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A special problem in many reinforced concrete structures built in the 1970’s and 

earlier is the lack of continuity between elements. Continuity is a characteristic of 

structures essential to preventing collapse. Therefore, in extreme loading conditions 

such as loss of a column support due to terrorist attack or if earthquake or other extreme 

actions occur, the structures could be vulnerable to collapse. The study reported here 

focused on two structural discontinuities in existing reinforced concrete structures, 

 vii



discontinuity in bottom reinforcement in beams (horizontal discontinuity) and poorly 

detailed lap splices in columns (vertical discontinuity).  

The objective of this study was to develop rehabilitation methods using CFRP to 

provide continuity of reinforcement in existing structures. To develop the rehabilitation 

methods, two separate experimental studies were conducted using beam and column 

specimens. CFRP materials were applied to the bottom or side face of a beam and 

anchored using CFRP anchors or U-wraps to provide horizontal continuity in bottom 

reinforcement and tested under dynamic loading. After CFRP rehabilitation, the 

ductility of the bottom reinforcement and large rotational capacity of the beam were 

realized. CFRP materials were also applied to the lap splice region in square and 

rectangular columns which exhibited a brittle splice failure as-built. After rehabilitating 

the columns using CFRP jackets and anchors, the failure mode changed from a brittle 

splice failure to yield of column reinforcement, and the strength and deformation 

capacity were improved under both monotonic and cyclic loading. Based on the results 

of beam and column tests, design guidelines for CFRP rehabilitation were proposed. 

Horizontal and vertical continuities can be provided through the use of CFRP for 

rehabilitating existing reinforced concrete structures that were designed prior to the 

introduction of codes that require continuous reinforcement along members and 

between adjacent members. The vulnerability of such structures to collapse can be 

reduced through rehabilitation.  
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CHAPTER 1 

Introduction 

 

1.1 CONTINUITY IN REINFORCED CONCRETE STRUCTURES 

A special problem in many reinforced concrete structures built in the 1970’s and 

earlier is the lack of continuity between elements. Continuity is a characteristic of 

structures essential to preventing progressive collapse. Therefore, in extreme loading 

conditions such as loss of a column support due to terrorist attack or if earthquake or 

other extreme actions occur, the structures could be vulnerable to progressive collapse. A 

progressive collapse is defined as the spread of local damage, from an initiating event 

from element to element resulting, eventually, in the collapse of an entire structure or a 

disproportionately large part of it; also known as disproportionate collapse (Best Practice 

for Reducing the Potential for Progressive Collapse in Buildings, NIST, 2007). To 

prevent progressive collapse, continuity needs to be reinforced so that tension due to 

extreme loading can be carried along a member under either axial or flexural actions. 

Continuity in members of new structures is discussed in ASCE 7-05 (Minimum 

Design load for Buildings and Other Structures, ASCE, 2005).  According to the 

document, local damage in the structure shall not extend disproportionately to the 

remaining portion of the structure.  Damage is limited by providing sufficient continuity 

and redundancy, or energy-dissipating capacity, or a combination thereof, in the members 

of the structure.  The document clearly expresses the requirement for continuity in 

structural members although specific methods to achieve continuity are not discussed.   

The ACI Building Code for new construction (ACI 318-08) requires that 

members of a structure shall be tied together to improve integrity of the overall structure 

through appropriate detailing of reinforcement. It also requires continuity of the 

reinforcement in perimeter beams.  
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Continuity in a structural member is also discussed in Progressive Collapse 

Analysis and Design Guidelines for New Federal Office Buildings and Major 

Modernization Projects, (GSA, 2003). One of the recommended characteristics for a 

robust structure and a low probability of progressive collapse is the use of detailing to 

provide structural continuity and ductility in reinforced concrete structures.  The 

guidelines indicate correct detailing of connections to provide beam-to-beam continuity 

across a column. The document also recommends that existing structures undergoing 

modernization should be upgraded to new construction requirements.  To meet this 

requirement, existing structure rehabilitated to limit progressive collapse should have the 

same level of continuity in the members as a new structure designed to limit progressive 

collapse. 

The study reported here focused on two structural discontinuities in existing 

reinforced concrete structures, discontinuity in bottom reinforcement in beams and poorly 

detailed lap splices in columns. When the central column is removed in Figure 1.1, the 

force carried by the column needs to be transferred through the beams or the columns 

above the removed column to other columns to prevent progressive collapse of the 

structure. The load carried by the column that is removed can be supported by catenary 

action of the continuous beams and/or transferred upward to stories that have not been 

damaged through the column above the removed column. These alternate load paths 

require tensile capacity in the beams and columns. The tensile capacity of the members 

needs to be developed in the steel reinforcement in the beams and columns. Where 

discontinuities exist, the tensile capacity of the reinforcement can not be developed. 

Typical beam details of reinforced concrete structures in ACI 315-74 (Manual of 

Standard Practice for Detailing Reinforced Concrete Structures, ACI, 1974) are shown in 

Figure 1.2 (ACI 315-74 was based on ACI 318-71.).  Continuity of the reinforcement in 

the beams can be provided by either continuous bottom reinforcement or a combination 

of top and bottom reinforcement that is contained within closed transverse reinforcement. 

However, the bottom reinforcement is not continuous (Figure 1.2 ) and typically little or 



no transverse reinforcement is provided in the overlap region of the top and bottom 

reinforcement. Therefore, horizontal discontinuities exist in the beams.  

Typical column details in ACI 315-74 are shown in Figure 1.3.  The lap splices in 

longitudinal reinforcement were based on compression loads only and the length of those 

splices and the amount of transverse reinforcement are inadequate if the column is 

subjected to tension. Although ACI 315-74 recommends 30 times the bar diameter of 

longitudinal reinforcement for length of lap splices, ACI 318-63 allows using 24 times 

the bar diameter for length of lap splices in compression (GR 60 reinforcement). In 

addition, only two transverse ties are provided in the lap splice region in Figure 1.3. 

Therefore, the longitudinal reinforcement can not develop tension when a column is 

removed because of the short lap slice length and insufficient transverse reinforcement, 

and a vertical discontinuity may exist in the columns above the removed column. 

 

Span B Span A 
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Figure 1.1 Discontinuities in exiting reinforced concrete structures 

 

Discontinuity in bottom 
reinforcement                

(horizontal discontinuity) Column removed due to blast 
or impact  

Poorly detailed lap splices  
(vertical discontinuity) Vertical tie force  

Horizontal tie force  



 

Figure 1.2 Discontinuity in bottom reinforcement (horizontal discontinuity),           

ACI 315-74 

 

Figure 1.3 Poorly detailed lap splices of longitudinal reinforcement              

(vertical discontinuity), ACI 315-74 

1.2 OBJECTIVE 

The use of Carbon Fiber Reinforced Polymer (CFRP) materials may provide a 

solution for rehabilitating structures with discontinuities in the reinforcement (Figure 1.4). 

The objective of this study is to develop rehabilitation methods using CFRP to provide 

continuity in existing reinforced concrete structures vulnerable to progressive collapse. 

 4



In this study, CFRP materials were applied to the bottom or side faces of a beam 

to provide horizontal continuity in the bottom reinforcement and tested under dynamic 

loading. Beam rehabilitation methods are discussed in Chapter 3. CFRP materials were 

also applied to the lap splice region in a column so that the tensile strength and ductility 

of the lap spliced longitudinal bars could be realized thereby providing vertical continuity. 

This column rehabilitation method is discussed in Chapter 4. Based on the test results of 

the rehabilitated beams and columns, design guidelines for CFRP rehabilitation are 

proposed in Chapter 5. 
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Side face application of CFRP 

Confinement using CFRP 

Bottom face application of CFRP 

Figure 1.4 Application of CFRP to provide continuity 



CHAPTER 2 

Background 

 

2.1 ANCHORAGE METHODS OF CFRP  

When CFRP sheets are used in flexural strengthening of reinforced concrete 

structures, delamination (debonding) of CFRP from the concrete surface due to loss of 

adhesion at the interface is a primary failure mode if no additional anchors are provided 

(Figure 2.1). Delamination mechanisms of CFRP sheets without anchorage have been 

studied by Teng et al. (2002), Toutanji et al. (2006) and Bonacci et al. (2001). In addition, 

ACI 440 (2002) provides equations for estimating bond strength of CFRP. However, in 

this study, the expected failure mode of the CFRP sheets is fracture through the use of 

supplementary anchorage (Figure 2.2).  Although delamination occurred, the final failure 

mode of CFRP sheet was fracture of CFRP sheet because the CFRP sheet is held in the 

concrete by the anchorage.  Efficient use of the material can be achieved if the ultimate 

strength of CFRP is realized. When delamination occurs it has not been possible to 

mobilize more than 50% of the tensile strength of the CFRP sheet if no supplementary 

anchorage is provided. 

 

Figure 2.1 Delamination of CFRP sheet 
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 Supplementary anchors 

Figure 2.2  Fracture of anchored CFRP sheet 

Anchorage methods for CFRP sheets in reinforced concrete structures have been 

studied by several researchers. The use of mechanical fasteners was studied by Lamanna 

(2002, Figure 2.3) and U-anchors (embedding CFRP into preformed grooves) were 

studied by Khalifa (1999, Figure 2.4). Premature failure of the anchorage before the 

CFRP sheet developed the full strength was observed using these methods and the 

application of the anchorage was relatively complicated because of the differences 

between the properties of the CFRP sheets and the anchorage system. 

 

Figure 2.3 Anchorage of CFRP using mechanical fasteners (Lamanna, 2002) 

 

Figure 2.4 Anchorage of CFRP using U-anchor, (Khalifa, 1999) 
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The study reported herein focused on the use of CFRP anchors or U-wraps or a 

combination of the two to provide anchorage for CFRP sheets. The anchorage methods 

were relatively simple and easy to apply to existing reinforced concrete structures.  

A CFRP anchor consists of a roll of CFRP sheet inserted into the concrete and 

splayed out over the CFRP sheet in a fan shape (Figure 2.5). Early use of CFRP anchors 

is reported by Kobayashi et al. (2001).   Kobayashi investigated application of CFRP 

anchors to a CFRP wrapped column with wing walls (Figure 2.6).  The wing walls 

prevent wrapping the CFRP sheets around the column continuously.  The CFRP anchor 

can provide continuity of the CFRP sheet through the wing wall. Kobayashi investigated 

the stress transfer mechanisms of CFRP anchors and factors that influence the capacity of 

CFRP anchor. Kobayashi found that: 

- Angle of the fan shape needs to be less than 90 degree (Figure 2.6). 

- Radius of the fan shape needs to be more than 150 mm (Figure 2.6). 

- Spacing of the anchors in the direction perpendicular to the main sheet needs to be 

less than 200 mm (Figure 2.6).  . 

- Overlapping of the fan portion of CFRP anchors needs to be more than 10 mm 

(Figure 2.6).   

CFRP sheet 

CFRP anchor 

 

Splayed in fan shape Inserted into hole 

Rebar tie for inserting the anchor 
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Figure 2.5 CFRP anchor 



 

Figure 2.6 CFRP anchors for CFRP wrapping the column with wing wall, 

(Kobayashi et. al,. 2001) 

 

Further research on the capacity of CFRP anchors was conducted by Ozdemir and 

Akyuz (2005).  They investigated the effects of concrete compressive strength, anchorage 

depth, size of anchor hole, and width of CFRP sheet per anchor on the tensile capacity of 

anchors. Ozdemir and Akyuz found that: 

- Three failure modes were observed depending on the embedment depth, h . 

o Shallow concrete cone failure, h ≤  50 mm 

o Cone-bond failure, 70 mm ≤ h ≤  100 mm 

o Rupture of CFRP sheet, h  = 150 mm 

- Compressive strength of the concrete did not affect the tensile capacity of the 

CFRP anchor if its embedment depth was less than 50 mm.  However, as 

embedment depth increased, the effect of concrete compressive strength became 

more significant.   

- As embedment depth increased, tensile capacity of the CFRP anchor also 

increased linearly until the depth reached an effective bond length of 100 mm. 

Beyond this length the tensile capacity did not increase. 
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- The diameter of the anchor hole did not have a significant effect on the tensile 

capacity of the CFRP anchor.  

- The tensile capacity of the CFRP anchor increased with an increase in the amount 

of CFRP materials, but the increase was not proportional to the increase in the 

material.  

 

Ozedmir and Akyuz also suggested equations (Equations 2-1 and 2-2) for 

predicting tensile capacity of CFRP anchors. These equations were based on their 

experimental study and a cone-bond failure model proposed by Cook et al. (1998). 

Ozedmir and Akyuz found that the concrete cone depth, hc, in which shallow cone failure 

occurs, is 50 mm for all embedment length of the anchors. Equation 2-1 represents tensile 

capacity of an anchor when shallow cone failure occurs ( h ≤  50 mm). Equation 2-2 

represents tensile capacity of an anchor when shallow cone is followed by a slip through 

the remaining part in failure (cone-bond failure, >50 mm). h

 

45°
Shallow cone 

failure hc =50 mm 

Bond 
failure

Figure 2.7 Stress distribution along the embedment depth of CFRP anchor 

(Ozedmir and Akyuz, 2005) 

 

     mmhhdhfP cn 50)(33.0 ≤×+××= π                                Equation 2-1 

mmhhhdhdhfP cavgcccn 50)()(33.0 >−×××+×+××= πτπ   Equation 2-2 

nP : tensile strength of CFRP anchor, N 
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cf : compressive strength of concrete, MPa 

d : hole diameter, mm 

h : embedment depth of CFRP anchor, mm 

ch : concrete cone depth, 50 mm 

avgτ : average bond stress of the concrete, 
d

h
f c

cavgτ a, (Cook et al., 1998) 
π

84.1=  MP

 

odified versions of Equations 2-1 and 2-2 using US 

customary unit. 

Equations 2-3 and 2-4 are m

 

.2)(4 inhhdhfP cn ≤×+××= π       Equation 2-3 

.2)(22)(4 inhhhhfhdhfP ccccccn >−××+×+××= π     Equation 2-4 

: tensile strength of CFRP anchor, lb 

compressive strength of concrete, psi 

d
f CFRP anchor, in. 

h
 

ased on above findings, Kim (2006) and Orton (2007) developed anchorage 

designs

ton and Kim also studied CFRP U-wraps and a combination of CFRP anchors 

and U-

nP

cf : 

: hole diameter, in. 

h : embedment depth o

c : concrete cone depth, 2 in. 

B

 for CFRP anchors to anchor sheets to the bottom or side faces of reinforced 

concrete beams. The CFRP sheets with anchors in the test beams developed the tensile 

strength under static loading conditions. In Chapter 3, test results are presented on the 

performance of CFRP anchorage under dynamic loading to extend the application of the 

methods to rehabilitation of structure vulnerable to progressive collapse. A progressive 

collapse triggered by a blast where a column is suddenly removed results in dynamic 

loads and no reports were found in the literature on effects of loading rates on CFRP 

anchors. 

