eccentricities at midspan, the yield strength in tension is achieved only by 

specimens with L/d = 4, though at larger strains (around 0.03 to 0.07). For 

specimens with L/d = 4, there is no drop in load-carrying capacity after yielding. 
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In general, for all e/d ratios the #10 bars showed lower ductility than for #8 bars. 

However, as can be observed in Figure 4.42, for L/d ratios less than 6 the behavior 

is ductile and stable and the capacity can be sustained for larger strains even 

though the capacities in the post-buckling branch for these bars are lower than 

that in the strain-hardening region for the tensile response. For an L/d ratio of 7 

with e/d = 0.0, although the yield strength is achieved at a similar strain as that in 

tension, the post-buckling behavior is not stable. 

In general, for a given e/d ratio, an increase in L/d ratio results in a 

decrease in strength and ductility of reinforcing bars under compressive loading. 

To ensure ductile behavior, a critical L/d ratio of 7 can be defined for initially 

straight #8 bars and L/d = 6 for #10 bars with e/d = 0.0. Bayrak and Sheikh (2001) 

reported this critical L/d ratio as 7 and Mau and El-Mabsout (1989) reported the 

same value for reinforcing bars with high strength steel.  

For #8 bars with L/d ratios lower than 6 and #10 bars with L/d ratios lower 

than 5, ductile and stable behavior is observed. The limit of L/d = 6 is the same as 

that recommended by Mander et al. (1984) and by Bayrak and Sheikh (2001) for 

cases where ductility is expected. The limit of L/d = 5, on the other hand, is 

comparable to the value suggested by Monti and Nuti (1992). 
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Figure 4.42 Axial stress-strain curves of #10 bars with different e/d ratios. 
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4.2.3 Effect of bar size and material strength 

The post-buckling path of reinforcing bars varies with their clear span 

length and their initial imperfections. Their behavior also depends on the size of 

the reinforcing bars and on the material properties of the steel. In this section, the 

results obtained for the #8 and #10 bars are rearranged and compared. To extend 

the comparison, the data published by Bayrak and Sheikh (2001) for #6 (20M) 

reinforcing bars is incorporated. 

Figure 4.43 illustrates the normalized stress-strain curves for #8 and #10 

bars tested in this study and that for #6 bars tested by Bayrak and Sheikh (2001). 

The data is normalized in order to illustrate differences in ratios of ultimate 

strength to yield. It is believed that this influences the post-buckling behavior of 

reinforcing bars significantly. 

The axial stress-strain curves obtained from the compression tests for 

different bar sizes are also normalized. All stresses are normalized by the yield 

stress (fy) and all strains are normalized by the yield strain (εy). The results for the 

different bar sizes with same L/d ratio are presented in the same figure to facilitate 

comparison (Figures 4.44 to 4.52). Each figure consists of six plots and each of 

these plots show the behavior of the three bar sizes (that have three different 

material properties) with the same e/d ratio. Because Bayrak and Sheikh (2001) 

did not test reinforcing bars with L/d = 11, L/d = 12, e/d = 0.4, and e/d = 0.5, 

information about #6 bars with these geometric properties is not included in 

Figures 4.44 to 4.52. 



0

20

40

60

80

100

120

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
εt (in/in)

#8

#10
#6

Tension tests 
(averages of 3 tests)

 
(a) 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100 120 140
ε/εy

#8

#10

#6

 
(b) 

Figure 4.43 Stress-strain curves for reinforcing bars tested in tension:  

(a) actual and  (b) normalized 
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Figure 4.44 Axial stress-strain curves of reinforcing bars with L/d = 4 
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Figure 4.45 Normalized axial stress-strain curves for reinforcing bars with 

L/d=5 

 
 106



0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120
ε/εy

#8

#10

#6

L/d = 6
e/d = 0.0

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120
ε/εy

#8

#10
#6

L/d = 6
e/d = 0.1

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120
ε/εy

#8

#10
#6

L/d = 6
e/d = 0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 1
ε/εy

20

#8

#10
#6

L/d = 6
e/d = 0.3

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120
ε/εy

#8

#10

L/d = 6
e/d = 0.4 0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 1
ε/εy

20

#8
#10

L/d = 6
e/d = 0.5

 
 

Figure 4.46 Normalized axial stress-strain curves of reinforcing bars with 

L/d=6 
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Figure 4.47 Normalized axial stress-strain curves of reinforcing bars with 

L/d=7 
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Figure 4.48 Normalized axial stress-strain curves of reinforcing bars with 

L/d=8 
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Figure 4.49 Normalized axial stress-strain curves of reinforcing bars with 

L/d=9 
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Figure 4.50 Normalized axial stress-strain curves of reinforcing bars with 

L/d=10 
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Figure 4.51 Normalized axial stress-strain curves of reinforcing bars with 

L/d=11 
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Figure 4.52 Normalized axial stress-strain curves of reinforcing bars with 

L/d=12 
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For L/d = 4, all bars displayed stable behavior for all e/d ratios. As can be 

observed in Figure 4.44, test specimens were able to sustain loads under 

considerably large inelastic deformations (up to 100εy). Behavior of specimens 

with L/d = 5 are illustrated in Figure 4.45. It is interesting to note that for almost 

all cases presented in Figures 4.44 to 4.52 #8 bars showed larger normalized 

stresses in the post-buckling response than #10 bars. Similarly, #10 bars had 

greater normalized stresses in the descending branch of their response than #6 

bars. As can be observed in Figure 4.43, #8, #10, and #6 bars have ultimate 

strength to yield strength ratios of 1.67, 1.44, and 1.32, respectively. Hence, it is 

possible to conclude that reinforcing bars that have a significantly high ultimate 

strength to yield strength ratio have a more stable post-buckling response and 

display higher normalized stresses. A close examination of Figures 4.44 to 4.52 

reveals the following points: 

• As the L/d ratio increases, the differences observed in the post-

buckling response of #8, #10, and #6 bars decreases regardless of 

the e/d ratio.  

