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CHAPTER 1

INTRODUCTION

1.1 Background

Recent earthquakes have stimulated an interest in the behavior
of reinforced concrete structures subjected to seismic loadings. Of
particular interest is the behavior of beam~column joints which must
resist very high shear when lateral deformations are imposed on a
moment ~resisting frame (see Fig. 1.1). The strength and stiffness
of the joints undergoing inelastic deformations will have a large

influence on the overall frame performance.

Figure 1.2 shows the forces on a typical interior joint.

The tensile forces produced by the longitudinal beam reinforcement
plus the compressive forces on»the opposite face of the joint must
be resisted by either the concrete or the reinforcement in the

joint. A better understanding of the mechanism of shear transfer
across the joint is the key to improving the design of beam-column
joints. In addition, the bond and anchorage behavior of the rein-
forcement, loss of cross-sectional area due to local spalling, and
cracking of the joint region have an important influence on joint

behavior.

Investigations in the past generally have been limited to
beam-column joints of planar frames; however, researchers have
recognized that two-way frames with lateral loads applied simul~
taneously 1in orthogonal directions may produce a more severe
condition at the joint than has been observed in studies of planar

1,2,3,4

joints. Hinging of orthogonal beams at the joint boundary

will increase the resultant shearing forces on the joint and will
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alter the cracking behavior of the joint region. Also,
bidirectional loadings can produce higher moments on the columns
than could occur under unidirectional loadings. Greater column
moments combined with the decreased flexural strength of diagonally
loaded rectangular colﬁmns is a potential problem that should be
considered. Figure 1.3 shows the forces which occur on three

faces at an interior joint when subjected to skewed lateral loads.

The design procedure for beam-column joints which is
currently used in the United States was developed by the ACI-ASCE
Committee 352. Beam-column joints with beams framing into the
column from two principal directions are designed to resist joint

shear in each direction independently and without regard to the

Y=

(D —
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>
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Fig. 1.3 Forces on joint subjected to bidirectional loads



influence of bidirectional loads. This shortcoming did not go
unrecognized, and in the Committee 352 report, '"the influence of
biaxial forces on shear strength' was recommended as an area of
needed research.S A magnification of unidirectional design loads

to account for the possibility of simultaneous loadings in both
directions is an approach which may be suitable for design of beam-~
column joints. Selection of the proper magnification factor,
however, is a problem which can only be resolved through experimenta-
tion. These needs led to the current investigation of the behavior
of interior beam~column joints subjected to bidirectional load

reversals.

1.2 Test Program

The fifth and sixth tests of a seven-test program are the
subject of this study. To give the reader an overall view of the
test program, a brief description of all of the specimens and their
loadings is given. Each of the seven specimens had the same
geometry as shown in Fig., 1.4. The reinforcement sizes and ratios
and the type of loading for each specimen are given in Table 1.1.
The specimens were named according to the test sequence, the type of
loading, and the reinforcement details. For example, specimen
5-BS-A was tested fifth in the series, was loaded in both directions
simultaneously (Biaxial Simultaneous), and had "A'" reinforcement
details. The "A" designates one of the four different reinforce-
ment details (A, B, C, D) that were used (see Table 1.1). Other
loading patterns which were used are Uniaxial (U), Biaxial

Alternate (BA), and Monotonic Biaxial Simultaneous (MBS).

The reinforcement details of the first three specimens,
1-U-C, 2-BS-C, and 3-BA-C, were identical, but the load histories
were different for each specimen. Specimen 1-U-C was loaded
uniaxially and was the control specimen for the following two

biaxial tests. Racking deformations were applied only to the
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North-South beams of specimen 1-U-C. Specimen 2-BS-C was loaded
simultaneously in both the East-West (E-W) and North-South (N-8)
directions simulating the racking loads which would occur if the
lateral forces were skewed at a 45° angle with respect to the axes
of the structure. Specimen 3-BA-~C was also loaded biaxially, but
deformations were applied alternately to the N-S and E-W beams. For
example, the N-S beams were cycled once while the E-W beams were
held at the dead load deflection, and then the E-W beams were cycled
once while the N-S beams were held at the dead load deflection.
Failure occurred in the joint of both specimens 1-U-C and 3-BA-C,
but specimen 2-BS-C, which was simultaneously loaded in both
directions had a column failure. Since column failure of the
specimens was undesirable, a reevaluation of the design of the

specimens for the remainder of the test program was necessary.