Or

wraps. CFRP U-wraps are sheets of CFRP attached transverse to the main CFRP 
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sheet for continuity (Figure 2.8). The CFRP sheets also developed the full tensile strength 

through the use of CFRP U-wraps or a combination of CFRP anchors and U-wraps. 

These anchorage methods are discussed in Chapter 3 and were also evaluated under a 

dynamic loading condition. 

 

Figure 2.8 CFRP U-wrap 

2.2 USE OF CFRP IN STRENGTHENING OF RC BEAMS UNDER DYNAMIC LOADING 

Several researchers have investigated dynamic behavior of reinforced concrete 

beams strengthened using CFRP materials.  

Jerome et al. (1996) experimentally investigated static and dynamic response of 

plain concrete beams externally reinforced with CFRP. CFRP materials were applied to 

the bottom and side faces of the plain concrete beams. The experimental results indicated 

that performance under static and dynamic loading of beams was improved after being 

reinforced with CFRP. In addition, they reported that the failure mode of the beams in a 

dynamic loading condition did not change from the failure mode in a static loading 

condition. The failure mode was shear failure of beam after delamination of CFRP from 

the concrete surface. 
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Cantwell et al. (1999) conducted similar research on CFRP strengthened plain 

concrete beams. They also found that the failure mode of the beams under static and 

dynamic loading was delamination of CFRP from the concrete surface although 

improvement in performance of the beams was observed after strengthening. 

Erki et al. (1999) conducted a study on the behavior of reinforced concrete beams 

strengthened using CFRP under dynamic loading. The test beams were not plain concrete 

beams but reinforced concrete beams with continuous steel reinforcement.  They reported 

that the test beams strengthened using CFRP performed well under dynamic loading 

although they showed less energy absorption than beams externally strengthened with 

steel plate. The failure mode of the test beams was delamination of CFRP. In addition, 

they recommended that use of additional anchorage for CFRP sheet would improve 

dynamic performance of the reinforced concrete beams. 

In the previous studies, the dynamic behavior of concrete beams strengthened 

with CFRP was compared with static behavior. However, CFRP sheets were not 

anchored. In addition, only limited information about member behavior of CFRP 

strengthened beams failing under dynamic loading is available. Therefore, the study 

reported in this dissertation initially focused on the dynamic behavior of CFRP materials 

anchored using CFRP anchors and U-wraps and then was extended to investigation of 

member behavior of the CFRP strengthened beams under dynamic loading. These topics 

are discussed in Chapter 3. 
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2.3 REHABILITATION OF LAP SPLICED LONGITUDINAL BARS IN RC COLUMNS 

Aboutaha et al. (1999) studied the effectiveness of rehabilitation methods using 

steel jackets with adhesive anchor bolts (Figure 2.9-b) and steel jackets with through rods 

(Figure 2.9-c) to repair damaged rectangular concrete columns. The columns were 

designed based on ACI 318 - 56 or 63 and had poorly detailed lap splices of longitudinal 

reinforcement. Lap splice failure occurred in the as-built columns and they showed poor 

strength and ductility. These columns were repaired using steel jacketing with adhesive 

anchor bolts or through rods. The test results indicated that the repair techniques 

improved strength and ductility. Although the columns repaired with steel jackets with 

through rods showed better performance than the columns repaired with adhesive anchor 

bolts, steel jackets with adhesive anchor bolts were effective in improving performance 

of the rectangular reinforced concrete columns. The adhesive anchor bolts restrained 

opening of splitting cracks in the splice region by improving the confining effects of steel 

jackets on splices not located near a corner of the jacket.  CFRP anchors were intended to 

function in a similar manner in the rehabilitation using CFRP. In the study reported in 

this dissertation, CFRP jackets and CFRP anchors were used to repair and strengthen 

rectangular reinforced concrete columns with inadequate lap splices of longitudinal 

reinforcement. The design of the test columns and the test setup were based on the study 

of Aboutaha et al. Therefore, effectiveness of the rehabilitation methods using CFRP 

jackets and anchors could be compared with rehabilitation using steel jackets and 

adhesive anchor bolts.  
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b. Details of steel jacket with anchor bolts 
a. Typical strengthened column 

c. Details of steel jacket with through rods 
 

Figure 2.9 Repair of rectangular RC columns (Aboutaha et al., 1999) 

 

Several researchers have investigated the use of fiber reinforced polymer 

materials to improve lap splice behavior in circular and rectangular reinforced concrete 

columns.  

Elsanadedy et al. (2005) conducted an analytical study to predict the behavior of 

poor lap splices in circular bridge reinforced concrete columns retrofitted with FRP 

jackets and proposed a retrofit design criteria. Harries et al. (2006) experimentally 

investigated retrofit of poorly detailed lap splices in square reinforced concrete columns 

(18 in. x 18 in.) using CFRP jackets (Figure 2.10). Ghosh et al. (2007) also conducted an 

experimental study on rehabilitation of lap splices in circular and square columns (14 in. 

diameter, 12 in. x 12 in) using CFRP jackets (Figure 2.11). In above studies, all the 
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columns were strengthened to improve seismic performance and improvement of strength 

and deformation capacity was observed after strengthening.  However, only circular or 

square columns were investigated in these studies. Rectangular columns were not 

investigated although CFRP jacketing of rectangular columns will not be as efficient as 

that of circular or square columns. In addition, the effectiveness of multiple layers of 

fiber reinforced jackets has been studied but the use of CFRP anchors has not been 

studied.  

Harajli et al. (2008) experimentally investigated use of FRP jackets in seismic 

strengthening of lap splices in rectangular reinforced concrete columns (20 cm x 40 

cm, Figure 2.12). The improvement in strength and deformation capacity was observed in 

the test columns after rehabilitation. However, the strengthened column was loaded in the 

long direction of section in which CFRP jackets would be more effective in confining the 

lap spliced region. Consequently, the loading in the long direction of column section was 

less critical than the loading in the short direction.  

Previous studies have been limited to the rehabilitation of circular or square 

columns using FRP jackets. The rehabilitation of rectangular columns and effectiveness 

of CFRP anchors in the rehabilitation have not been studied.  



 

Figure 2.10 Square columns with poor lap splices, (Harries et al., 2006) 
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Figure 2.11  Square and circular columns with poor lap splices, (Ghosh et al., 2007) 
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Direction of loading 

Figure 2.12 Rectangular columns with poor lap splices, (Harajli et al., 2008) 
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CHAPTER 3 

Experimental Program – Rehabilitation of Poorly 

Detailed Reinforced Concrete Beams under Dynamic 

Loading 

 

3.1 INTRODUCTION 

The objective of this phase of the research program was to evaluate the 

performance of Carbon Fiber Reinforced Polymer (CFRP) sheets used to provide 

continuity in reinforced concrete structures under dynamic loading. High loading rates 

may occur in structures vulnerable to failure by progressive collapse when a column is 

suddenly removed due to extreme loads.   

The basic rehabilitation technique for this program was installation of CFRP 

materials either on the bottom (Figure 3.1) or the sides (Figure 3.2) of the beam to 

provide continuity of bottom reinforcement.  CFRP sheets were attached to the concrete 

surface by epoxy resin and by CFRP anchors or CFRP U-wraps to develop the full tensile 

capacity of the CFRP sheet after delamination. The rehabilitation technique was studied 

with different geometries and quantities of CFRP materials under static loading 

conditions and reported by Kim (2006) and Orton (2007). The CFRP fully developed the 

ultimate tensile strength under the static loading using CFRP anchors and CFRP U-wraps 

to transfer force from the concrete to the CFRP sheet.    

However, in the case where a column is suddenly removed, the reinforced 

concrete floor beams are subjected to a dynamic load. Under high load rates, the response 

of CFRP materials may differ from that under a static load.  Therefore, the performance 

of CFRP rehabilitation techniques under the static loading condition needs to be verified 

under dynamic loading conditions. The verification of the rehabilitation technique was 

also recommended by the practicing engineering panel of this research program.  
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The specimens tested in this study had the same geometry and quantity of CFRP 

materials as the specimens tested under the static loading conditions.   
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Figure 3.1 Rehabilitation technique, CFRP on the bottom face of beam 

 

 

 
 

  

Figure 3.2 Rehabilitation technique, CFRP on the sides of beam 
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3.2 TEST SPECIMENS 

Three types of reinforced concrete beams were tested in this study.  The 

dimensions and layout of longitudinal and transverse reinforcement of the beams tested 

are shown in Figure 3.3 (Type A), Figure 3.4 (Type B) and Figure 3.5 (Type C).  In all 

the beams, discontinuity in the bottom reinforcement existed at the middle and sufficient 

amount of transverse reinforcement was provided to prevent shear failure. The transverse 

reinforcement was placed symmetrically. 

The purpose of testing Type A and B specimens was to observe effectiveness of 

the anchorage using CFRP anchors and U-wraps to develop the full tensile capacity of 

CFRP sheets. The bottom face of the Type A beam was flat while that of the Type B 

beam had a 2 in. height transition.  This height transition was fabricated with a 1:4 slope 

ramp, which was installed after the beams were cast. The background of height transition 

ramp is discussed in Section 3.4.3. A 1 in. discontinuity in bottom beam reinforcement 

existed at the middle of both types of beams.  The reentrant ends in Type A and B beams 

existed because the height of the beam was limited by size of the main supports in the test 

setup.  

Type C beams represent a “proof-of-concept” test to verify that the CFRP 

rehabilitation would permit the discontinuous reinforcement to reach yielding and allow a 

flexural hinge to develop. A portion of a column was included at the mid-span of Type C 

beam.  The 2 in. height transitions were also fabricated with a 1:4 slop ramp in the both 

side of Type C beam, which were installed after the specimens were cast. A hole was 

drilled through the column portion to connect the CFRP sheets through the column. A 3 

in. discontinuity in the bottom beam reinforcement in the beam-column connection 

represented typical details of building designed under pre-1989 codes. The design of the 

Type C beam was based on the study by Orton (2007). 

Fourteen beams, 9 Type A beams, 2 Type B beams and 3 Type C beams, were 

tested.  Two of the Type-A specimens were rehabilitated by placing CFRP materials on 
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the side faces of the beam.   CFRP materials were installed on the bottom face of the 

beams in the other eleven specimens. 
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Figure 3.3 Type A specimen, flat bottom face 

 

 

Figure 3.4 Type B specimen, height transition bottom face 

204 in.

192 in.

8 in.

1 in. discontinuity

Reinforcement, GR60 
2-#3 top  
2-#6 bottom 

16 in.18 in. 

2 in. height transition8 in.  

WestEast #3 @ 3 in. #3 @ 6 in.

*Transverse reinforcement was placed symmetrically about mid-span.

204 in.
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Reinforcement, GR60 
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12 in 
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#3 @ 3 in. #3 @ 6 in.

*Transverse reinforcement was placed symmetrically about mid-span.
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Figure 3.5 Type C specimen, column on bottom face  

6 in 

3 in. discontinuity  

Reinforcement, GR60 
2-#3 top  
2-#3 bottom   
 

12 in 

6 in  

9 in  

204 in.

192 in.
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*Transverse reinforcement was placed symmetrically about mid-span.
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3.3 MATERIAL PROPERTIES 

3.3.1 Concrete 

Design compressive strength was 4,000 psi. The beams were fabricated from 

three different batches and the measured 28 day compressive strengths of concrete were 

2,000 psi, 5,000 psi, and 6,000 psi. In the first cast, the compressive strength of the 

concrete was 2,000 psi due to supplier errors and the beams fabricated in this cast were 

tested to investigate the effect of concrete strength on CFRP rehabilitation although this 

was not a parameter that was intended in the test matrix.  The measured compressive was 

used in calculating the static strength of the test beams. 

3.3.2 Steel 

The steel reinforcement used for longitudinal reinforcement was GR60. The #6 

longitudinal bars used in Type A and Type B beams was designed to remain elastic 

during the test because the purpose of test was to observe behavior of CFRP materials. 

Strains measured in these bars were between 0.0002 and 0.0016 well below yield. The 

measured tensile yield strength of the #6 bars was between 63 ksi and 70 ksi. 

The #3 longitudinal bars used in Type C beam were expected to yield and show 

plastic behavior during the test. The measured tensile yield strength of the #3 bars was 52 

ksi and a stress-strain curve is shown in Figure 3.6. 

3.3.3 CFRP 

The CFRP material used in this experimental program was Tyfo® SCH-41 

Composites with Tyfo® S Epoxy from FYFE Co. LLC. 

The CFRP material was unidirectional material and had no tensile capacity in 

transverse direction of the fabric. The specified properties from the manufacturer are 

shown in Table 3.1. The typical test value of the ultimate tensile strength (143 ksi) was 

used in calculating the static strength of the test beams. The previous studies showed that 
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the measured properties of this CFRP material were consistent with the specified 

properties from the manufacturer (Kim, 2006; Orton, 2007). 

The stress-strain curve of the CFRP material is shown in Figure 3.6. Although the 

CFRP has higher strength than the steel bar, the CFRP has a lower modulus than the steel 

bar.  The CFRP has a linear stress-strain relationship up to fracture. 
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Figure 3.6 Strain-stress curves of steel and CFRP 

 

Table 3.1 Material properties of CFRP suggested by manufacturer 

Properties 
Ultimate Tensile 

Strength 
Elongation 
at Break 

Tensile 
modulus 

Laminate 
thickness 

Typical Test Value 143 ksi 1.0 % 13,900 ksi 0.04 in. 

Design Value 121 ksi 0.85 % 11,900 ksi 0.04 in. 

 

No consideration has been given to fire effects on CFRP rehabilitation in this 

study. However, if the fire is of concern to designers and building owners, they may use 

x 

#3 bar, GR60 

CFRP 
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fire protection materials on CFRP strengthened reinforced concrete structures.  

Effectiveness of fire protection materials on CFRP has been studied by Nofal (2005), 

Chowdhury (2007), and Kodur (2007). They have found that the fire protection materials 

such as perlite mortar and ceramic fiber may protect CFRP for the required fire resistance 

rating for evacuation. 
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3.4 REHABILITATION METHODS 

3.4.1 Test Variables 

Static loading tests of the beams rehabilitated with different methods of using 

CFRP materials preceded this study. In the previous studies, focus was on finding 

efficient methods for anchoring CFRP materials to reinforced concrete structures.   The 

anchorage methods selected for the dynamic loading test of Type A and B beams 

developed the ultimate tensile capacity of the CFRP under static loading conditions in the 

previous tests (Kim, 2006; Orton, 2007). Fracture of CFRP due to development of the 

ultimate strength was expected at the middle of the beams in the dynamic loading test 

(Figure 3.7). Failure modes of the beams were observed and strain in the CFRP was 

measured to study effectiveness of the anchorage method under dynamic loading. The 

static flexural strength of Type A and B beams was selected corresponding to an ultimate 

tensile strength of CFRP (143 ksi) and calculated using the equivalent rectangular stress 

block (ACI 318-08). 