• It is possible to conclude that strain hardening properties of 

reinforcing bars play an important role in determining the post-

buckling response of specimens where inelastic buckling 

dominates the response. With increasing L/d ratio, and hence 

moving away from inelastic buckling towards elastic buckling, the 

influence of strain hardening properties on post-buckling response 

diminishes (Figures 4.44 to 4.52). 

• For a given L/d ratio, an increase in e/d ratios results in 

insignificant differences between the relative position of the post-

buckling responses of #8, #10, and #6 specimens. 
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As can be observed in Figures 4.44 to 4.52, the L/d ratio required to 

prevent premature buckling cannot be specified as a constant value, because it 

depends on the mechanical properties of the steel. With an increase in steel 

strength, the critical L/d ratio decreases as explained by Bresler and Gilbert 

(1961). It is important to note that Mau and El-Mabsout (1989), in their analytical 

study, identified that high strength steel has a critical L/d ratio of 7, and medium 

strength steel has one of 8. Experimental results reported in this Chapter support 

observations reported by Bresler and Gilbert (1961), Mau and El-Mabsout (1989), 

and Bayrak and Sheikh (2001). 
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CHAPTER 5 
Summary, Conclusions and Recommendations 

 

5.1 SUMMARY 

Since buckling of longitudinal bars is generally not considered in 

conventional analytical procedures to determine the response of concrete column 

sections, behavior at large inelastic curvatures is generally over predicted with 

respect to strength and ductility. An extensive literature survey was undertaken to 

determine the availability of rational analytical models for longitudinal bar 

buckling in tied concrete columns.  Research conducted by Bresler and Gilbert 

(1961), Mander et al. (1984), Scribner (1986), Russo (1988), Papia et al. (1988), 

Papia and Russo (1989), Mau and El-Mabsout (1989), Mau (1990), Monti and 

Nuti (1992), and Bayrak and Sheikh (2001) were studied herein.  Different 

analytical approaches to predict the buckling behavior of longitudinal 

reinforcement were encountered in the literature, but most techniques did not 

represent all factors involved in the complex phenomenon of longitudinal bar 

buckling in concrete columns. Bayrak and Sheikh (2001) developed a plastic 

hinge analysis technique to predict the deformation capacities of concrete 

members under cyclic loading taking into consideration the bar buckling behavior 

and the interaction between the concrete core and the reinforcing cage. However, 

they did not develop a closed-form constitutive relationship due to the lack of an 

extensive database. They reported that in order to develop a constitutive model, 

reinforcing bars with different material properties needed to be tested. With this 

motivation an extensive literature survey was conducted to identify all of the 

experimental data available in the literature. The literature survey revealed the 
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fact that the only available data consisted of four bars tested by Mander et al. 

(1984), nine bars tested by Monti and Nuti (1992), and 56 bars tested by Bayrak 

and Sheikh (2001). It was concluded that the available data did not cover a wide 

range of bar sizes, length, or type. 

The effect of unsupported length to bar diameter ratio (L/d), initial mid-

span eccentricity to bar diameter ratio (e/d), and various material properties on the 

behavior of reinforcing bars subjected to compressive loads were studied.  One 

hundred eight #8 bars and fifty four #10 bars were tested under monotonic 

compressive loading. The results for the different bar sizes (#8 and #10 bars) were 

compared to those reported by Bayrak and Sheikh (2001) for #6 bars. 

5.2 CONCLUSIONS 

The following conclusions can be reached based on the experimental study 

conducted: 

1. For a given L/d ratio, an increase in the initial eccentricity (i.e. e/d 

ratio) resulted in a decrease in the load-carrying capacity and 

ductility. 

2. For a given e/d ratio and bar size, the maximum axial load (Pmax) 

occurred at approximately the same lateral deformation. 

3. For reinforcing bars with L/d = 4, regardless of the e/d ratio, the 

load-carrying capacity was maintained while specimens 

experienced large inelastic deformations. 

4. The increase in strength after yielding was lower as the L/d ratio 

was increased. 

5. For a given e/d ratio, the strength and ductility decreased when the 

clear span between supports (L/d ratio) increased. 



 118

6. Number 8 bars displayed more ductility than #10 bars. This is 

attributed to the strain hardening behavior of #8 and #10 bars. The 

tension tests conducted illustrated that the fut/fyt ratio for #8 bars 

was 1.67 and was 1.44 for #10 bars. 

7. For cases where there is a high curvature ductility demand, tie 

spacing to longitudinal bar diameter ratios should be kept under 6. 

This is consistent with the relevant requirements (21.4.4.2) of ACI 

318-02. It is important to note that for an L/d = 6, #8 bars 

displayed more ductility and stability than #10 bars or #6 bars. 

However, for design purposes it can be assumed that reinforcing 

bars with L/d = 6 will allow plastic hinge regions in columns to 

behave in a ductile manner.  