The percentage of bzam-longitudinal reinforcement was
reduced in the remaining four specimens to increase the strength of
the cclumn relative to the strength of the beams. The beam
reinforcement of specimen 4-BS-B was reduced by 1/3 to two #10's
top and two #8's bottom. The bar diameters were kept the same as
the previous specimens, so that a comparison of specimens 4-BS-A
and 2-BS-C, which had similar bond behavior but different beam
reinforcement ratios, could be made. The beam reinforcement of
specimens 5-BS-A, 6-MBS-A, and 7-BS-D consisted of three #8's top
and three #6's bottom. 1In those specimens, the beam reinforcement
ratios were similar to the reinforcement ratios of specimen 4-BS-B,
but the bar diameters were smaller. The effect of the bond
characteristics of the smaller bars was an interesting aspect of
these tests. FEach of the last four specimens was loaded simultane-
ously in both directions and all the specimens were cyclically
loaded except for specimen 6-MBS-A which was loaded monotonically.,
Future tests will explore the behavior of beam-column joints with

slabs.



1.3 Scope and Objective

This study of reinforced concrete beam-column joints will be
based on the test results of specimens 5-BS-A and 6-MBS-A. Both
specimens had the same steel reinforcement details and were loaded
in both principal directions simultaneously. The difference in
the two tests was the applied load history. Specimen 6-MBS-A was
loaded monotonically and specimen 5-BS-A was loaded cyclically. The
primary objective is to compare the results of the two tests and to
evaluate the performance of beam-column joints under the effects
of racking moments applied to the joint in both directions. In
addition, the measured joint shear strength of the specimens was
compared with the calculated shear strengths obtained with design
approaches based on previous studies of planar joints subjected to

unidirectional loads.



CHAPTER 2
SPECIMEN DESIGN

2.1 General

The beam-column joint specimens were specifically designed
so that the joint core strength would be the controlling factor in
specimen behavior. Also, the specimens were designed to have
proportions typical of reinforced concrete framed structures. The
column extended to mid-story height above and below the joint,
based on the assumption that the mid-story height is a point of
contraflexure in the column. The columa and beam cross-sections
were chosen to be 15 in. k 15 in. and 13 in.vx 18 in., respectively,
which were similar to the dimensions used by Meinheit and Jirsa in
a previous study of planar joints at The University of Texas at

Austin.6

2.2 Design Calculations

The design of the specimens was based on the following

calculations. Assume:

f; 4000 psi

H
i}

60000 psi
15 in. x 15 in. square column

13 in. wide i 18 in. deep beams



Design:

10

(1) Joint core shear: Given a 15 in. x 15 in. column and 18 in.

deep beams, the joint core shear strength formula developed

by Meinheit and Jirsa was used to compute a joint core shear

strength.

where

2
5.1 8¢ (f')3
v. = 5.
u = c
ultimate joint shear stress, psi
concrete compressive strength, psi

1+ O.ZSWL/hC (influence of lateral beams)

width of the lateral beam perpendicular to the
applied joint shear, in.

width of the column into which the lateral
beam frames, in.

1+ 6ps.é 1.6 (influence of joint hoop
reinforcement)

the volumetric percentage of transverse hoop
reinforcement

A, (26 + 2n7)

shb*h""

area of the joint hoop bar (one bar area) in2
joint core dimension to outside of hoop, in.
joint core dimension to outside of hoop, in.

spacing of joint hoops, in.

Assuming #4 ties at 5 in. through joint core,

o o 0.2002(12) + 2(12)7]
5 5(12)(12)



11

= 0.0133
¢ =1+ 6(0.0133) = 1.08
B =1+ 0.25(13/15) = 1.22

therefore,

5.1(1.22)(1.08) (4000)2/3

v =
u
= 1690 psi
Vu = ultimate joint shear
= v bd
u

1.69(15)(12.5) = 317 kips

(2) Beam flexural reinforcement necessary to generate the above

joint shear strength, Vu: using the relationship,

V = At f
u s col

+AT £ -~V
Y s ¥

where A: and A; are the areas of positive and negative

flexural reinforcement in the beams. Assuming VC = 40 kips

ol
(see Fig. 2.1) and A: = %A;, the areas of flexural reinforce-

ment required can be determined as

317k = A7(60) + 347(60) ~ 40K

A7 = 3.97 in? => use three #10's top,
47 = 3.81 in?, p= 0.0189

A: = 1.98 in? => use three #8's bottom,

A: = 2.37 in2, p= 0.0117

(3) Determine the maximum expected loads which will be applied
to the specimen assuming the full vield moment of the beams

is developed (refer to Fig. 2.1):