After verify that theses anchorage methods results in the CFRP reaching its 

ultimate strength under dynamic loading, the Type C beams were designed to develop 

ductility by yielding of the bottom reinforcement in the beam outside of the region that 

was strengthened (Figure 3.8).  The strain in the steel reinforcement was measured to 

access non-linear response of the bottom reinforcement. The static flexural strength of 

Type C beams was selected corresponding to yielding of the bottom reinforcement at the 

ends of the region that was strengthened using CFRP where plastic hinges were expected. 
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Figure 3.7 Test of Type A beam 

 

 

Figure 3.8 Test of Type C beam 

 

The test variables for this experimental investigation are as follows: 1. Location 

of CFRP materials in a beam (bottom face or side faces); 2. Condition of bottom face 

(flat, height transition or column); 3. Type of anchorage (CFRP anchors or CFRP U-

wrap); 4. Concrete strength; 5. Surface preparation; 6. Effect of overhead application.   

The bottom face application was used in more of the tests because it was indicated 

by the practicing engineering panel that CFRP materials are more easily applied on the 

bottom face in ordinary reinforced concrete structures. Side face application may be 

limited because the method requires flat side surfaces and many beam-column 

connections consist of columns that are wider than the beams.  

  In addition, this study focused on the use of the CFRP anchors rather than the 

use of the CFRP U-wraps because the anchorage method using CFRP anchors was a 

more efficient use of the materials than that of using CFRP U-wraps (Kim, 2006; Orton, 

2007). Therefore, more variables were evaluated for the specimens with bottom face 

Anchorage 

CFRP sheet
Fracture of CFRP 

Yielding of bottom reinforcement 

CFRP sheet Anchorage 
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application of the CFRP sheets anchored by the CFRP anchors. A summary of the test 

specimens and the test variables is shown in Table 3.2. In specimen notation, 

characteristics of a test beam are identified as follows: 

 Type of beam: Type A, B or C 

 Face where CFRP is applied to: 

o  BF: Bottom face, Flat 

o BH: Bottom face, Height transition 

o  S: Side face 

o  BC: Bottom face with column 

 Compressive strength of the concrete:  

o 2: 2,000 psi  

o 5: 5,000 psi 

o 6: 6,000 psi  

 Surface preparation  

o S: Sand blast 

o N: No surface preparation (separation) 

o G: Grind 
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Table 3.2 Summary of test variables 

 

*: Multiple impacts prior to failure, all others subjected to only one loading 

A: Type A; B: Type B; C: Type C  

BF: Bottom face, Flat; BH: Bottom face, Height transition; S: Side face; BC: Bottom face with column 

A: CFRP Anchor; U: CFRP U-wrap 

2: 2,000 psi; 5: 5,000 psi; 6: 6,000 psi 

S: Sand blast; N: No surface preparation (separation); G: Grind 

Notation Sketch

A-BF-N-5S None 5,000 psi

A-BF-A-2S 2,000 psi

A-BF-A-5S* 5,000 psi

A-BF-A-2N 2,000 psi

A-BF-1.3A-5N 5,000 psi

A-BF-U-5S*
CFRP          

U-wraps
5,000 psi Sand-blast

A-BF-A/U-6G
CFRP anchors / 
CFRP U-wraps

6,000 psi Grind

B-BH-A-6S*
CFRP          

anchors
6,000 psi Sand-blast

B-BH-U-6S
CFRP          

U-wraps
6,000 psi Sand-blast

A-S-A-6G*
CFRP          

anchors
6,000 psi Grind

A-S-AU-2S*
CFRP anchors 
and CFRP U-

wrap
2,000 psi Sand-blast

C-BC-A-6G-01*
CFRP          

anchors
6,000 psi Grind

C-BC-A-6G-02*
CFRP          

anchors
6,000 psi Grind

C-BC-U-6G*
CFRP          

U-wraps
6,000 psi Grind

Surface 
preparation

Type of 
Specimen

Location 
of CFRP

Condition of 
bottom face

Type of 
anchorage

Concrete 
strength

Type-C
Bottom 

face
Height 

transition

Specimen

Bottom 
face

Side face

Flat

Height 
transition

CFRP          
anchors

Type-A

Sand-blast

Separation

Type-A

Type-B

Overhead application 
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3.4.2 Components of CFRP Rehabilitation 

The CFRP materials were used for 2 different purposes. First, they were used as a 

tensile element to provide continuity to the bottom reinforcement.  The CFRP sheet 

shown in Figure 3.9 is attached solely by epoxy resin at the CFRP concrete interface for 

flexural continuity.  Second, the CFRP materials were used as anchors to transfer forces 

from the CFRP sheet to the concrete substrate. Two types of the anchors were used; 

CFRP anchors and CFRP U-wraps. Installation procedures for CFRP materials to 

reinforced concrete beam are provided in Section 3.4.2.4. 

3.4.2.1 CFRP Sheet 

Two types of CFRP sheets, beam sheet and connection sheet, were used to 

provide continuity in the bottom reinforcement (Figure 3.9 and Figure 3.10). Beam sheet 

consists of a layer or layers of CFRP sheet applied to the flat bottom or side faces of the 

beam. In specimens with height transition, a strap of CFRP sheet was used to connect the 

sheets on each sides of the height difference. In the specimens with a column, a CFRP 

sheet connected the sheets on the bottom face of the beam in one bay to the sheet in the 

adjacent bay through a hole in the column.  The ends of the connection sheet were spread 

out in a fan shape at the end of the transition ramp. The width of CFRP used in 

fabricating a connection sheet was 33 % more than that in the beam sheet being 

connected in all the specimens. 

When beam sheets were used on side faces of a beam, the application was 

symmetrical on both sides. 
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Figure 3.9 CFRP sheet, beam sheet 

 

 

  

Figure 3.10 CFRP sheet, Connection sheet 

Width of 
beam sheet

Connection sheet 

Beam sheet 
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3.4.2.2 CFRP Anchor 

A CFRP anchor consists of a roll of CFRP sheet inserted into the concrete and 

splayed out over the CFRP sheet (Figure 3.11). The width of CFRP used in fabricating a 

CFRP anchor depended on the strength of the CFRP sheet being anchored.  Total width 

of a set of the CFRP anchors at an anchor point was either the same width as the main 

sheet or 33 % larger than the main sheet.  Details of CFRP anchors in the test beams are 

provided later in this section. Examples of application of the CFRP anchors to the test 

beams are shown in Figure 3.12 and Figure 3.13 . 

 

 

Figure 3.11 CFRP anchor 

Splayed in fan shape Inserted into hole 

Length of an anchor 

Width / 2 

Width / 2 

Width of 
an anchor 



 

 36

 

Figure 3.12 Layout of CFRP, Type A, bottom face 

 

 

 

Figure 3.13 Layout of CFRP, Type A, side face 

CFRP anchor CFRP sheet, beam sheet 

CFRP anchor CFRP sheet, beam sheet 
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3.4.2.3 CFRP U-wrap 

CFRP U-wraps were sheets of CFRP attached transverse to the main CFRP sheet 

(Figure 3.14). The width of a CFRP U-wrap was identical to the width of the main CFRP 

sheet.  The width of CFRP U-wrap was 6 in. for Type A and B beams and 4.5 in. for 

Type C beam. The CFRP U-wrap was attached on the bottom face of the beam over the 

CFRP sheet and extended on each side of beam 9 in. (Type A or B beam) or 6 in. (Type 

C beam) from the bottom face of beam. Examples of application of the CFRP U-wraps to 

the test beams are shown in Figure 3.15 and Figure 3.16. 

 

 

Figure 3.14 CFRP U-wrap 

  

 

 

9 in. Type A or B

6 in. Type C 

6 in. Type A or B
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Figure 3.15 Layout of CFRP, Type B 

 

 

 

Figure 3.16 Layout of CFRP, Type C 

 

CFRP sheet, Beam sheet CFRP sheet, Connection sheet CFRP U-warp 

4.5 in.  

6 in.  

4.5 in.  

CFRP sheet, connection sheet CFRP U-wrap CFRP sheet, beam sheet 

6 in.  
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3.4.3 Installation of CFRP to Reinforced Concrete Beams 

3.4.3.1 Surface Preparation 

The CFRP sheet was attached on three different surface conditions. The concrete 

surface of a test beam where CFRP sheet would be applied was either 1. sand-blasted, 2. 

ground or 3. separated using clear polyethylene wrap. A summary of the surface 

preparation of the test beams is shown in Table 3.2. 

The sand-blasted and ground concrete surfaces to removed cement paste on the 

concrete surface are shown in Figure 3.17 and Figure 3.18. The concrete surface was 

prepared to meet the requirement for a minimum concrete surface profile (CSP) 3 as 

defined in the International Concrete Research Institute (ICRI) surface-profile-chips. In a 

previous study, Orton (2007) reported that sand-blasting and grinding were equally 

effective on preparation of the concrete surface for CFRP sheets. The surface of test 

beams except A-BF-A-2N and A-BF-1.3A-5N, were sand-blasted or ground. 

In A-BF-A-2N and A-BF-1.3A-5N, clear polyethylene wrap was placed on the 

surface to eliminate bond between the CFRP sheet and the concrete (Figure 3.19). This 

polyethylene wrap separated the concrete surface from CFRP sheets and epoxy resin so 

there was no adhesion between the surface and the sheets. In this case, stress in the CFRP 

sheet was transferred to the concrete only by the CFRP anchors. 
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Figure 3.17 Preparation of concrete surface, grinding  

 

Figure 3.18 Preparation of concrete surface, sand-blasting 

 

Figure 3.19 Preparation of concrete surface, separation 

Before grinding 

Before Sand-blasting After Sand-blasting 

After grinding 
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3.4.3.2 Preparation of Holes for CFRP Anchors and Connection Sheets 

Holes were drilled in the concrete where CFRP anchors were applied. The holes 

were drilled with masonry drill bits with different diameters. An example of the anchor 

hole is shown in Figure 3.20. The diameter of drill bit was based on the width of CFRP 

per anchor and the size of holes in the test beams are provide in Section 3.4.4. The depth 

of the holes was 5.5 in. for the beams with the bottom face application of CFRP and 4 in. 

for the holes with the side face application. 

In, Type C specimen, a 1 in. diameter hole was drilled through the column portion 

to pass a connection sheet from one side of beam to another (Figure 3.21). This hole was 

drilled before the height transition ramps were placed and located at 2 in. from the bottom 

face of the beam. 

The edge of hole was ground to smooth perimeter transition of the CFRP anchor 

or connection sheet from the hole to the beam sheet. The holes were cleaned with 

compressed air. 
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Figure 3.20 Preparation of holes for CFRP anchors 

 

Figure 3.21 Preparation of a hole for connection sheet 
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3.4.3.3 Height Transition Ramp 

A polymer mortar, Tyfo® P from FYFE Co. LLC, was used in fabricating the 

height transition ramp in Type B and Type C beams. The transition ramp was fabricated 

after the beam was cast. The transition ramp applied to Type C specimen is shown in 

Figure 3.22. Slope of the ramp was 1:4 (2 in.: 8 in.) for all the test beams. The various 

height and slope of height transition was studied by Orton (2007) and the 2 in. height and 

1:4 slope ramp was reported as the most effective in fabricating height transition for 

CFRP sheets.   

 

 

  

Figure 3.22 Height transition ramp 

Height transition ramp

8 in.

2 in.
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3.4.3.4  Installation Procedure of CFRP 

After preparing the concrete surface, holes and transition ramps, CFRP materials 

were installed in reinforced concrete beams as follows: 

1) Prepare epoxy resin (Figure 3.23) 

2) Saturate the concrete surface and holes with the epoxy resin (Figure 3.24) 

3) Saturate CFRP sheet with the epoxy resin and remove excess epoxy  

    (Figure 3.25) 

4) Place the CFRP sheet on the beam (Figure 3.26) 

5) Saturate and place the CFRP U-wraps and anchors 

    (Figure 3.27 and Figure 3.28) 

6) Cure 

In this section, overhead application of CFRP in A-BF-A/U-6G is presented. 

However, CFRP was applied to all the other beams in the direction of gravity. The test 

results indicated that the direction of application did not influence the performance of the 

rehabilitation. 

   

Figure 3.23 Prepare epoxy resin 
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Figure 3.24 Saturate the concrete surface and holes with the epoxy resin 

   

Figure 3.25 Saturate CFRP sheet with the epoxy resin and remove excess epoxy 

 

Figure 3.26 Place the CFRP sheet on the beam 
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Figure 3.27 Saturate and place the CFRP U-wraps 

 

   

Figure 3.28 Saturate and place the CFRP anchors 
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3.4.4 Application of CFRP to Test Beams 

3.4.4.1 Rehabilitation Using Bottom Face of Beam: Flat Bottom Face 

For all the beams rehabilitated on the flat bottom face, a CFRP sheet 6 in. wide x 

48 in. long was attached.  In A-BF-N-5S, no anchorage was provided so that this beam 

provided a reference to evaluate the efficiency of anchorage systems in the other beams 

(Figure 3.29).    

 

 

 

Figure 3.29 Rehabilitation using flat bottom face without CFRP anchors or U-wrap 

(A-BF-N-5S) 

 

In A-BF-A-2S, A-BF-A-5S and A-BF-A-2N, a set of three CFRP anchors was 

fabricated using the same width as the CFRP sheet, 6 in. (2 in. per anchor).  As shown in 

Figure 3.30, the length of the anchor was 9 in. with 5.5 in. of the anchor inserted into a 

3/8 in.-diameter-hole drilled into concrete, and the rest of the anchor was spread out in a 

fan shape on the CFRP sheet. The anchor was inserted to 4 in. depth into the core of the 

concrete (interior of the first layer of the reinforcing steel). Twelve anchors were installed 

on the beams as indicated in Figure 3.31.  In A-BF-1.3A-5N, the geometry of the CFRP 

48 in. 

6 in.

1 in. 

8 in. 

CFRP sheet
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materials was the same as A-BF-A-2S, A-BF-A-5S and A-BF-A-2N except that 33 % 

more CFRP materials, 8 in. total, (2.7 in. per anchor) was provided for the CFRP anchors 

than for CFRP anchors in the other beams. The diameter of the anchor hole in A-BF-

1.3A-5N was 1/2 in. and the depth was identical to the other beams, 5.5 in. 

       

Figure 3.30 2 in. wide CFRP anchor used in A-BF-A-2S, A-BF-A-5S  

and A-BF-A-2N 
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fabricate fan 

shape 
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Inserted into hole 

9 in. Length of an anchor 

1 in., Width / 2 
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anchor 
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4 in. insert 
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1.5 in. 
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Figure 3.31 Rehabilitation using flat bottom face with CFRP anchors 

(A-BF-A-2S, A-BF-A-5S, A-BF-A-2N, A-BF-1.3A-5N) 

In A-BF-U-5S, CFRP U-wraps were installed for anchorage (Figure 3.32).  Each 

CFRP U-wrap was the same width as the CFRP sheet, 6 in. and with a total length of 26 

in. (Figure 3.14). The CFRP U-wraps were attached on the bottom of the beam over the 

CFRP sheet, and extended 9 in. on the each side of the beam from the bottom face of the 

beam.  Four CFRP U-wraps were installed in a beam, two located at 2 in. from the center 

of specimen and the other two at 16 in. The center of CFRP U-wraps corresponded to 

location of the anchor holes at Type A beams with CFRP anchors.   