8. For moderate curvature ductility demands, the spacing 

requirements discussed in item #7 can be relaxed, Based on the 

experimental evidence reported herein, for moderate levels of 

ductility an L/d ratio of 8 can be used as a limit. 

9. For cases where longitudinal bars are expected to deform 

inelastically, L/d ratios greater than 8 should be avoided. Such 

large tie spacings (or unsupported bar lengths) should only be used 

in cases where no ductility is expected from a flexural member.  

5.3 RECOMMENDATIONS FOR FURTHER RESEARCH 

With the amount of data provided herein, it is possible to develop a unified 

constitutive model that predicts the stress-strain behavior of reinforcing bars 

under compression given the geometric and material properties of the bar. Then, 

buckling of reinforcing bars in concrete members can be incorporated in sectional 
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analyses. Hence, the development of a constitutive model for the compressive 

behavior of reinforcing bars should be performed next. 
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APPENDIX A 
Actual eccentricities introduced at midspan of #8 

and #10 reinforcing bars 
 

 

 

 

 

 

 

 

 

 

 

 

 



Table A.1 Actual eccentricities introduced to #8 bars, d = 1.00-in 

 

Specimen L/d e/d expected 

e, in 

Actual 

e, in 

Specimen L/d e/d expected 

e, in 

Actual 

e, in 

Specimen L/d e/d expected 

e, in 

Actual 

e, in 

#1-8L4e0.0 4 0.0 0.0 0.0 #37-8L7e0.0 7 0.0 0.0 0.0 #73-8L10e0.0 10 0.0 0.0 0.0 

#2-8L4e0.0 4 0.0 0.0 0.0 #38-8L7e0.0 7 0.0 0.0 0.0 #74-8L10e0.0 10 0.0 0.0 0.0 

#3-8L4e0.1 4 0.1 0.1 0.101 #39-8L7e0.1 7 0.1 0.1 0.100 #75-8L10e0.1 10 0.1 0.1 0.101 

#4-8L4e0.1 4 0.1 0.1 0.102 #40-8L7e0.1 7 0.1 0.1 0.102 #76-8L10e0.1 10 0.1 0.1 0.100 

#5-8L4e0.2 4 0.2 0.2 0.200 #41-8L7e0.2 7 0.2 0.2 0.200 #77-8L10e0.2 10 0.2 0.2 0.200 

#6-8L4e0.2 4 0.2 0.2 0.201 #42-8L7e0.2 7 0.2 0.2 0.201 #78-8L10e0.2 10 0.2 0.2 0.2005 

#7-8L4e0.3 4 0.3 0.3 0.3005 #43-8L7e0.3 7 0.3 0.3 0.301 #79-8L10e0.3 10 0.3 0.3 0.301 

#8-8L4e0.3 4 0.3 0.3 0.301 #44-8L7e0.3 7 0.3 0.3 0.301 #80-8L10e0.3 10 0.3 0.3 0.301 

#9-8L4e0.4 4 0.4 0.4 0.400 #45-8L7e0.4 7 0.4 0.4 0.402 #81-8L10e0.4 10 0.4 0.4 0.401 

#10-8L4e0.4 4 0.4 0.4 0.401 #46-8L7e0.4 7 0.4 0.4 0.4025 #82-8L10e0.4 10 0.4 0.4 0.401 

#11-8L4e0.5 4 0.5 0.5 0.501 #47-8L7e0.5 7 0.5 0.5 0.501 #83-8L10e0.5 10 0.5 0.5 0.501 

#12-8L4e0.5 4 0.5 0.5 0.502 #48-8L7e0.5 7 0.5 0.5 0.502 #84-8L10e0.5 10 0.5 0.5 0.502 

#13-8L5e0.0 5 0.0 0.0 0.0 #49-8L8e0.0 8 0.0 0.0 0.0 #85-8L11e0.0 11 0.0 0.0 0.0 

#14-8L5e0.0 5 0.0 0.0 0.0 #50-8L8e0.0 8 0.0 0.0 0.0 #86-8L11e0.0 11 0.0 0.0 0.0 

#15-8L5e0.1 5 0.1 0.1 0.0995 #51-8L8e0.1 8 0.1 0.1 0.101 #87-8L11e0.1 11 0.1 0.1 0.101 

#16-8L5e0.1 5 0.1 0.1 0.100 #52-8L8e0.1 8 0.1 0.1 0.101 #88-8L11e0.1 11 0.1 0.1 0.101 

#17-8L5e0.2 5 0.2 0.2 0.2005 #53-8L8e0.2 8 0.2 0.2 0.2005 #89-8L11e0.2 11 0.2 0.2 0.199 

#18-8L5e0.2 5 0.2 0.2 0.200 #54-8L8e0.2 8 0.2 0.2 0.200 #90-8L11e0.2 11 0.2 0.2 0.199 

#19-8L5e0.3 5 0.3 0.3 0.3015 #55-8L8e0.3 8 0.3 0.3 0.301 #91-8L11e0.3 11 0.3 0.3 0.300 

#20-8L5e0.3 5 0.3 0.3 0.300 #56-8L8e0.3 8 0.3 0.3 0.300 #92-8L11e0.3 11 0.3 0.3 0.3015 

#21-8L5e0.4 5 0.4 0.4 0.401 #57-8L8e0.4 8 0.4 0.4 0.4015 #93-8L11e0.4 11 0.4 0.4 0.401 

#22-8L5e0.4 5 0.4 0.4 0.403 #58-8L8e0.4 8 0.4 0.4 0.402 #94-8L11e0.4 11 0.4 0.4 0.400 