P
o |
col }
=55
Mcol
- o —
*Vmax -] AN
/ 3
M{,( MYy 15"
N 4 % 1
" S Viax
Mcol
55
ﬁ: ‘Vc0l v
<« X5 — > | 25— N5 — >

Fig. 2.1 Forces acting on specimen

12
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it

- a
M Ay £, =)
= 3(1.27)(60)(0.95)(15.5)

= 3370 in.-kips

- L3370 | g i
Vpax = 5(12y - °° kips
a

M; = A fy(d >)

= 3(0.79)(60)(0.95)(15.5)

= 2090 in.-kips
A+ _ 2090 _ .
\max 5(12) 35 kips

Moo, MY

MCol = > x (Assuming equal distribution

of total beam moment to

3370 + 2090 column above and below.)

2

]

2730 in.-kips

(4) Determine longitudinal column reinforcement required to
resist column moment developed. Consider the column as a

simple flexural member with one layer of reinforcement:

) Mo 2730
s’required £ (d - a 60(0.95)(12.5)
y( 5)
= 3.83 in?

Therefore, use four #9's; A_=4.00 in?  The above

calculations indicate the need for twelve #9 longitudinal
reinforcing bars in the column giving an effective four bars
per face for flexure.

- 12(1.00)  _ ¢ 9533
Peol 15(15)



(5) Check shear capacity of column above and below the joint:

assume V = 50K due to possible unequal distribution
col max

of column shears, P = 0, and Vc = 0 (shear carried by

concrete).
v = Vcol max . 20
s @ 0.85
= 59 kips

Assume #4 ties; As = 0.20 in?

A B d 540 (80) 1205
S = =
v 59
g
= 5.1 in.

To be conservative, use #4 ties at 4 in.

(6) Check shear capacity of beams: assume Vmax = 60K and #3

stirrups; As = 0.11 in?

v = Vmax _ 60
n ) 0.85
= 70.6 kips
P N TT.TY -
VC = ZVTC bd ZV%OOO (13)(15.5)

25,500 1bs.

v =V_ - VC = 70.6 - 25.5

s n
= 45.1 kips
s = & fy d _0.22 (60) (15.5)
v 45.1
s
= 4.5 in.

Use #3 stirrups at 4 in.

14
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After testing the first three specimens, it was apparent
that biaxial loadings on the column together with a deterioration of
the bond of the column reinforcement produced greater distress in
the column than had been anticipated. Therefore, the amount of
beam longitudinal reinforcement was reduced in subsequent specimens
to increase the relative strength of the column. The design of
specimens 5-BS-A and 6-MBS-A was the same as the first three
except that the beam reinforcement consisted of three #8's top and

three #6's bottom.

2.3 Specimen Details

The details of both specimens 5-BS-A and 6-MBS-A were
identical. The beams were 13 in. X 18 in. with 1% in. cover and had
#3 stirrups at a 4 in. spacing (see Fig. 2.2). Top and bottom
longitudinal reinforcement consisted of three #8 bars and three
#6 bars, respectively and was continuous through the joint. Crossing
of the beams at the joint required the placement of the E-W
longitudinal reinforcement below the N-S longitudinal reinforcement
as shown in Fig. 2.3. This slightly increased the positive moment
capacity and decreased the negative moment capacity of the E-W
beams compared to the N-S beams. Moment-curvature diagrams for
both positive and negative bending of the beams are shown in

Fig. 2.4.

The column had a 15 in.-x 15 in. square cross section with
twelve equally spaced #9 bars as shown in Fig. 2.5. Transverse
reinforcement consisted of #4 ties at a 4 in. spacing with 1% in.
cover. At the joint, the tie spacing was increased to 5 in., with
two ties within the joint core. Figure 2.6 is an interaction
diagram for the column cross section and has curves for both
uniaxial and 45° biaxial loading. 1In either case, the moment
capacity shown is the component for each principal direction. The

diagram shows that the balanced condition occurs at 300 kips which
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