In A-BF-A/U-6G, the CFRP U-wraps were installed on the left side of the beam, 

and the CFRP anchors were installed on the right side of the beam (Figure 3.33).  The 

CFRP U-wraps and the CFRP anchors in the beam had the same geometry of CFRP 

materials as those in A-BF-U-5S and A-BF-A-2S. The CFRP materials in A-BF-A/U-6G 

were installed in an overhead direction while those in the other specimens were installed 

in a gravity direction. In the overhead application, fumed silica was added to the epoxy 

resin to increase viscosity. This specimen was tested to determine the effect of the 

application direction on the performance of the CFRP materials.    

The dimensions of the CFRP sheet and the locations of the CFRP anchors were 

identical to those in a previous study, Orton (2007).  
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Figure 3.32 Rehabilitation using flat bottom face with CFRP U-wraps 

(A-BF-U-5S) 

   

 

 

Figure 3.33 Rehabilitation using flat bottom face with CFRP U-wraps and anchors 

(A- BF-A/U-6G) 
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3.4.4.2 Rehabilitation Using Bottom Face of Beam: Height Transition Bottom Face 

The beams with height transition (Type B) were tested after testing Type A beams 

and before testing Type C beams.  Experimental investigation on Type B beams linked 

the tests of Type A beams (material test) to test of Type C beams (structural member test).  

Type B beams were tested because a hole in a column, through which the sheets 

must pass to connect beams from adjacent bays, is not easily bored so that it is in the 

same plane as the bottom face of the beams. The geometry of such a beam column 

connection is shown in Figure 3.34 with the Type B test highlighted. In addition, these 

specimens were tested to investigate the effect of splices of CFRP sheets on the transition 

ramp. The CFRP sheets were applied to the bottom face of a beam (a beam sheet) up to 

the column face. The CFRP material passing through the hole in the column (a 

connection sheet) was spliced to the beam sheet on the height transition ramp. 

 

Figure 3.34 Geometry of a beam column connection with CFRP 

The direction of the tension in the CFRP sheet changes at the bottom of the 

transition ramp. The first set of the anchors and the first U-wrap in Type B beams was 

located at the bottom of the transition ramp to provide equilibrium to the vertical 

component of tensile force occurred in the connection sheet (Figure 3.35). The anchor 

could provide this vertical force more effectively than U-wrap because the anchor might 

create a concentrated force at the point where the direction of the tension changes.  

Type B beam 

Column face 

Connection sheet Beam sheet 
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Figure 3.35 Anchorage at the bottom of the transition ramp 

Layout of CFRP in Type B beams is shown in Figure 3.36 and Figure 3.37. To 

left side of the beams with a height transition, a connection sheet, 8 in. wide x 44 in., long 

was attached. Eight in. of the connection sheet was spread out in a fan shape and spliced 

over a beam sheet on the transition ramp. The rest of the connection sheet, 36 in., was 

anchored on left side of the beam. This portion of the connection sheet was anchored with 

CFRP U-wraps which provided more anchorage than the CFRP anchors or U-wraps on 

right side of the beam. The intent was to test CFRP materials on the right side of the 

beam only.   A beam sheet 6 in. wide x 26 in. long was attached to right side of B-BH-A-

6S and a beam sheet 6 in. wide x 24 in. long was attached to right side of B-BH-U-6S. 

33 % more CFRP was used in the connection sheet than the beam sheet because of a 

rapid shape change in the connection sheet at the column face (Orton, 2007). 

In B-BH-A-6S, a set of three CFRP anchors was fabricated using the same width 

as the CFRP sheet, 6 in. (2 in. per anchor).  The length of the anchor was 9 in. with 5.5 in. 

of the anchor inserted into a 3/8 in.-diameter-hole drilled into concrete, and the rest of the 

anchor was spread out in a fan shape on the CFRP sheet. The first set of the anchors at 

the bottom of the transition ramp was spread in two directions to provide the vertical 

force effectively. The anchor was same as that used in Type A beams (Figure 3.30). Six 

anchors were installed on the beams as indicated in Figure 3.36.   

a. CFRP anchor b. CFRP U-wrap 

Column face Column face 
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Figure 3.36 Rehabilitation using height transition bottom face with CFRP anchors 

(B- BH-A-6S) 

In B-BH-U-6S, CFRP U-wraps were installed to anchor the beam sheet (Figure 

3.37).  The CFRP U-wrap was fabricated with the same width as the CFRP sheet, 6 in. 

and with a total length of 26 in. The CFRP U-wraps were attached on the bottom of the 

beam over the CFRP sheet, and extended 9 in. on the each side of the beam from the 

bottom face of the beam.  Two CFRP U-wraps were installed in right side of the beam, 

and one of them was located at 8 in. from the center of specimen (at the bottom of the 

height transition ramp) and the other was located at 15 in.  
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Figure 3.37 Rehabilitation using height transition bottom face with CFRP U-wraps 

(B- BH-U-6S) 
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3.4.4.3 Rehabilitation Using Side Faces of Beam 

Two Type A beams (A-S-A-6G and A-S-AU-2S) were tested to investigate 

rehabilitation method using the side faces of the beams and column at a connection. 

Layout of CFRP in the beams rehabilitated on side faces is shown in Figure 3.38 and 

Figure 3.39.  

For the beam rehabilitated on side faces, CFRP materials were installed on both 

sides.  Two CFRP sheets 2.75 in. wide x 66 in. long were placed on top of one another on 

each side.  The CFRP sheets in A-S-A-6G were anchored by the CFRP anchors only 

while those in A-S-AU-2S were anchored by a combination of the CFRP anchors and U-

wraps. The geometry of CFRP in A-S-A-6G and A-S-AU-2S were the same except CFRP 

U-wraps were added to A-S-AU-2S. 

 The CFRP anchors were made using the same material contained in the two 

CFRP sheets (5.5 in.) that were attached to the beams.  The length of the anchor was 9.5 

in. with 4 in. of the anchor inserted in a 5/8 in. diameter hole drilled into the concrete, and 

the rest of anchor was spread out in a fan shape on the CFRP sheet for A-S-A-6G and on 

the CFRP U-wrap for A-S-AU-2S.  Eight anchors (four on each side) were installed in 

the beam as shown in Figure 3.38 and Figure 3.39. 

The CFRP U-wraps in A-S-AU-2S were made of the same 6 in. width of CFRP 

sheet with a total length of 26 in. Four CFRP U-wraps were attached to the beam over the 

CFRP sheet as shown in Figure 3.39. 

  



 

 56

 

 

Figure 3.38 Rehabilitation using side faces with CFRP anchors  

(A-S-A-6G) 

 

 

  

Figure 3.39 Rehabilitation using side faces with CFRP anchors and U-wraps 

(A-S-AU-2S) 
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3.4.4.4 Rehabilitation of Beams with Column 

Beams adjacent to a column (Type C) were tested to investigate the practical 

application of the rehabilitation methods using CFRP sheets, anchors and U-wraps.  The 

geometry of a beam column connection and the rehabilitation represented by Type C 

beams is shown in Figure 3.40.  Type C beams were symmetrical on both sides of the 

column. The CFRP beam sheets and connection sheet were spliced on the transition 

ramps. Strains in the bottom reinforcement were monitored to evaluate transfer of stress 

from the CFRP sheets to the bottom reinforcement.    

 

 

Figure 3.40 Geometry of a beam column connection with CFRP 

Layout of CFRP in Type C beams is shown in Figure 3.41 to Figure 3.43. In the 

column portion and transition ramps of Type C beams, a connection sheet, 6 in. wide x 

25 in., long was attached. 8 in. of the connection sheet was spread out in fan shape and 

spliced over a beam sheet on the height transition ramp in each side. The rest of the 

connection sheet, 9 in., passed through the column hole. A beam sheet 4.5 in. wide x 26 

in. long was attached to each side of C-BC-A-6G-01, a beam sheet 4.5 in. wide x 15 in. 

long was attached to each side of C-BC-A-6G-02 and a beam sheet 4.5 in. wide x 24 in. 

long was attached to each side of C-BC-U-6G. 33 % more CFRP was used in the 

connection sheet than the beam sheet because a rapid change of the shape in the 

Type C beam 

Column face 
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connection sheet at the column faces (Orton, 2007). The beam sheets were designed to 

develop 56 % more tensile strength than the bottom reinforcement (2-#3). The calculation 

of the tensile capacity of the beam sheet and the bottom reinforcement are as follows: 

 

lbAfT syb 500,16)11.02(000,6025.125.1   Equation 3-1 

lbtwfT fffuf 740,2504.05.4000,143    Equation 3-2  

56.1/ bf TT        Equation 3-3 

   Tb: expected tensile strength of the bottom reinforcement, lb 

   Tf: tensile strength of  CFRP  sheet, lb 

yf : yield strength of reinforcement, psi 

'
cf : compressive strength of concrete, psi 

 As: area of longitudinal bars, in2 

 ffu: tensile strength of CFRP, psi 

 tf: thickness of CFRP sheet, in. 

wj: width of CFRP beam sheet, in. 

 

C-BC-A-6G-01 was designed based on a specimen studied in a previous study by 

Orton (2007). After C-BC-A-6G-01 was tested, length of the beam sheet was reduced 

based on the development length of #3 bottom reinforcement and then, fabricated C-BC-

A-6G-02. 

In C-BC-A-6G-01 and C-BC-A-6G-02, a set of two CFRP anchors was fabricated 

using the same width as the connection sheet, 6 in. (3 in. per anchor).  The length of the 

anchor was 9 in. with 5.5 in. of the anchor inserted into a 1/2 in. diameter-hole drilled 

into concrete, and the rest of the anchor was spread out in a fan shape on the CFRP sheet. 

The location of the second set of anchors from the column face in C-BC-A-6G-01 and C-

BC-A-6G-02 was different because length of CFRP sheet was different. The layout of 

CFRP anchors in those beams is shown in Figure 3.41 and Figure 3.42.   
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Figure 3.41 Rehabilitation of beams with column using CFRP anchors 

(C-BC-A-6G-01) 

 

                    

 

Figure 3.42 Rehabilitation of beams with column using CFRP anchors 

(C-BC-A-6G-02) 

 

In C-BC-U-6G, CFRP U-wraps were installed to anchor the beam sheet (Figure 

3.43).  The CFRP U-wrap was fabricated with the same width as the CFRP sheet, 4.5 in. 

and with a total length of 18 in. The CFRP U-wraps were attached on the bottom of the 

beam over the CFRP sheet, and extended 6 in. on the each side of the beam from the 
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bottom face of the beam (Figure 3.14).  Two CFRP U-wraps were installed in each side 

of the beam, and one of them was located at 8 in. from the center of specimen (at the 

bottom of the transition ramp) and the other was located at 16.5 in.  

    

 

Figure 3.43 Rehabilitation of beams with column using CFRP U-wraps 

(C-BC-U-6G) 
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3.5 TEST SETUP AND INSTRUMENTS 

The overall test setup is shown below in Figure 3.44. The test setup was originally 

designed by Mitchell (2005) to test bridge barriers and then, modified to test beams for 

this study. A dynamic load with a 928 kg pendulum mass was applied to the middle of 

the beam, which was placed on its side for testing.  Drop heights of the pendulum mass 

were varied with respect to the capacity of the specimens.  The drop height was based on 

test results of a pilot test beam that had one #6 continuous bar at the bottom of the beam.  

As shown in Figure 3.45, a test beam was supported horizontally and vertically at 

the ends of beam (main supports) and vertically at quarter points of beam from the ends 

(supplementary supports). The spacing of the main supports was 16 ft and that of the 

supplementary supports was 8 ft. At each support, two Teflon sheets were placed one 

over another underneath test beam to eliminate effect of friction in the direction of the 

applied load. A-BF-A-2S, A-BF-A-2N and A-S-AU-2S were tested without the 

supplementary supports.  

Load cells were installed in front of the pendulum mass (200 kip capacity load 

cell) and at both horizontal supports (100 kip capacity load cell) to measure an applied 

load and reactions.  Deflection at the middle of the specimen was measured with two 

linear motion transducers.  Data acquisition rate of the tests was selected based on the 

natural frequency of the test beams and the duration of response.  The natural frequency 

of the test specimen was about 20 Hz and the response duration in the pilot test was about 

0.1 sec. The data acquisition rate selected was 2,000 Hz which was hundred times more 

than the natural frequency of the specimen and enable to plot 200 points during the 

response duration. Resolution of the instruments used in the tests was verified according 

to the data acquisition rate before the tests.  

A normalization method using sinusoidal curve was used to normalize measured 

applied load and reactions caused by impact of the pendulum. The normalization method 

is introduced in Section 3.6.1.1 where the test results of the first specimen are presented.   
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Strain gages were installed on the CFRP materials and were distributed 

horizontally to measure development of tensile strains along the CFRP sheets. The layout 

of CFRP strain gages for each test beam is shown in the next section. Strain gages were 

also installed on the longitudinal steel reinforcement of the test beams. The layout of 

reinforcement strain gages for each type of test beam is shown in Figure 3.46. 

The response duration of the test specimens to the pendulum mass impact was 

between 0.02 sec and 0.2 sec. It was about 0.1 sec if the specimens did not fail. Sasani 

(2007) reported that the response duration of structural members in an actual reinforced 

concrete building was about 0.1 sec when a column was removed due to explosion. 

Therefore, the test setup created similar loading rate which an actual structural member 

may experience in a case of a column removal.    
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Figure 3.44 Test setup 1 

Drop height of 
pendulum mass 

Load cell 

Linear motion 
transducer

Pendulum mass

Pendulum

16 in. 

Pendulum

CFRP on sides 

CFRP on bottom 

Section at point of 
impact 

928 kg

Linear motion 
transducers  12 in.



 

 

64

   

             

Figure 3.45 Test setup 2
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Figure 3.46 Layout of bar strain gages  
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3.6 DYNAMIC TEST RESULTS AND COMPARISONS 

3.6.1 Rehabilitation Using Bottom Face of Beam: Flat Bottom Face  

Test results of the rehabilitation discussed in Section 3.4.4.1 are presented in this 

section. Type A beams were tested and expected failure mode was fracture of the CFRP 

sheet. Failure mode, applied load, reactions and strains in the CFRP and the 

reinforcement are presented. 

Multiple impacts were applied to A-BF-A-5S and A-BF-U-5S while only one 

impact was applied to the other beams with CFRP on the flat bottom face.  In this section, 

the test results from the impact that failed these two beams are discussed. Additional test 

data for other loading are presented in Appendix A.   

3.6.1.1 A-BF-N-5S 

A-BF-N-5S was a Type A beam and CFRP was applied to the flat bottom face. 