#23-8L5e0.5 5 0.5 0.5 0.502 #59-8L8e0.5 8 0.5 0.5 0.502 #95-8L11e0.5 11 0.5 0.5 0.502 

#24-8L5e0.5 5 0.5 0.5 0.502 #60-8L8e0.5 8 0.5 0.5 0.502 #96-8L11e0.5 11 0.5 0.5 0.504 

#25-8L6e0.0 6 0.0 0.0 0.0 #61-8L9e0.0 9 0.0 0.0 0.0 #97-8L12e0.0 12 0.0 0.0 0.0 

#26-8L6e0.0 6 0.0 0.0 0.0 #62-8L9e0.0 9 0.0 0.0 0.0 #98-8L12e0.0 12 0.0 0.0 0.0 

#27-8L6e0.1 6 0.1 0.1 0.1015 #63-8L9e0.1 9 0.1 0.1 0.100 #99-8L12e0.1 12 0.1 0.1 0.0995 

#28-8L6e0.1 6 0.1 0.1 0.100 #64-8L9e0.1 9 0.1 0.1 0.099 #100-8L12e0.1 12 0.1 0.1 0.099 

#29-8L6e0.2 6 0.2 0.2 0.202 #65-8L9e0.2 9 0.2 0.2 0.201 #101-8L12e0.2 12 0.2 0.2 0.201 

#30-8L6e0.2 6 0.2 0.2 0.201 #66-8L9e0.2 9 0.2 0.2 0.2005 #102-8L12e0.2 12 0.2 0.2 0.201 

#31-8L6e0.3 6 0.3 0.3 0.303 #67-8L9e0.3 9 0.3 0.3 0.3005 #103-8L12e0.3 12 0.3 0.3 0.300 

#32-8L6e0.3 6 0.3 0.3 0.303 #68-8L9e0.3 9 0.3 0.3 0.300 #104-8L12e0.3 12 0.3 0.3 0.302 

#33-8L6e0.4 6 0.4 0.4 0.400 #69-8L9e0.4 9 0.4 0.4 0.4015 #105-8L12e0.4 12 0.4 0.4 0.4005 

#34-8L6e0.4 6 0.4 0.4 0.4025 #70-8L9e0.4 9 0.4 0.4 0.400 #106-8L12e0.4 12 0.4 0.4 0.400 

#35-8L6e0.5 6 0.5 0.5 0.504 #71-8L9e0.5 9 0.5 0.5 0.503 #107-8L12e0.5 12 0.5 0.5 0.501 

#36-8L6e0.5 6 0.5 0.5 0.502 #72-8L9e0.5 9 0.5 0.5 0.501 #108-8L12e0.5 12 0.5 0.5 0.504 
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Table A.2 Actual eccentricities introduced to #10 bars, d = 1.27-in 