This beam had 1 layer of the CFRP sheet and no additional anchorage. The surface of the 

bottom face was sand-blasted and the measured compressive strength of the concrete was 

5,000 psi.  Configuration of the beam is shown in Figure 3.47. The failure of A-BF-N-5S 

was delamination of the CFRP sheet form the concrete surface because no additional 

anchorage existed in this beam (Figure 3.48).  The ultimate tensile strength of the CFRP 

was not realized because delamination occurred before the CFRP reached its capacity. 
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Figure 3.47 Configuration of A-BF-N-5S 

 

 

Figure 3.48 Failure  of A-BF-N-5S, delamination 

The measured applied load and reactions plotted in time domain are shown in 

Figure 3.49. Drop height of the pendulum mass in A-BF-N-5S was 3 in. and the duration 

of event was 0.026 sec. The duration of event was the duration from the time of contact 

of the pendulum mass with the beam to the time when the load cell in the pendulum mass 

and in the supports returned to zero.  There was a delay in the response of the support 

West East 
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load cells after the time of the contact of the pendulum mass because the bearing 

locations of the beam did not contact perfectly with the support load cells. The delay was 

about 0.01 sec in the tests but the theoretical duration for the wave due to the impact 

reaching the supports, was about 0.0005 sec. Therefore, the delay was mainly due to the 

imperfect contact between the specimen and the supports. This delay was observed in all 

the other tests. The peak applied load was 36.8 kip and the peak reaction was 8.6 kip at 

the east support. Impulse of the applied load was 0.18 kip-sec while that of sum of the 

reactions was 0.11 kip-sec.   
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Figure 3.49 Measured applied load and reactions, A-BF-N-5S 

 

The normalization of the measured load data was needed because the measured 

loads were not easy to compare with calculated static strength of the specimens. A half 

sine curve was selected to normalize the measured applied load and reactions because the 

load and displacement responses of a wood beam tested in the same pendulum test setup 

exhibited a response similar to a half sine curve as shown as Figure 3.50 (Orozco, 2006). 
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The wood beam behaved elastically during the impact test at a 6 in. drop height of the 

pendulum mass. The properties of the wood beam are shown in Table 3.3. 

Table 3.3 Properties of the wood beam 

Length Total Weight 
Calculated Stiffness 

(mid-span deflection vs center 
point loading) 

Calculated Natural Frequency 
(mid-span deflection vs center 

point loading) 

17 ft 347 lb 54,240 lb/ft 16 Hz 

 

In Figure 3.50, the applied load measured in the pendulum load cell and 

normalized applied load using the half sine curve are plotted. The half period of the sine 

curve was equal to the response duration indicated by the pendulum load cell and the area 

under the curve was equal to the impulse of the measured applied load. The mid-span 

deflection measured by the linear motion transducer multiplied by calculated stiffness is 

also plotted in Figure 3.50.  As shown in Figure 3.50, the half sine curve reflects response 

of the measured applied load and displacement. In Figure 3.51, sum of the measured 

reactions and normalized sum of the reactions are plotted. The normalized curve for sum 

of the reactions also reflects response of the measured reactions. 
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Figure 3.50 Measured and normalized applied load, wood beam test 
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Figure 3.51 Measured and normalized sum of reactions, wood beam test 

Because of difference in duration of response between the pendulum and reaction 

load cells, the duration for normalization (half period of the sine curve) needed to be 

selected. The duration of event (the duration from the time of contact of the pendulum 

mass with the beam to the time when the load cell in the pendulum mass and in the 

supports returned to zero) was selected for the normalization because the peak value in 

normalized curve reflects impulse and through the use of the same period sine curve, 

impulse of the applied load and sum of the reactions can be compared directly using the 

normalized curves.  

The normalized curves of the applied load and sum of the reactions of A-BF-N-5S 

are shown in Figure 3.52. The peak normalized applied load was 11.3 kip and sum of the 

reactions was 6.9 kip. The peak normalized sum of reaction was 61 % of the peak 

normalized applied load. The ratio of the peak normalized sum of the reactions to applied 

load was same as the ratio of the impulse of sum of the reactions to that of the applied 

load because the normalized load was based on the measured impulse. This equivalence 

of the ratios was observed in all the other tests because the same normalization method 
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was used. The calculated strength of A-BF-N-5S corresponding to the delamination of 

the CFRP was 4.4 kip.   
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Figure 3.52 Normalized applied load and sum of reactions, A-BF-N-5S 

The location of the strain gages installed in A-BF-N-5S and the maximum 

measured strain in each gage are shown in Figure 3.53. The maximum strain measured in 

A-BF-N-5S was 0.0042 at gage 4 and was 42 % of the ultimate tensile strain of the CFRP.  

From the horizontal distribution of strains in the CFRP sheet, the part of the CFRP sheet 

that developed the highest strain was where debonding failure occurred, the west side of 

beam. Strain rate of CFRP (maximum strain divided by the time to reach the strain) in 

this beam was 0.182 /sec. The strain response of gages 4, 6 and 7 in time domain is 

shown in Figure 3.54. These gages were installed where delamination occurred. Although 

the values of peak strain in these gages were similar, the gage close to the loading point, 

at the center of the beam, was strained earlier than the gages away from the loading point. 

This variation reflected propagation of the delamination from the center of the beam to 

the end of the CFRP sheet. 
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The location of steel strain gages from the center of the beam and maximum 

measured strain are also shown in Figure 3.53. The maximum strain measured in the #6 

bars in A-BF-N-5S was 0.0006 which was about 1/3 of yield of the steel reinforcement.  
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Figure 3.53 Location of strain gages and distribution of strain in CFRP and bar, A-BF-N-5S
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Figure 3.54 CFRP strain, A-BF-N-5S 

 

3.6.1.2 A-BF-A-2S 

A-BF-A-2S was a Type A beam with one layer of CFRP on the flat bottom face 

and CFRP anchors. The bottom face was sand-blasted. The measured compressive 

strength of the concrete was 2,000 psi.  Configuration of the beam is shown in Figure 

3.55. The failure mode of A-BF-A-2S was fracture of the CFRP sheet in the center of the 

beam (Figure 3.56).  

The measured applied load and reactions are shown in Figure 3.57. Drop height of 

the pendulum mass in A-BF-A-2S was 3 in. and the duration of event was 0.033 sec. The 

peak applied load was 40.0 kip and the peak reaction was 9.4 kip at the west support. 

Impulse of the applied load was 0.21 kip-sec while that of sum of the reactions was 0.19 

kip-sec.   

The normalized applied load and sum of the reaction responses are shown in 

Figure 3.58.    The peak normalized applied load was 10.2 kip and sum of the reactions 

Fracture strain  
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was 8.9 kip (87 % of the peak normalized applied load). The calculated static strength of 

A-BF-A-2S was 10.5 kip and the peak normalized applied load was 97 % of the static 

strength. 

 

 

 

Figure 3.55 Configuration of A-BF-A-2S 

 

 

Figure 3.56 Failure of A-BF-A-2S, fracture of CFRP sheet 
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Figure 3.57 Measured applied load and reactions, A-BF-A-2S 
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Figure 3.58 Normalized applied load and sum of reactions, A-BF-A-2S 
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The location of the strain gages installed in A-BF-A-2S and the maximum 

measured strain in each gage are shown in Figure 3.59. The maximum strain measured in 

A-BF-A-2S was 0.0112 at gage 4 (112 % of the ultimate tensile strain of the CFRP).  

From the horizontal distribution of strains in the CFRP sheet, a symmetric distribution of 

strains was observed in the beam. The highest strain occurred in the gage in the center of 

beam and strain decreased away from the center. Because of the CFRP anchors, 

delamination did not propagate. The maximum strain measured in gage 7 was 0.0015 

(less than the 0.004 strain at which delamination occurred in A-BF-A-2S). Strain rate of 

CFRP (maximum strain divided by the time to reach the strain) was 0.467 /sec. 

The strain response of gages 4, 6 and 7 in time domain is shown in Figure 3.60. 

The gage in the center (gage 4) reached higher strain than gages 6 and 7 located between 

the first and the second set of the CFRP anchors.  

Strain gages were not installed on the #6 bars in this beam. 
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Figure 3.59 Location of strain gages and distribution of strain in CFRP, A-BF-A-2S 
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Figure 3.60 CFRP strain, A-BF-A-2S
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3.6.1.3 A-BF-A-5S 

A-BF-A-5S was a Type A beam with one layer of CFRP sheet and CFRP anchors. 

The surface of the bottom face was sand-blasted. The measured compressive strength of 

the concrete was 5,000 psi.  Configuration of the beam is shown in Figure 3.61. The 

failure mode of A-BF-A-5S was fracture of the CFRP sheet in the center of the beam 

(Figure 3.62).   

The measured applied load and reactions are shown in Figure 3.63 for loading to 

failure. Drop height of the pendulum mass was 4.5 in. when it failed and duration of 

event was 0.039 sec. The peak applied load was 47.4 kip and the peak reaction was 26.9 

kip at the west support. Impulse of the applied load was 0.36 kip-sec while that of sum of 

the reactions was 0.30 kip-sec.  Before the test with a 4.5 in. drop height of pendulum, 

loading with the pendulum at 1 in. and 3 in. drop heights was applied. The test results of 

these tests are provided in Appendix A. 

The normalized curves of the applied load and sum of the reactions are shown in 

Figure 3.64.    The peak normalized applied load was 14.5 kip and sum of the reactions 

was 12.0 kip (83 % of the peak normalized applied load). The calculated static strength of 

A-BF-A-5S was 11.0 kip and the peak normalized applied load was 132 % of the static 

strength. 

 

 

Figure 3.61 Configuration of A-BF-A-5S 
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Figure 3.62 Failure  of A-BF-A-5S, fracture of CFRP sheet 
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Figure 3.63 Measured applied load and reactions, A-BF-A-5S 
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Figure 3.64 Normalized applied load and sum of reactions, A-BF-A-5S 

The location of the strain gages installed in A-BF-A-5S and the maximum 

measured strain in each gage are shown in Figure 3.65. The maximum measured strain 

was 0.0112 at gages 4 and 5 (112 % of the ultimate tensile strain of the CFRP).  A 

symmetric horizontal distribution of strains was observed. The highest strain occurred in 

the gage in the center of beam and strain decreased away from the center. Strain rate of 

CFRP was 0.325 /sec. The strain response of gages 1, 3 and 4 with time is shown in 

Figure 3.66. The initial values of strain in the gages were not zero because of the previous 

impacts on this beam.  The CFRP sheet in this beam delaminated under the earlier 

loading. Therefore, no time lag was observed between gages 1, 3 and 4. 

The location of steel strain gages from the center of the beam and maximum 

measured strain are also shown in Figure 3.65. The maximum strain measured in the #6 

bars in A-BF-A-5S was 0.0016 which was about 80 % of yield in of the steel 

reinforcement.  
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Figure 3.65 Location of strain gages and distribution of strain in CFRP and bar, A-BF-A-5S

6” 

east west

10.5”

14” 

22” 

6” 

1” 

27” 

15” 

39” 

east east west west(0.0013) (n/a) (0.0014)(0.0010)(0.0013) 

2

5

4

31

(0.0004) 

0 6 7 
1.5” 

1.5” (0.0019) (0.0018) (0.0042)

(0.0112)

(0.0112)

(0.0072) (0.0011)

(0.0016)

Steel strain gages  

Yield strain  

Fracture strain 
CFRP strain 

Steel strain  

in.  

in.  



 

 83

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0 0.01 0.02 0.03 0.04 0.05 0.06

sec.

st
ra

in
, i

n
./i

n
.

CFRP 4

CFRP 3

CFRP 1

 

Figure 3.66 CFRP strain, A-BF-A-5S 

 

3.6.1.4 A-BF-A-2N 

A-BF-A-2N was a Type A beam with one layer of CFRP sheet and CFRP anchors. 

Clear polyethylene wrap was placed between the CFRP and the concrete surface. The 

measured compressive strength of the concrete was 2,000 psi.  Configuration of the beam 

is shown in Figure 3.67. The failure mode of A-BF-A-2N was fracture of the CFRP 

anchors on the west side of the beam (Figure 3.68). The ultimate strength of the CFRP 

was not realized. The same width of CFRP material was used for the anchors as was in 

the CFRP sheet. The CFRP sheet did not reach ultimate strength with only anchors to 

transfer force form the CFRP sheet to the concrete.  

The measured applied load and reactions are shown in Figure 3.63. Drop height of 

the pendulum mass was 3 in. and the duration of event was 0.055 sec. The peak applied 

load was 34.0 kip and the peak reaction was 11.5 kip at the east support. Impulse of the 

applied load was 0.35 kip-sec while that of sum of the reactions was 0.30 kip-sec.   

Fracture strain  
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The normalized applied load and sum of the reactions are shown in Figure 3.70.    

The peak normalized applied load was 10.1 kip and sum of the reactions was 8.7 kip 

(86 % of the peak normalized applied load).  

The calculated static strength of A-BF-A-2N was 10.5 kip and the peak 

normalized applied load was 96 % of the static strength. 

 

 

 

Figure 3.67 Configuration of A-BF-A-2N 

 

 

Figure 3.68 Failure of A-BF-A-2N, fracture of CFRP anchors 
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The location of the strain gages and the maximum measured strain in each gage 

are shown in Figure 3.71. The maximum strain measured in A-BF-A-2N was 0.0051 at 

gage 5 (51 % of the ultimate tensile strain of the CFRP).  From the horizontal distribution 

of strains in the CFRP sheet, a symmetric distribution of strains was observed. The 

highest strain occurred in the gage in the center of beam and strain decreased away from 

the center. Strain rate of CFRP was 0.113 /sec. 

The response of gages 5, 6 and 7 is shown in Figure 3.72.  Since the CFRP sheet 

was not bonded to the concrete surface and was held by the CFRP anchors only using the 

polyethylene wrap, the time lag was not significant between gages 5, 6 and 7. 

Strain gages were not installed on the #6 bars in this beam. 
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Figure 3.69 Measured applied load and reactions, A-BF-A-2N 
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Figure 3.70 Normalized applied load and sum of reactions, A-BF-A-2N 
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Figure 3.71 Location of strain gages and distribution of strain in CFRP, A-BF-A-2N 
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Figure 3.72 CFRP strain, A-BF-A-2N 

3.6.1.5 A-BF-1.3A-5N 

A-BF-1.3A-5N was a Type A beam with one layer of CFRP sheet and CFRP 

anchors. Thirty three percent more CFRP was used in fabricating one set of the anchors 

than the CFRP sheet. Clear polyethylene wrap was placed between the CFRP sheet and 

the concrete surface. The measured compressive strength of the concrete was 5,000 psi.  

This beam was damaged during moving and a crack occurred in the center. The crack 

was filled with the epoxy resin (Tyfo® S Epoxy), which was adhesive of the CFRP, 

before the application of the CFRP. Configuration of the beam is shown in Figure 3.73. 

The failure mode of A-BF-1.3A-5N was fracture of the CFRP sheet in the center of the 

beam (Figure 3.74).  The ultimate tensile strength of the CFRP was realized using this 

anchorage method. The failure mode of this beam also involved splitting of the CFRP 

sheet and anchor. 

Fracture strain  
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Figure 3.73 Configuration of A-BF-1.3A-5N 

 

 

Figure 3.74 Failure of A-BF-1.3A-5N, fracture of CFRP sheet 
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The measured applied load and reactions plotted in time domain are shown in 

Figure 3.76. Drop height of the pendulum mass in A-BF-1.3A-5N was 3 in. and duration 

of event was 0.034 sec. The peak applied load was 34.9 kip and the peak reaction was 

13.2 kip at the east support. Impulse of the applied load was 0.26 kip-sec while that of 

sum of the reactions was 0.20 kip-sec.   

The normalized applied load and sum of the reactions are shown in Figure 3.76.  

The peak normalized applied load was 11.9 kip and sum of the reactions was 9.1 kip. The 

peak normalized sum of reaction was 77 % of the peak normalized applied load. The 

calculated static strength of A-BF-1.3A-5N was 11.0 kip and the peak normalized applied 

load was 108 % of the static strength. 
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Figure 3.75 Measured applied load and reactions, A-BF-1.3A-5N 
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Figure 3.76 Normalized applied load and sum of reactions, A-BF-1.3A-5N 

The location of the strain gages and the maximum measured strain in each gage 

are shown in Figure 3.77. The maximum measured strain was 0.0106 at gage 4 (106 % of 

the ultimate tensile strain of the CFRP).  A symmetric horizontal distribution of strains 

was observed in the beam. The highest strain occurred in the gage in the center of beam 

and strain decreased away from the center. Strain rate of CFRP was 0.400 /sec. The strain 

response of gages 4, 6 and 8 is shown in Figure 3.78.  The gage in the center (gage 4) 

reached higher strain than gage 6 and 8. There was a time lag between the responses of 

gage 4, 6, and 8. 

The maximum strain measured in the #6 bars in A-BF-N-5S was 0.0010 which 

was about 50 % of yield of the steel reinforcement.  
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Figure 3.77 Location of strain gages and distribution of strain in CFRP and bars, A-BF-1.3A-5N
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Figure 3.78 CFRP strain, A-BF-1.3A-5N 

 

3.6.1.6 A-BF-U-5S 

A-BF-U-5S was a Type A beam with one layer of CFRP sheet and CFRP U-

wraps. The surface of the bottom face was sand-blasted. The measured compressive 

strength of the concrete was 5,000 psi.  Configuration of the beam is shown in Figure 

3.79. The failure mode of A-BF-U-5S was fracture of the CFRP sheet in the center of the 

beam (Figure 3.80).   

The measured applied load and reactions are shown in Figure 3.81 for loading to 

failure. Drop height of the pendulum mass was 3 in. when it failed and the duration of 

event was 0.022 sec. The peak applied load was 28.8 kip and the peak reaction was 15.8 

kip at the west support. Impulse of the applied load was 0.17 kip-sec while that of sum of 

the reactions was 0.07 kip-sec.  Before the test with a 3 in. drop height of pendulum, 

loading with the pendulum at 1 in. and 1.5 in. drop heights was applied. Results of these 

tests are provided in Appendix A. 

Fracture strain  
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The normalized applied load and sum of the reactions are shown in Figure 3.82.    

The peak normalized applied load was 11.6 kip and sum of the reactions was 5.1 kip 

(44 % of the peak normalized applied load). The calculated static strength of A-BF-U-5S 

was 11.0 kip and the peak normalized applied load was 105 % of the static strength. 

 

 

 

Figure 3.79 Configuration of A-BF-U-5S 

 

Figure 3.80 Failure of A-BF-U-5S, fracture of CFRP sheet 
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Figure 3.81 Measured applied load and reactions, A-BF-U-5S 
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Figure 3.82 Normalized applied load and sum of reactions, A-BF-U-5S 
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The location of the strain gages installed and the maximum measured strain in 

each gage are shown in Figure 3.83. The maximum strain measured in A-BF-U-5S was 

0.0077 at gage 4 (77 % of the ultimate tensile strain of the CFRP). Although facture of 

CFRP sheet occurred, the measured strain did not reach the ultimate tensile strain because 

the gage failed before the strain reached the ultimate strain. A symmetric horizontal 

distribution of strains was observed. The highest strain occurred in the gage in the center 

of beam and strain decreased away from the center.  The strains in gages beyond the first 

U-wrap from the center were relatively small compared with the strain in the center. 

Stress is concentrated on the portion of the CFRP sheet between the first sets of the U-

wrap while stress is distributed along the entire CFRP sheet in the previous test beams 

with the CFRP anchors. Strain rate of was 0.264 /sec. The strain response of gages 2, 3 

and 4 is shown in Figure 3.84. The initial values of strain in the gages were not zero 

because of the previous impacts on this beam.  

Strain in the CFRP U-wraps was also measured. The peak strain measured in the 

strain gages on the CFRP U-wraps was 0.0018 (18 % of the ultimate tensile strain of the 

CFRP). 

The maximum strain measured in the #6 bars in A-BF-U-5S was 0.0010 which 

was about 50 % of yield of the steel reinforcement.  
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Figure 3.83 Location of strain gages and distribution of strain in CFRP and bars, A-BF-U-5S 
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Figure 3.84 CFRP strain, A-BF-U-5S 

3.6.1.7 A-BF-A/U-6G 

A-BF-A/U-6G was a Type A beam with one layer of CFRP sheet, CFRP anchors 

(west side) and CFRP U-wraps (east side). The surface of the bottom face was ground. 

The measured compressive strength of the concrete was 6,000 psi.  Configuration of the 

beam is shown in Figure 3.85. The failure mode of A-BF-A/U-6G was fracture of the 

CFRP sheet in the center of the beam (Figure 3.86).   

The measured applied load and reactions are shown in Figure 3.87. Drop height of 

the pendulum mass was 3 in. and the duration of event was 0.022 sec. The peak applied 

load was 36.0 kip and the peak reaction was 12.5 kip at the east support. Impulse of the 

applied load was 0.16 kip-sec while that of sum of the reactions was 0.10 kip-sec.   

The normalized applied load and sum of the reactions are shown in Figure 3.88.  

The peak normalized applied load was 11.3 kip and sum of the reactions was 6.9 kip 

(61 % of the peak normalized applied load). The calculated static strength of A-BF-A/U-

6G was 11.1 kip and the peak normalized applied load was 102 % of the static strength. 
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Figure 3.85 Configuration of A-BF-A/U-6G 

  

 

Figure 3.86 Failure of A-BF-A/U-6G,  fracture of CFRP sheet 
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Figure 3.87 Measured applied load and reactions, A-BF-A/U-6G 
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Figure 3.88 Normalized applied load and sum of reactions, A-BF-A/U-6G 
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The location of the strain gages and the maximum measured strain in each gage 

are shown in Figure 3.89. The maximum measured strain was 0.0103 at gage 4 (103 % of 

the ultimate tensile strain of the CFRP). A symmetric horizontal distribution of strains 

was observed. The highest strain occurred in the gage in the center of beam and strain 

decreased away from the center.  However, the strains in the gages beyond the first U-

wrap or CFRP anchors from the center were relatively small compared with the measured 

strain in the center. Stress was concentrated on the portion of the CFRP sheet between the 

first set of anchors and U-wrap while stress was distributed along the CFRP sheet in the 

test beams with the CFRP anchors only. Strain rate of CFRP was 0.644 /sec. The strain 

response of gages 4, 5 and 7 is shown in Figure 3.90. The gage in the center (gage 4) 

reached higher strain than gage 5 and 7. There was a time lag between the responses of 

gage 4, 5 and 7. 

Strain in the CFRP U-wraps was also measured. The peak strain measured in the 

gages on the CFRP U-wraps was 0.0008 (8 % of the ultimate tensile strain of the CFRP). 

The maximum strain measured in the #6 bars in A-BF-U-5S was 0.0008 which 

was about 40 % of yield of the steel reinforcement.  
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Figure 3.89 Location of strain gage and distribution of strain in CFRP and bars, A-BF-A/U-6G
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Figure 3.90 CFRP strain, A-BF-A/U-6G  
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3.6.1.8 Comparisons 

3.6.1.8.1 Failure Modes of the Beams  

The failure modes of the specimens with CFRP sheets the bottom face under 

dynamic loading were the same as those in static loading conditions (Orton, 2007).  The 

observed failure modes were delamination of the CFRP sheet, fracture of the CFRP sheet, 

and anchorage failure.  Specimens with the same geometry of the CFRP materials 

showed the same failure mode in both dynamic and static loading conditions. 

The failure mode of A-BF-N-5S, for which no anchorage was provided, was 

delamination of the CFRP sheet.  In this specimen, the measured maximum strain in the 

CFRP sheet was 42 % of the ultimate tensile strain. This result showed that less than half 

capacity of the CFRP sheet can be realized if this sheet was not anchored.  

The failure mode of the specimens using the proper anchorage methods (A-BF-A-

2S, A-BF-A-5S, A-BF-1.3A-2N, A-BF-U-5S and A-BF-A/U-6G) was the fracture of the 

CFRP sheet. That indicated the ultimate tensile strength of the sheet was reached.  These 

results showed that the anchorage methods used to reach ultimate strength under static 

loading performed similarly under dynamic loading.  As shown in Figure 3.91 and Figure 

3.92, beams with the anchorage using the anchors or U-wraps failed by CFRP fracture 

under static loading.  

The failure mode of A-BF-A-2N was anchorage failure, and the measured 

maximum strain was 51 % of the ultimate tensile strain.  In this specimen, the stress in 

the CFRP sheet was transferred to the concrete only by the CFRP anchors because of the 

separation between the CFRP sheet and the concrete, and these anchors failed before the 

ultimate tensile strain of the CFRP sheet was realized.  Therefore, to prevent the 

premature failure of the CFRP anchors, the width of the CFRP in theses anchors needed 

to be increased.  The width of CFRP in the CFRP anchors was increased by 33 % in A-

BF-1.3A-5N with respect to that in A-BF-A-2N, and consequently, the CFRP sheet in A-

BF-1.3A-5N developed ultimate tensile strength. 
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Figure 3.91 Static test, CFRP sheet and anchors, 100 % of the ultimate strength 

(Orton, 2007) 

 

 

Figure 3.92 Static test, CFRP sheet and U-wraps, 93 % of the ultimate strength 

(Orton, 2007) 

 

 

CFRP anchors 

Fracture 

CFRP U-wraps 

Fracture 



 

 105

3.6.1.8.2 Effect of Test Variables  

In the beams rehabilitated using the flat bottom face of the beams, the following 

test variables were examined: type of anchorage (CFRP anchor or CFRP U-wrap), 

concrete strength, surface preparation and effect of overhead application.  A summary of 

test results of the flat bottom face beams are provided in Table 3.4. 

 

Table 3.4  Comparison of the test results of the beams with flat bottom face  

 

Anchorage Types 

A-BF-U-5S was compared with A-BF-A-5S to study the effect of anchorage type 

on dynamic performance of CFRP. The only difference between these two beams was 

type of anchorage. Both beams failed by fracture of the CFRP sheet and the CFRP sheet 

reached the ultimate tensile strength. These test results indicated that the anchorage 

method with the CFRP U-wraps was also an effective way of anchoring the CFRP sheets 

as CFRP anchors.  However, A-BF-A-5S, which had the CFRP anchors, showed better 

performance than A-BF-U-5S, which had the U-wraps. The drop height of the pendulum 

mass at the fracture of the CFRP sheet was 4.5 in. for A-BF-A-5S while that of A-BF-U-

5S was 3 in. It showed that more energy was required to fracture the CFRP sheet in A-

BF-A-5S than that in A-BF-U-5S.  Duration of event was 0.039 sec for A-BF-A-5S while 

was 0.022 sec for A-BF-U-5S. Longer time was required in A-BF-A-5S than in A-BF-U-

Measured 
load

Normalized 
load

Applied 
load, A

Sum of 
reactions, R

Ratio, 
R/A

A-BF-A-5S 4.5 in 47.4 kip 14.5 kip 11.0 kip
0.36       

kip-sec
0.30         

kip-sec
83% 0.0016

A-BF-U-5S 3 in. 28.8 kip 11.6 kip 11.0 kip
0.17       

kip-sec
0.07         

kip-sec
43% 0.0010

A-BF-A-2S 3 in. 40.0 kip 10.2 kip 10.5 kip
0.21       

kip-sec
 0.19        

kip-sec
87%

A-BF-1.3A-5N 3 in. 34.9 kip 11.9 kip 11.0 kip
0.26       

kip-sec
0.20         

kip-sec
77% 0.0010

A-BF-A/U-6G 3 in. 36.0 kip 11.3 kip 11.1 kip
0.16       

kip-sec
0.10         

kip-sec
61% 0.0008

Max. strain 
in bars

Drop 
height

ImpulsePeak applied load
Static 

strength
Condition at the fracture of the CFRP sheet

Overhead application
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5S to fracture the CFRP sheet. In A-BF-A-5S, the ratio of the impulse of applied load to 

that of sum of the reactions at the fracture of CFRP sheet was 83 % while that in A-BF-

U-5S was 44 %. More load was transferred to the support between the time of impact and 

fracture of the CFRP sheet in A-BF-A-5S than in A-BF-U-5S. The maximum measured 

strain in the steel reinforcement was high in A-BF-A-5S (0.0016) compared with that in 

A-BF-U-5S (0.001). Before the fracture of CFRP sheet, more stress was transferred to the 

steel reinforcement from the CFRP in A-BF-A-5S than in A-BF-U-5S. Stress 

concentration was noted in the portion of the CFRP sheet between the U-wraps while 

stress was distributed along the entire CFRP sheet when anchors were used.  

 

Concrete Strength 

Concrete strength has been considered a critical factor in the use of CFRP 

materials in common practice because the typical failure mode of CFRP materials is 

debonding of the CFRP from the concrete surface and the tensile strength of concrete 

effects the debonding mechanism. However, the results of this investigation indicated 

that the concrete strength is not a critical factor for realizing the full strength of the CFRP 

sheets when the sheets were properly anchored with CFRP anchors. The only difference 

between A-BF-A-5S and A-BF-A-2S was the compressive strength of the concrete.  

Although the compressive strength of concrete in A-BF-A-2S (2000 psi) was lower than 

that of A-BF-A-5S (5,000 psi), the CFRP sheet in both beams reached the ultimate tensile 

strength.  The dynamic performance of A-BF-A-2S is also shown in Table 3.4. 

 

Surface Preparation 

Surface preparation also has been considered as a critical factor in the use of 

CFRP materials in common practice. A sand-blasted or ground concrete surface is 

recommended in common practice to achieve a proper surface preparation for applying 

CFRP. However, the results of this experimental investigation indicate that the use of 

CFRP anchors for anchoring CFRP sheets may reduce the cost of rehabilitation because 

the surface preparation may not be critical to realizing full strength of the CFRP sheets if 
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CFRP anchors are used. An anchorage with at least 33 % more CFRP for the anchors 

than in the sheets performed well. The CFRP sheet in A-BF-1.3A-5N reached the 

ultimate tensile strength although the bond between the concrete surface and the CFRP 

sheet was broken by the polyethylene wrap. The dynamic performance of this beam was 

not as good as A-BF-A-5S but similar to A-BF-U-5S.  

Because this study focused on the application of the CFRP anchors, not as many 

variables were examined in the beams with CFRP U-wraps.  The effects of the concrete 

strength and surface preparation were not evaluated for beams with U-wraps. 