Specimen L/d e/d expected 

e, in 

Actual 

e, in 

Specimen L/d e/d expected 

e, in 

Actual 

e, in 

#1-10L4e0.0 4 0.0 0.0 0.0 #28-10L8e0.3 8 0.3 0.381 0.382 

#2-10L4e0.1 4 0.1 0.127 0.127 #29-10L8e0.4 8 0.4 0.508 0.5085 

#3-10L4e0.2 4 0.2 0.254 0.254 #30-10L8e0.5 8 0.5 0.635 0.636 

#4-10L4e0.3 4 0.3 0.381 0.383 #31-10L9e0.0 9 0.0 0.0 0.0 

#5-10L4e0.4 4 0.4 0.508 0.506 #32-10L9e0.1 9 0.1 0.127 0.125 

#6-10L4e0.5 4 0.5 0.635 0.634 #33-10L9e0.2 9 0.2 0.254 0.2545 

#7-10L5e0.0 5 0.0 0.0 0.0 #34-10L9e0.3 9 0.3 0.381 0.382 

#8-10L5e0.1 5 0.1 0.127 0.126 #35-10L9e0.4 9 0.4 0.508 0.510 

#9-10L5e0.2 5 0.2 0.254 0.255 #36-10L9e0.5 9 0.5 0.635 0.637 

#10-10L5e0.3 5 0.3 0.381 0.383 #37-10L10e0.0 10 0.0 0.0 0.0 

#11-10L5e0.4 5 0.4 0.508 0.508 #38-10L10e0.1 10 0.1 0.127 0.127 

#12-10L5e0.5 5 0.5 0.635 0.637 #39-10L10e0.2 10 0.2 0.254 0.255 

#13-10L6e0.0 6 0.0 0.0 0.0 #40-10L10e0.3 10 0.3 0.381 0.384 

#14-10L6e0.1 6 0.1 0.127 0.127 #41-10L10e0.4 10 0.4 0.508 0.509 

#15-10L6e0.2 6 0.2 0.254 0.254 #42-10L10e0.5 10 0.5 0.635 0.639 

#16-10L6e0.3 6 0.3 0.381 0.3815 #43-10L11e0.0 11 0.0 0.0 0.0 

#17-10L6e0.4 6 0.4 0.508 0.508 #44-10L11e0.1 11 0.1 0.127 0.127 

#18-10L6e0.5 6 0.5 0.635 0.636 #45-10L11e0.2 11 0.2 0.254 0.255 

#19-10L7e0.0 7 0.0 0.0 0.0 #46-10L11e0.3 11 0.3 0.381 0.381 

#20-10L7e0.1 7 0.1 0.127 0.126 #47-10L11e0.4 11 0.4 0.508 0.5085 

#21-10L7e0.2 7 0.2 0.254 0.255 #48-10L11e0.5 11 0.5 0.635 0.6355 

#22-10L7e0.3 7 0.3 0.381 0.382 #49-10L12e0.0 12 0.0 0.0 0.0 

#23-10L7e0.4 7 0.4 0.508 0.510 #50-10L12e0.1 12 0.1 0.127 0.128 

#24-10L7e0.5 7 0.5 0.635 0.637 #51-10L12e0.2 12 0.2 0.254 0.255 

#25-10L8e0.0 8 0.0 0.0 0.0 #52-10L12e0.3 12 0.3 0.381 0.381 

#26-10L8e0.1 8 0.1 0.127 0.127 #53-10L12e0.4 12 0.4 0.508 0.508 

#27-10L8e0.2 8 0.2 0.254 0.254 #54-10L12e0.5 12 0.5 0.635 0.636 
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APPENDIX B 
Interpolation Program 

 

An interpolation program was used to calculate the average curve when 

two specimens were tested for the same L/d-e/d combination. The program was 

written in Microsoft Visual Basic 6.0 for application on Microsoft Excel 2000. 

The data was arranged in a spreadsheet and the interpolated output was brought 

into columns inside the same spreadsheet.  

 

The variables were defined as follows: 

 

Range 1 the maximum values of strains for which the stress will be  

interpolated corresponding to what the collected data  

allowed for in specimen 1 

Range 2  the maximum values of strains for which the stress will be  

interpolated corresponding to what the collected data  

allowed for in specimen 2 

e   the incremented strain value for which the stress was being  

interpolated 

x1   the next value of strain that was lower than e 

x2   the next value of strain that was larger than e 

y1   the value of stress correspondent to x1 

y2   the value of stress correspondent to x2 

f   the interpolated value of stress corresponding to e 

i   counter variable for the amount of strain values for which  

interpolation of stresses was performed 



j, m   counter variables to change from cell to cell to the next  

strain value for which interpolation of stress was performed 

k, n  counter variables to change from cell to cell to store the  

interpolated stress values 

 

The program lines are as follows: 

 
Public Range1, Range2, e, x1, x2, y1, y2, f As Double 
Public i, j, k, l, m, n As Integer 
 
Sub program() 
    i = 1 
    j = 0 
    k = 1 
    l = 1 
    m = 0 
    n = 1 
    Range1 = Worksheets("AVERAGE").Range("L3") 
    Range2 = Worksheets("AVERAGE").Range("M3") 
    For i = 1 To Range1 
        e = 0.00005 
        e = e * i 
        j = j + 1 
        Worksheets("AVERAGE").Range("C4").Offset(j, 0) = e 
        k = k - 1 
10      k = k + 1 
        x1 = Worksheets("AVERAGE").Range("A4").Offset(k, 0) 
        x2 = Worksheets("AVERAGE").Range("A5").Offset(k, 0) 
        y1 = Worksheets("AVERAGE").Range("B4").Offset(k, 0) 
        y2 = Worksheets("AVERAGE").Range("B5").Offset(k, 0) 
        If e < x1 Then 
            GoTo 10 
        End If 
        If e > x1 Then 
            If e < x2 Then 
            f = y1 - (((x1 - e) / (x1 - x2)) * (y1 - y2)) 
            Worksheets("AVERAGE").Range("D4").Offset(j, 0) = f 
            Else: GoTo 10 
            End If 
        End If 
        If i = Range1 Then 
        GoTo 20 
        End If 
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     Next i 
20   For l = 1 To Range2 
        e = 0.00005 
        e = e * l 
        m = m + 1 
        Worksheets("AVERAGE").Range("G4").Offset(m, 0) = e 
        n = n - 1 
30      n = n + 1 
        x1 = Worksheets("AVERAGE").Range("E4").Offset(n, 0) 
        x2 = Worksheets("AVERAGE").Range("E5").Offset(n, 0) 
        y1 = Worksheets("AVERAGE").Range("F4").Offset(n, 0) 
        y2 = Worksheets("AVERAGE").Range("F5").Offset(n, 0) 
        If e < x1 Then 
            GoTo 30 
        End If 
        If e > x1 Then 
            If e < x2 Then 
            f = y1 - (((x1 - e) / (x1 - x2)) * (y1 - y2)) 
            Worksheets("AVERAGE").Range("H4").Offset(l, 0) = f 
            Else: GoTo 30 
            End If 
        End If 
        If l = Range2 Then 
        GoTo 40 
        End If 
     Next l 
40 End Sub 

 

A similar program was used to interpolate the results obtained for the load 

vs. lateral deformation curves where two specimens were tested (#8 reinforcing 

bars). The only change was that the increments of displacements for which the 

load was being interpolated was performed every 0.001″ and not 0.00005 like for 

the strains in the stresses interpolation. 
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APPENDIX C 

Test Results 
 

The figures presented in this appendix illustrate the results obtained for all L/d-

e/d combinations for the #8 and #10 bars. Each figure contains three plots in 

which the axial load vs. axial deformation, the stress-strain curve under 

compression, and the load vs. lateral deformation relationships are presented. 