 

Overhead Application 

The CFRP materials in A-BF-A/U-6G were installed in an overhead direction 

while those in the other specimens were installed in a gravity direction to study effect of 

the overhead application in dynamic performance of CFRP. The failure mode of this 

beam was fracture of the CFRP sheet and the dynamic performance was similar to A-BF-

U-5S (Table 3.4). Therefore, the direction of CFRP application did not appear to effect 

the performance of CFRP.  

 

The measured peak normalized load was close to the calculated static strength of 

the test beams because the beams behaved elastically until fracture of the CFRP sheet. If 

inelastic behavior occurred in the specimens the normalized load would be larger than the 

static strength because of the increase in the impulse during contact of the pendulum 

mass. As will be seen later, in the test of Type C beams, a large normalized load was 

observed compared with the static strength. 
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3.6.2 Rehabilitation Using Bottom Face of Beam: Height Transition Bottom Face 

3.6.2.1 B-BH-A-6S 

B-BH-A-6S was a Type B beam with one layer of beam sheet and CFRP anchors 

on the west side. The connection sheet was anchored with excess CFRP U-wraps on the 

east side to provide stronger anchorage than that on the west side. The test of this 

specimen focused on the lap spliced region of the beam and connection sheet. It also 

focused on behavior of the beam sheet and anchors on the west side.  The surface of the 

bottom face was sand-blasted. The measured compressive strength of the concrete was 

6,000 psi.  Configuration of the beam is shown in Figure 3.93. The failure mode of B-

BH-A-6S was fracture of the connection sheet in the center of the beam (Figure 3.94). 

The fracture occurred where fan shape spliced portion of the connection sheet merged 

into a strap.  

 

 

      

Figure 3.93 Configuration of B-BH-A-6S 

 

West East 
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Figure 3.94 Failure of B-BH-A-6S, fracture of connection sheet 

 

The measured applied load and reactions are shown in Figure 3.95 for loading to 

failure. Drop height of the pendulum mass was 3 in. and the duration of event was 0.023 

sec. The peak applied load was 41.4 kip and the peak reaction was 16.1 kip at the west 

support. Impulse of the applied load was 0.16 kip-sec while that of sum of the reactions 

was 0.13 kip-sec.  Before this test, this beam was tested with a 3 in. drop height initially 

but it did not fail. Results of the first 3 in. drop height test are provided in Appendix A. 

The normalized applied load and sum of the reactions are shown in Figure 3.96.  

The peak normalized applied load was 10.1 kip and sum of the reactions was 8.2 kip 

(80 % of the peak normalized applied load). The calculated static strength of B-BH-A-6S 

was 11.1 kip and the peak normalized applied load was 91 % of the static strength. 
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Figure 3.95 Measured applied load and reactions, B-BH-A-6S 
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Figure 3.96 Normalized applied load and sum of reactions, B-BH-A-6S 
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The location of the strain gages and the maximum measured strain in each gage 

are shown in Figure 3.97. The maximum strain measured was 0.0084 at gage 2 (84 % of 

the ultimate tensile strain of the CFRP). The peak strain did not reach the ultimate tensile 

strain because this gage was away from the location of fracture (gage 1 was inoperable). 

From the horizontal distribution of strains in the CFRP sheet, the highest strain occurred 

in the gage close to the center of beam and strain decreases in the gages away from the 

center. The solid line in the CFRP strain plot in Figure 3.97 was plotted connecting the 

measured strains and the dashed line was plotted using the expected ultimate strain where 

fracture occurred.  Strain rate of CFRP was 0.400 /sec. The strain response of gages 2, 3, 

7 and 8 in time domain is shown in Figure 3.98. The initial values of strain in the gages 

were not zero because of the previous impacts on this beam. 

The maximum strain measured in the #6 bars in B-BH-A-6S was 0.0011 which 

was about 50 % of yield of the steel reinforcement.  
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Figure 3.97 Location of strain gages and distribution of strain in CFRP and bars, B-BH-A-6S
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Figure 3.98 CFRP strain, B-BH-A-6S 

 

3.6.2.2 B-BH-U-6S 

B-BH-U-6S was a Type B with one layer of beam sheet and CFRP U-wraps on 

the west side. The connection sheet was anchored with excess CFRP U-wraps on the east 

side to provide stronger anchorage than that on the west side. The test of this specimen 

focused on the lap spliced region of the beam and connection sheets. It also focused on 

behavior of the beam sheet and CFRP U-wraps on the west side.  The surface of the 

bottom face was sand-blasted. The measured compressive strength of the concrete was 

6,000 psi.  Configuration of the beam is shown in Figure 3.99. The failure mode of B-

BH-U-6S was fracture of the beam sheet in the center of the beam (Figure 3.100). The 

fracture occurred where the lap splice ended.  

The measured applied load and reactions are shown in Figure 3.101. Drop height 

of the pendulum mass was 3 in. and the duration of event was 0.025 sec. The peak 

Fracture strain  
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applied load was 45.5 kip and the peak reaction was 9.8 kip at the east support. Impulse 

of the applied load was 0.17 kip-sec while that of sum of the reactions was 0.09 kip-sec.   

The normalized applied load and sum of the reactions are shown in Figure 3.102.    

The peak normalized applied load was 10.4 kip and sum of the reactions was 5.4 kip 

(52 % of the peak normalized applied load). The calculated static strength of B-BH-U-6S 

was 11.1 kip and the peak normalized applied load was 94% of the static strength. 

 

 

 

Figure 3.99 Configuration of B-BH-U-6S 

 

 

Figure 3.100 Failure of B-BH-U-6S, fracture of beam sheet 

West East 
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Figure 3.101 Measured applied load and reactions, B-BH-U-6S 
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Figure 3.102 Normalized applied load and sum of reactions, B-BH-U-6S 
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The location of the strain gages installed and the maximum measured strain in 

each gage are shown in Figure 3.103. The maximum strain was 0.0060 at gage 2 (60 % of 

the ultimate tensile strain of the CFRP). The peak strain did not reach the ultimate tensile 

strain because this gage was away from the location of fracture. The highest strain 

occurred in the strap portion of the connection sheet (gage 2) and a similar level of strains 

was observed in the lap splice region (gage 3, 4 and 5). The solid line in the CFRP strain 

plot in Figure 3.103 was plotted connecting the measured strains and the dashed line was 

plotted using the expected ultimate strain where fracture occurred.  Because of a rapid 

change of the quantity of the CFRP at the end of the lap splice on the beam sheet side 

(west), a high stress might occur at the location and create a weak link. Strain rate of 

CFRP was 0.750 /sec. The strain response of gages 2, 3, 6 and 7 is shown in Figure 3.104.  

The maximum strain measured in the #6 bars in B-BH-U-6S was 0.0003 which 

was about 15 % of yield of the steel reinforcement.  
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Figure 3.103 Location of strain gages and distribution of strain in CFRP and bars, B-BH-U-6S
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Figure 3.104 CFRP strain, B-BH-U-6S 

3.6.2.3 Comparisons 

In the beams with a height transition (B-BH-A-6G and B-BH-U-6G), the 

effectiveness of different anchorage methods (CFRP anchor or CFRP U-wrap) on 

dynamic performance of CFRP was examined. The only difference between these two 

beams was type of anchorage. Both beams failed by fracture of the CFRP sheet and the 

CFRP sheet reached the ultimate tensile strength. These results showed that the 

anchorage methods used to reach ultimate strength under static loading performed 

similarly under dynamic loading.  As shown in Figure 3.105 and Figure 3.106, beams 

with the anchorage using the anchors or U-wraps failed by CFRP fracture under static 

loading.  

 

Fracture strain  



 

 119

 

Figure 3.105 Static test, CFRP sheet and anchors, 105 % of the ultimate strength 

(Orton, 2007) 

 

Figure 3.106 Static test, CFRP sheet and U-wraps, 89 % of the ultimate strength 

(Orton, 2007) 
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The test results indicated that the anchorage method with the CFRP U-wraps was 

effective in anchoring the CFRP sheets as CFRP anchors. However, the connection sheet 

failed in B-BH-A-6G while the beam sheet failed in B-BH-U-6G because a smooth 

transition from the connection sheet to the beam sheet can be provided using CFRP 

anchors while a sudden change in quantity of CFRP sheet occurred at the bottom of the 

transition ramp when the CFRP U-wraps were used. In addition, B-BH-A-6G, which had 

CFRP anchors, showed better performance than B-BH-U-6G, which had U-wraps. The 

drop height of the pendulum mass at the fracture of the CFRP sheet was 3 in. for both 

beams. However, two impacts at 3 in. drop height were required for the failure of B-BH-

A-6G while B-BH-U-6G failed after only one impact at the same drop height. It showed 

that more energy was required to fracture the CFRP sheet with anchors than with U-

wraps.  In B-BH-A-6G, the ratio of the impulse of applied load to that of sum of the 

reactions at the fracture of CFRP sheet was 80 % while that in B-BH-U-6G was 52 %. It 

indicated that more applied load was transferred to the support between the time of 

impact and fracture of the CFRP sheet in B-BH-A-6G than B-BH-U-6G. The maximum 

measured strain in the steel reinforcement was high in B-BH-A-6G (0.0011) compared 

with that in B-BH-U-6G (0.0003). Before the fracture of CFRP sheet, more stress was 

transferred to the steel reinforcement from the CFRP in B-BH-A-6G than in B-BH-U-6G. 

A summary of comparison of test results between two beams are shown in Table 3.5. 

Peak normalized applied load was less than calculated static strength but still 

close to the strength. 

Table 3.5 Comparison of the test results of the beams with height transition bottom 

face 

 

Measured 
load

Normalized 
load

Applied 
load, A

Sum of 
reactions, R

Ratio, 
R/A

B-BH-A-6S 3 in 41.4 kip 10.1 kip 11.1 kip
0.16       

kip-sec
0.13         

kip-sec
80% 0.0011

B-BH-U-6S 3 in. 45.5 kip 10.4 kip 11.1 kip
0.17       

kip-sec
0.09         

kip-sec
52% 0.0003

Peak applied load
Static 

strength
Condition at the fracture of the CFRP sheet

Drop 
height

Impulse
Max. strain 

in bars
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3.6.3 Rehabilitation Using Side Faces of Beam 

3.6.3.1 A-S-A-6G 

A-S-A-6G was a Type A beam with two layers of CFRP sheet and CFRP anchors. 

The CFRP sheets and anchors were applied to both sides of the beam symmetrically. The 

surface of the side faces was ground. The measured compressive strength of the concrete 

was 6,000 psi.  Configuration of the beam is shown in Figure 3.107. The failure mode of 

A-S-A-6G was fracture of the CFRP sheets in the center of the beam (Figure 3.108). The 

fracture occurred in the CFRP sheets on both sides.  

The measured applied load and reactions are shown in Figure 3.109 for loading to 

failure. Drop height of the pendulum mass in A-S-A-6G was 12 in. when it failed and the 

duration of event was 0.020 sec. The peak applied load was 81.4 kip and the peak 

reaction was 17.0 kip at the west support. Impulse of the applied load was 0.23 kip-sec 

while that of sum of the reactions was 0.04 kip-sec.  Before the test with a 12 in. drop 

height of pendulum, loading with the pendulum at 6 in. drop height was applied. Results 

of this test is provided in Appendix A. 

The normalized applied load and sum of the reactions are shown in Figure 3.110.  

The peak normalized applied load was 18.4 kip and sum of the reactions was 3.0 kip 

(16 % of the peak normalized applied load). The calculated static strength of A-S-A-6G 

was 16.3 kip and the peak normalized applied load was 113 % of the static strength. 



 

 122

 

 

 

Figure 3.107 Configuration of A-S-A-6G 

 

 

Figure 3.108 Failure of A-S-A-6G, fracture of CFRP sheet 
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Figure 3.109 Measured applied load and reactions, A-S-A-6G 
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Figure 3.110 Normalized applied load and sum of reactions, A-S-A-6G 
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The location of the strain gages and the maximum measured strain in each gage 

are shown in Figure 3.111. The measured strains only on one side, top side, of the beam 

are shown in this figure. The maximum strain measured was 0.0098 at gage 2 (98 % of 

the ultimate tensile strain of the CFRP). Although facture of the CFRP sheet occurred, the 

measured strain did not reach the ultimate tensile strain because the location of fracture 

was not identical to that of the gage.  A symmetric horizontal distribution of strains was 

observed. The highest strain occurred in the gage in front of the first anchor and strain 

decreased away from the center.  Strain rate of CFRP this beam was 0.891 /sec. The 

strain response of gages 3, 4 and 5 is shown in Figure 3.112. The initial values of strain in 

the gages were not zero because of the previous impact on this beam. 

 The maximum strain measured in the #6 bars in A-S-A-6G was 0.0015 which 

was about 70 % of yield of the steel reinforcement. 
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Figure 3.111 Location of strain gages and distribution of strain in CFRP and bars, A-S-A-6G
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Figure 3.112 CFRP strain, A-S-A-6G 

3.6.3.2 A-S-AU-2S 

A-S-AU-2S was a Type A beam with two layers of the CFRP sheets and a 

combination of the CFRP anchors and U-wraps. The CFRP sheets, anchors and U-wraps 

were applied to both sides of the beam symmetrically. The surface of the side faces was 

sand-blasted. The measured compressive strength of the concrete was 2,000 psi.  

Configuration of the beam is shown in Figure 3.113. The failure mode of A-S-AU-2S 

was fracture of the CFRP sheets in the center of the beam (Figure 3.114). The fracture 

occurred in the CFRP sheets on both sides.  

The measured applied load and reactions are shown in Figure 3.115 for loading to 

failure. Drop height of the pendulum mass was 12 in. when it failed and the duration of 

event was 0.031 sec. The peak applied load was 73.8 kip and the peak reaction was 16.9 

kip at the east support. Impulse of the applied load was 0.24 kip-sec while that of sum of 

the reactions was 0.13 kip-sec.  Before the test with a 12 in. drop height of pendulum, 

Fracture strain  
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loading with the pendulum at 6 in. drop height was applied.  Result of this test is 

provided in Appendix A. 

The normalized applied load and sum of the reactions are shown in Figure 3.116.    

The peak normalized applied load was 12.4 kip and sum of the reactions was 6.5 kip 

(53 % of the peak normalized applied load). The calculated static strength of A-S-AU-2S 

was 14.3 kip and the peak normalized applied load was 87 % of the static strength. 

 

 

Figure 3.113 Configuration of A-S-AU-2S 

 

Figure 3.114 Failure of A-S-AU-2S,  fracture of CFRP sheet 

 

West East 
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Figure 3.115 Measured applied load and reactions, A-S-AU-2S 
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Figure 3.116 Normalized applied load and sum of reactions, A-S-AU-2S 
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The location of the strain gages and the maximum measured strain in each gage 

are shown in Figure 3.117. The measured strains on both top and bottom sides of the 

beam are shown in this figure. The maximum strain measured was 0.0110 at gage 2 

(110 % of the ultimate tensile strain of the CFRP). The measured CFRP strain reached 

the ultimate tensile strain of the CFRP. A symmetric distribution of strains was observed. 