 

The variables shown in the plot are defined as follows: 

 

P  axial compressive load, kips 

ΔV  vertical deformation, inches 

fs  axial stress, ksi 

εc  axial strain in compression, ksi 

ΔL  lateral deformation, inches 

#x  test specimen number 

#x LP1 axial load vs. vertical deformation curve from linear 

potentiometer #1 for specimen #x 

#x LP2 axial load vs. vertical deformation curve from linear 

potentiometer #2 for specimen #x 

#x AVERAGE average axial load vs. vertical deformation curve of linear 

potentiometer #1 and #2 for specimen #x 

AVERAGE average stress-strain curve or average axial load vs. lateral 
deformation curve of two specimens (#x) 
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Figure C.1 Experimental load-deformation plots of #8 bars 

 with L/d = 4 and e/d = 0.0 
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Figure C.2 Experimental load-deformation plots of #8 bars  

with L/d = 4 and e/d = 0.1 
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Figure C.3 Experimental load-deformation plots of #8 bars 

 with L/d = 4 and e/d = 0.2 
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Figure C.4 Experimental load-deformation plots of #8 bars  

with L/d = 4 and e/d = 0.3 
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Figure C.5 Experimental load-deformation plots of #8 bars  

with L/d = 4 and e/d = 0.4 
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Figure C.6 Experimental load-deformation plots of #8 bars  

with L/d = 4 and e/d = 0.5 

 132



0

20

40

60

80

0 0.2 0.4 0.6 0.8 1 1.2 1.4
ΔV (in)

#13 LP 1
#13 LP 2
#13 AVERAGE
#14 LP 1
#14 LP 2
#14 AVERAGE

0

20

40

60

80

100

0 0.05 0.1 0.15 0.2 0.25
εc (in/in)

#13
#14
AVERAGE

0

20

40

60

80

0 0.2 0.4 0.6
ΔL (in)

(a) 

(b) 

(c) 
 

Figure C.7 Experimental load-deformation plots of #8 bars  

with L/d = 5 and e/d = 0.0 
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Figure C.8 Experimental load-deformation plots of #8 bars  

with L/d = 5 and e/d = 0.1 
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Figure C.9 Experimental load-deformation plots of #8 bars  

with L/d = 5 and e/d = 0.2 
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Figure C.10 Experimental load-deformation plots of #8 bars  

with L/d = 5 and e/d = 0.3 
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Figure C.11 Experimental load-deformation plots of #8 bars  

with L/d = 5 and e/d = 0.4 
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Figure C.12 Experimental load-deformation plots of #8 bars  

with L/d = 5 and e/d = 0.5 
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Figure C.13 Experimental load-deformation plots of #8 bars  

with L/d = 6 and e/d = 0.0 
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Figure C.14 Experimental load-deformation plots of #8 bars  

with L/d = 6 and e/d = 0.1 
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Figure C.15 Experimental load-deformation plots of #8 bars  

with L/d = 6 and e/d = 0.2  

 141



0

20

40

60

0 0.4 0.8 1.2 1.6
ΔV (in)

#31 LP 1
#31 LP 2
#31 AVERAGE
#32 LP 1
#32 LP 2
#32 AVERAGE

0

20

40

60

80

0 0.04 0.08 0.12 0.16 0.2
εc (in/in)

#31
#32
AVERAGE

0

20

40

60

0 0.5 1 1ΔL (in)
.5

#31
#32
AVERAGE

(a) 

(b) 

(c) 
 

Figure C.16 Experimental load-deformation plots of #8 bars  

with L/d = 6 and e/d = 0.3 
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Figure C.17 Experimental load-deformation plots of #8 bars  

with L/d = 6 and e/d = 0.4 
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Figure C.18 Experimental load-deformation plots of #8 bars  

with L/d = 6 and e/d = 0.5 
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Figure C.19 Experimental load-deformation plots of #8 bars  

with L/d = 7 and e/d = 0.0  
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Figure C.20 Experimental load-deformation plots of #8 bars  

with L/d = 7 and e/d = 0.1  
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Figure C.21 Experimental load-deformation plots of #8 bars  

with L/d = 7 and e/d = 0.2  
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Figure C.22 Experimental load-deformation plots of #8 bars  

with L/d = 7 and e/d = 0.3  
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Figure C.23 Experimental load-deformation plots of #8 bars  

with L/d = 7 and e/d = 0.4  
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Figure C.24 Experimental load-deformation plots of #8 bars  

with L/d = 7 and e/d = 0.5 
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Figure C.25 Experimental load-deformation plots of #8 bars  

with L/d = 8 and e/d = 0.0  

 151



0

20

40

60

0 0.4 0.8 1.2 1.6
ΔV (in)

#51 LP 1
#51 LP 2
#51 AVERAGE
#52 LP 1
#52 LP 2
#52 AVERAGE

0

20

40

60

80

0 0.04 0.08 0.12 0.16 0.2

εc (in/in)

#51
#52
AVERAGE

0

20

40

60

0 0.2 0.4 0.6 0.8 1 1.2
ΔL (in)

#51
#52
AVERAGE

(a) 

(b) 

(c) 
 

Figure C.26 Experimental load-deformation plots of #8 bars  

with L/d = 8 and e/d = 0.1  
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Figure C.27 Experimental load-deformation plots of #8 bars  

with L/d = 8 and e/d = 0.2  
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Figure C.28 Experimental load-deformation plots of #8 bars  

with L/d = 8 and e/d = 0.3  
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Figure C.29 Experimental load-deformation plots of #8 bars  

with L/d = 8 and e/d = 0.4  
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Figure C.30 Experimental load-deformation plots of #8 bars  

with L/d = 8 and e/d = 0.5 
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Figure C.31 Experimental load-deformation plots of #8 bars  

with L/d = 9 and e/d = 0.0 
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Figure C.32 Experimental load-deformation plots of #8 bars  

with L/d = 9 and e/d = 0.1 
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Figure C.33 Experimental load-deformation plots of #8 bars  

with L/d = 9 and e/d = 0.2 
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Figure C.34 Experimental load-deformation plots of #8 bars  

with L/d = 9 and e/d = 0.3 
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Figure C.35 Experimental load-deformation plots of #8 bars  

with L/d = 9 and e/d = 0.4 
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Figure C.36 Experimental load-deformation plots of #8 bars  

with L/d = 9 and e/d = 0.5 
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Figure C.37 Experimental load-deformation plots of #8 bars  

with L/d = 10 and e/d = 0.0 
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Figure C.38 Experimental load-deformation plots of #8 bars  

with L/d = 10 and e/d = 0.1 
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Figure C.39 Experimental load-deformation plots of #8 bars  

with L/d = 10 and e/d = 0.2 
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Figure C.40 Experimental load-deformation plots of #8 bars  

with L/d = 10 and e/d = 0.3 
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Figure C.41 Experimental load-deformation plots of #8 bars  

with L/d = 10 and e/d = 0.4 
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Figure C.42 Experimental load-deformation plots of #8 bars  

with L/d = 10 and e/d = 0.5 
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Figure C.43 Experimental load-deformation plots of #8 bars  

with L/d = 11 and e/d = 0.0 
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Figure C.44 Experimental load-deformation plots of #8 bars  

with L/d = 11 and e/d = 0.1 
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Figure C.45 Experimental load-deformation plots of #8 bars  

with L/d = 11 and e/d = 0.2 
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Figure C.46 Experimental load-deformation plots of #8 bars  

with L/d = 11 and e/d = 0.3 
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Figure C.47 Experimental load-deformation plots of #8 bars  

with L/d = 11 and e/d = 0.4 
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Figure C.48 Experimental load-deformation plots of #8 bars  

with L/d = 11 and e/d = 0.5 
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Figure C.49 Experimental load-deformation plots of #8 bars  

with L/d = 12 and e/d = 0.0 
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Figure C.50 Experimental load-deformation plots of #8 bars  

with L/d = 12 and e/d = 0.1 

 176



0

15

30

45

0 0.5 1 1.5 2 2.5ΔV (in)

#101 LP 1
#101 LP 2
#101 AVERAGE
#102 LP 1
#102 LP 2
#102 AVERAGE

0

20

40

60

0 0.04 0.08 0.12 0.16 0.2
εc (in/in)

#101
#102
AVERAGE

0

15

30

45

0 0.5 1 1.5 2 2.5ΔL (in)

#101
#102
AVERAGE

(a) 

(b) 

(c) 
 

Figure C.51 Experimental load-deformation plots of #8 bars  

with L/d = 12 and e/d = 0.2 
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Figure C.52 Experimental load-deformation plots of #8 bars  

with L/d = 12 and e/d = 0.3 
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Figure C.53 Experimental load-deformation plots of #8 bars 

 with L/d = 12 and e/d = 0.4 
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Figure C.54 Experimental load-deformation plots of #8 bars  

with L/d = 12 and e/d = 0.5 
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Figure C.55 Experimental load-deformation plots of #10 bar  

with L/d = 4 and e/d = 0.0 

 181



0

40

80

120

0 0.5 1 1.5
ΔV (in)

2

#2 LP 1
#2 LP 2
#2 AVERAGE

0

30

60

90

0 0.1 0.2 0.3 0.4
εc (in/in)

#2

0

40

80

120

0 0.2 0.4 0.6 0.8 1
ΔL (in)

(a) 

(b) 

(c) 
 

 
Figure C.56 Experimental load-deformation plots of #10 bar 

 with L/d = 4 and e/d = 0.1 
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Figure C.57 Experimental load-deformation plots of #10 bar 

 with L/d = 4 and e/d = 0.2 
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Figure C.58 Experimental load-deformation plots of #10 bar 

 with L/d = 4 and e/d = 0.3 
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Figure C.59 Experimental load-deformation plots of #10 bar  

with L/d = 4 and e/d = 0.4 
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Figure C.60 Experimental load-deformation plots of #10 bar 

 with L/d = 4 and e/d = 0.5 
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Figure C.61 Experimental load-deformation plots of #10 bar  

with L/d = 5 and e/d = 0.0 
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Figure C.62 Experimental load-deformation plots of #10 bar 

 with L/d = 5 and e/d = 0.1 
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Figure C.63 Experimental load-deformation plots of #10 bar 

 with L/d = 5 and e/d = 0.2 
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Figure C.64 Experimental load-deformation plots of #10 bar 

 with L/d = 5 and e/d = 0.3 
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Figure C.65 Experimental load-deformation plots of #10 bar 

 with L/d = 5 and e/d = 0.4 
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Figure C.66 Experimental load-deformation plots of #10 bar 

 with L/d = 5 and e/d = 0.5 
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Figure C.67 Experimental load-deformation plots of #10 bar 

 with L/d = 6 and e/d = 0.0 
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Figure C.68 Experimental load-deformation plots of #10 bar 

 with L/d = 6 and e/d = 0.1 
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Figure C.69 Experimental load-deformation plots of #10 bar 

 with L/d = 6 and e/d = 0.2 
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Figure C.70 Experimental load-deformation plots of #10 bar 

 with L/d = 6 and e/d = 0.3 
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Figure C.71 Experimental load-deformation plots of #10 bar 

 with L/d = 6 and e/d = 0.4 
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Figure C.72 Experimental load-deformation plots of #10 bar 

 with L/d = 6 and e/d = 0.5 
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Figure C.73 Experimental load-deformation plots of #10 bar 

 with L/d = 7 and e/d = 0.0 
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Figure C.74 Experimental load-deformation plots of #10 bar 

 with L/d = 7 and e/d = 0.1 

 200



0

30

60

90

0 0.5 1 1.5
ΔV (in)

2

LP 1
LP 2
AVERAGE

0

20

40

60

0 0.05 0.1 0.15 0.2
εc (in/in)

test

0

30

60

90

0 0.5 1 1.5ΔL (in)

(a) 

(b) 

(c) 
 

Figure C.75 Experimental load-deformation plots of #10 bar 

 with L/d = 7 and e/d = 0.2 
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Figure C.76 Experimental load-deformation plots of #10 bar 

 with L/d = 7 and e/d = 0.3 

 202



0

20

40

60

80

0 0.5 1 1.5
ΔV (in)

2

LP 1
LP 2
AVERAGE

0

20

40

60

0 0.05 0.1 0.15 0.2
εc (in/in)

test

0

20

40

60

80

0 0.5 1 1ΔL (in)
.5

(a) 

(b) 

(c) 
 

Figure C.77 Experimental load-deformation plots of #10 bar 

 with L/d = 7 and e/d = 0.4 
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Figure C.78 Experimental load-deformation plots of #10 bar 

 with L/d = 7 and e/d = 0.5 
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Figure C.79 Experimental load-deformation plots of #10 bar 

 with L/d = 8 and e/d = 0.0 
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Figure C.80 Experimental load-deformation plots of #10 bar 

 with L/d = 8 and e/d = 0.1 
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Figure C.81 Experimental load-deformation plots of #10 bar 

 with L/d = 8 and e/d = 0.2 
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Figure C.82 Experimental load-deformation plots of #10 bar 

 with L/d = 8 and e/d = 0.3 
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Figure C.83 Experimental load-deformation plots of #10 bar 

 with L/d = 8 and e/d = 0.4 
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Figure C.84 Experimental load-deformation plots of #10 bar 

 with L/d = 8 and e/d = 0.5 
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Figure C.85 Experimental load-deformation plots of #10 bar 

 with L/d = 9 and e/d = 0.0 
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Figure C.86 Experimental load-deformation plots of #10 bar 

 with L/d = 9 and e/d = 0.1 
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Figure C.87 Experimental load-deformation plots of #10 bar 

 with L/d = 9 and e/d = 0.2 
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Figure C.88 Experimental load-deformation plots of #10 bar 

 with L/d = 9 and e/d = 0.3 
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Figure C.89 Experimental load-deformation plots of #10 bar 

 with L/d = 9 and e/d = 0.4 
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Figure C.90 Experimental load-deformation plots of #10 bar 

 with L/d = 9 and e/d = 0.5 
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Figure C.91 Experimental load-deformation plots of #10 bar  

with L/d = 10 and e/d = 0.0 
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Figure C.92 Experimental load-deformation plots of #10 bar  

with L/d = 10 and e/d = 0.1 
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Figure C.93 Experimental load-deformation plots of #10 bar  

with L/d = 10 and e/d = 0.2 
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Figure C.94 Experimental load-deformation plots of #10 bar  

with L/d = 10 and e/d = 0.3 
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Figure C.95 Experimental load-deformation plots of #10 bar  

with L/d = 10 and e/d = 0.4 
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Figure C.96 Experimental load-deformation plots of #10 bar  

with L/d = 10 and e/d = 0.5 

 222



0

30

60

90

0 0.5 1 1.5 2
ΔV (in)

LP 1
LP 2
AVERAGE

0

30

60

0 0.04 0.08 0.12 0.16
εc (in/in)

test

0

30

60

90

0 0.5 1ΔL (in) 1.5

(a) 

(b) 

(c) 
 

Figure C.97 Experimental load-deformation plots of #10 bar  

with L/d = 11 and e/d = 0.0 
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Figure C.98 Experimental load-deformation plots of #10 bar  

with L/d = 11 and e/d = 0.1 
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Figure C.99 Experimental load-deformation plots of #10 bar  

with L/d = 11 and e/d = 0.2 
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Figure C.100 Experimental load-deformation plots of #10 bar 

 with L/d = 11 and e/d = 0.3 
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Figure C.101 Experimental load-deformation plots of #10 bar 

 with L/d = 11 and e/d = 0.4 
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Figure C.102 Experimental load-deformation plots of #10 bar 

 with L/d = 11 and e/d = 0.5 
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Figure C.103 Experimental load-deformation plots of #10 bar 

 with L/d = 12 and e/d = 0.0 
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Figure C.104 Experimental load-deformation plots of #10 bar 

 with L/d = 12 and e/d = 0.1 
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Figure C.105 Experimental load-deformation plots of #10 bar 

 with L/d = 12 and e/d = 0.2 
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Figure C.106 Experimental load-deformation plots of #10 bar 

 with L/d = 12 and e/d = 0.3 
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Figure C.107 Experimental load-deformation plots of #10 bar 

 with L/d = 12 and e/d = 0.4 
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Figure C.108 Experimental load-deformation plots of #10 bar 

 with L/d = 12 and e/d = 0.5 
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