The highest strain occurred in the gages between the first CFRP anchors and strain 

decreased away from the center. The CFRP sheets on two sides showed similar strain 

distribution. Strain rate of CFRP was 0.423 /sec. The strain response of gages 10, 11 and 

12 is shown in Figure 3.118. The initial values of strain in the gages were not zero 

because of the previous impact on this beam.  

Strain gages were not installed in the #6 bars in this beam. 
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Figure 3.117 Location of strain gages and distribution of strain in CFRP, A-S-AU-2S 
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Figure 3.118 CFRP strain, A-S-AU-2S 
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3.6.3.3 Comparisons 

Two specimens (A-S-A-6G and A-S-AU-2S) were tested with the side face 

strengthening. The failure mode of both specimens was fracture of the CFRP sheets, and 

this failure mode indicated that the ultimate strength of the CFRP sheets was realized in 

both specimens.  The failure mode of A-S-A-6G under dynamic loading was different 

from that under static loading (concrete failure near the anchor holes, Figure 3.119) while 

the failure mode of A-S-AU-2S was the same as that under static loading (fracture of the 

CFRP sheet, Figure 3.120). In similar tests under static loading (Kim, 2006), the 

compressive strength was 3,500 psi. Because of the low compressive strength, the 

specimen loaded statically exhibited a failure in the concrete while the comparison 

specimen with 6,0000 psi concrete failed by fracture of the CFRP sheet under dynamic 

loading. In the case where the anchors only were used, the compressive strength of the 

concrete might affect the performance of the specimen.  However, if a combination of the 

CFRP anchors and U-wraps was used, the ultimate strength of CFRP strength was 

realized in both static and dynamic loading conditions regardless of the compressive 

strength of the concrete.  These results indicated that anchors combined with U-wraps 

were effective in anchoring the CFRP sheets applied to the side faces of reinforced 

concrete beams. 
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Figure 3.119 Static test, CFRP anchors, 81 % of the ultimate strength (Kim, 2006) 

 

 

Figure 3.120 Static test, a combination of CFRP anchors and U-wraps,                

100 % of the ultimate strength (Kim, 2006) 

 

Concrete failure 

Anchor holes 

CFRP anchors 

Combination of CFRP anchors and U-wraps 

CFRP fracture 
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A-S-AU-2S showed better dynamic performance than A-S-A-6G although the drop 

height of the pendulum mass at the fracture of the CFRP sheet was 12 in. for both beams. 

In A-S-AU-2S, the ratio of the impulse of the applied load to that of sum of the reactions 

at fracture of CFRP sheet was 53 % while that in A-S-A-6G was 16 %. It indicated that 

more applied load was transferred to the support between the time of impact and fracture 

of the CFRP sheet. Strain in the steel reinforcement was not measured in A-S-AU-2S so 

it was not possible to compare the steel reinforcement strain. A summary of comparison 

of test results between two beams are shown in Table 3.6. 

 

Table 3.6 Comparison of the test results of the beams using side faces  

 

 

Measured 
load

Normalized 
load

Applied 
load, A

Sum of 
reactions, R

Ratio, 
R/A

A-S-A-6G 12 in 81.4 kip 18.4 kip 16.3 kip
0.23       

kip-sec
0.04         

kip-sec
16% 0.0015

A-S-AU-2S 12 in. 73.8 kip 12.4 kip 14.3 kip
0.24       

kip-sec
0.13         

kip-sec
53%

Peak applied load
Static 

strength
Condition at the fracture of the CFRP sheet

Impulse
Max. strain 

in bars
Drop 

height
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3.6.4 Rehabilitation of Beams with Column 

3.6.4.1 C-BC-A-6G-01 

C-BC-A-6G-01 was a Type C beam and CFRP was applied through the column at 

the bottom face. This beam had one layer of the beam sheet on the east and west side, and 

the sheet was anchored using the CFRP anchors. The connection sheet connected the 

beam sheets through the column hole and was lap spliced with the beam sheets on the 

transition ramps. The surface of the bottom face was ground. The measured compressive 

strength of the concrete was 6,000 psi.  Configuration of the beam is shown in Figure 

3.121. 

 

 

Figure 3.121 Configuration of C-BC-A-6G-01 

C-BC-A-6G-01 was tested under the drop heights of 2 in., 3 in., 4.5 in., 9 in. and 

12 in. At a 9 in. drop height, the steel yielded with large deflection and the concrete 

cracking.  A 12 in. drop height, the beam sheet fractured. This beam was designed to 

develop yield of the steel reinforcement before fracture of CFRP. Large deformation 

capacity and yield of the reinforcement was observed before fracture of the CFRP.  

West East 
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Initially C-BC-A-6G-01 was exhibited stress well beyond yield of the steel 

reinforcement (Figure 3.122). Two large cracks occurred at the ends of the beam sheets 

and other cracks were evenly distributed over the beam where no CFRP was applied. The 

final failure mode of this beam was fracture of the beam sheet and CFRP anchors (Figure 

3.123). The fracture occurred at the end of the lap splice of the beam and connection 

sheet on the west side. The ultimate tensile strength of the CFRP was realized. 

 

Figure 3.122 Failure of C-BC-A-6G-01, 9 in. (yield of steel reinforcement) 

 

Figure 3.123 Failure of C-BC-A-6G-01, 12 in. (fracture of CFRP) 

A summary of the applied loads and reactions are shown in Table 3.7. The results 

of the tests at different drop heights except 4.5 in. are presented in this section because 
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the results were similar to the previous test. Results of the test at 4.5 in. drop height are 

presented in Appendix A 

The measured applied load and reactions are shown in Figure 3.124. The duration 

of event was relatively short in the test at 12 in. drop height (fracture of CFRP) 

comparing with that of the other tests (yield of steel reinforcement).   The peak applied 

load and reactions are shown in Table 3.7. In addition, impulse of the applied load and 

sum of the reactions are shown in Table 3.7.  The impulse and the duration of event 

increased as the drop height increased when the failure mode of the specimen was yield 

of the steel. However, they decreased when CFRP fracture occurred although the drop 

height is higher than the previous tests. 

The normalized applied load and sum of the reactions are shown in Figure 3.125 

and Figure 3.126.  The peak normalized applied load and sum of the reactions and the 

ratio of the two are shown in Table 3.7.  The ratio was relatively lower when CFRP 

fractured than when the steel yielded.  

The calculated static strength of this beam was 4.2 kip and it was based on yield 

of the steel at the ends of the beam sheets (26 in. from the column face). The peak 

normalized load was considerably larger than the strength because of inelastic behavior 

of the beam during the impact.  Therefore, the impulse during the impact did not 

represent the calculated strength of the beam. 
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Table 3.7 Summary of applied load and reactions, C-BC-A-6G-01 

(calculated static strength: 4.2 kip) 

Measured load Measured impulse Normalized load 

Applied 
load 

Reaction 
Drop 
height 

 
Duration 
of event 

Peak Peak Support 

Applied 
load  

Sum of 
reactions 

Peak 
applied 
load, A 

Peak 
sum of 

reactions
, R 

Ratio, 
R/A 

2 in. 0.099 sec 18.4 kip 10.7 kip West 
0.44 

kip- sec 
0.34   

kip- sec 
7.0 kip 5.5 kip 78 % 

3 in. 0.114 sec 18.8 kip 17.5 kip West 
0.51 

kip- sec 
0.41   

kip- sec 
7.0 kip 5.7 kip 81 % 

4.5 in. 0.128 sec 31.5 kip 23.3 kip West 
0.59 

kip-sec 
0.50   

kip-sec 
7.2 kip 6.1 kip 84 % 

9 in. 0.145 sec 43.9 kip 28.2 kip West 
0.74  

kip- sec 
0.65   

kip- sec 
8.1 kip 7.1 kip 87 % 

12 in. 0.048 sec 60.0 kip 29.3 kip West 
0.30 

kip- sec 
0.20   

kip- sec 
10.0 kip 6.5 kip 65 % 
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Figure 3.124 Measured applied load and reactions, C-BC-A-6G-01  
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Figure 3.125 Normalized applied load, C-BC-A-6G-01  
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Figure 3.126 Normalized sum of reactions, C-BC-A-6G-01 
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Displacements at the column at different drop heights are plotted in Figure 3.127. 

The initial displacement was not zero for 3 in. and 9 in. drop height tests because of the 

permanent displacement after the previous tests. The shape of the measured displacement 

curves was similar to a half-period sine curve, and the peak displacement increased as the 

drop height of pendulum mass increased. The maximum displacement was 3.52 in. at a 9 

in. drop height which was 1.8 % of the beam span length (16 ft). The displacement data 

for 12 in. drop height test is not shown in Figure 3.127 because it was not possible to 

determine the deflection at the instant the CFRP fractured  
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Figure 3.127 Displacement at the column, C-BC-A-6G-01 

The location of the strain gages installed and the maximum measured strain are 

shown in Figure 3.128 and Figure 3.129. The strain data at a low drop height, 3 in., and a 

drop height for loading to failure, 12 in., are provided in this section. The strain 

distribution of the other tests is provided in Appendix A.  

The maximum CFRP strain during the tests was 0.0064 at gage 10 (64 % of the 

ultimate tensile strain of the CFRP). The peak strain did not reach the ultimate tensile 
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strain because this gage was away from the location of fracture. From the horizontal 

distribution of strains in the CFRP sheet, the highest strain occurred in the gage close to 

the center of beam and strain decreased away from the center.  

The responses of gage 10 at different drop heights are shown in Figure 3.130. The 

initial values of strain in the tests except the first test, 2 in. drop height, were not zero 

because of the previous impacts. The peak strain increased as the drop height increased.  
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Figure 3.128 Location of strain gages and distribution of strain in CFRP and bars, C-BC-A-6G-01, 3 in. 
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Figure 3.129 Location of strain gages and distribution of strain in CFRP, C-BC-A-6G-01, 12 in. 
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Figure 3.130 CFRP strain, C-BC-A-6G-01 

 

The location of steel strain gages from the column face and maximum measured 

strain are also shown in Figure 3.128 and Figure 3.129. In the tests at 3 in. and 12 in. drop 

heights, all the measured strains in the #3 bars were larger than the yield strain of the 

steel reinforcement although they were away from the column faces. The largest bar 

strain was observed at location close to the ends of the CFRP material (26 in. from the 

column face) where large cracks existed. Steel strain gages (East-27 in. and West-27 in.) 

were installed at the points close to the location of the cracks.  The responses of these 

gages at different drop heights were shown in Figure 3.131 and Figure 3.132. The bars 

started yielding from the first impact at a 2 in. drop height and showed large deformation 

when drop height increased. The peak measured strain was not proportional to the drop 

height because the strain depended on size, location and distribution of cracks in each 

impact. 

Fracture strain  
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Figure 3.131 Steel reinforcement, east, C-BC-A-6G-01 
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Figure 3.132 Steel reinforcement strain, west, C-BC-A-6G-01 
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3.6.4.2 C-BC-A-6G-02 

C-BC-A-6G-02 was a Type C beam and CFRP was applied through the column at 

the bottom face. This beam had one layer of the beam sheet on the east and west side, and 

the sheet was anchored using the CFRP anchors. The connection sheet connected the 

beam sheets through the column hole and was lap spliced with the beam sheets on the 

transition ramps. The difference between this beam and C-BC-A-6G-01 was length of the 

beam sheet and location of the second set of the CFRP anchors. The length of the beam 

sheet was reduced based on the development length of a #3 bottom bar and the location 

of the second set of the anchors was also selected based on the development length. The 

distance from the column face to the second set of the anchors (13 in.) was longer than 

the development length of the #3 bar (11.6 in., ACI318-08 Section 12.2.2). Detailed 

geometry of the CFRP in this beam is shown in Figure 3.42. The surface of the bottom 

face was ground. The measured compressive strength of the concrete was 6,000 psi.  

Configuration of the beam is shown in Figure 3.133. 

 

 

Figure 3.133 Configuration of C-BC-A-6G-02 

 

13 in.

West East 



 

 147

C-BC-A-6G-02 was tested under the drop heights of 2 in., 3 in., 4.5 in., 9 in. and 

12 in. At a 9 in. drop height, the steel yielded with large deflection and the concrete 

cracking.  Two tests were conducted with a 12 in. drop height. In the first 12 in. test, 

concrete crushing and cover spalling were observed at the east end of the CFRP sheet. In 

the second 12 in. drop height test, the #3 bottom reinforcement fractured. This beam was 

designed to develop yield of the steel reinforcement before fracture of the CFRP. Large 

deformation capacity and yield of the reinforcement was observed, and the final failure 

mode was fracture of the steel reinforcement. 

Initially C-BC-A-6G-02 was exhibited stress well beyond yield of the steel 

reinforcement (Figure 3.134). Two large cracks occurred at the ends of the beam sheets 

and other cracks were evenly distributed over the beam where no CFRP was applied.  

The beam failed when the #3 bottom reinforcement fractured (Figure 3.135). The 

fracture occurred close to the east end of the beam sheet. The ultimate tensile strength of 

the steel reinforcement was realized. 
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Figure 3.134 Failure of C-BC-A-6G-02, 9 in. (yield of steel reinforcement) 

 

Figure 3.135 Failure of C-BC-A-6G-02, 12 in.-02  (fracture of steel reinforcement) 

A summary of the applied loads and reactions are shown in Table 3.8. The beam 

was tested twice with a 12 in. drop height. In this section, the results of the tests at 

different drop heights except 4.5 in. and the first 12 in. are presented. Results of these 

tests are presented in Appendix A 

The measured applied load and reactions are shown in Figure 3.136. The duration 

of event was relatively short in the test at a12 in. drop height (fracture of steel 

reinforcement) compared with that of the other tests (yield of steel reinforcement). The 

peak applied load and reactions are shown in Table 3.8. In addition, impulse of the 
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applied load and sum of the reactions are shown in Table 3.8.  The impulse and the 

duration of event increased as the drop height increased when the failure mode of 

specimen was yield of the steel. However, they decreased when bar fracture occurred 

although the drop height was higher than the previous tests. 

The normalized applied load and sum of the reactions are shown in Figure 3.137 

and Figure 3.138.  The peak normalized applied load and sum of the reactions and the 

ratio of the two are shown in Table 3.8.  The ratio was relatively lower when steel 

reinforcement fractured than when it yielded.  

The calculated static strength of this beam was 3.6 kip and it was based on yield 

of the steel reinforcement at the ends of the beam sheet (15 in. from the column face). 

The peak normalized load was considerably larger than the calculated strength because of 

inelastic behavior of the beam during the impact.  Therefore, impulse during the impact 

did not represent the strength of the beam. 

Table 3.8 Summary of applied load and reactions, C-BC-A-6G-02 

(calculated static strength: 3.6 kip) 

Measured load Measured impulse Normalized load 

Applied 
load 

Reaction 
Drop 
height 

 
Duration 
of event 

Peak Peak Support 

Applied 
load  

Sum of 
reactions 

Peak 
applied 
load, A 

Peak 
sum of 

reactions
, R 

Ratio, 
R/A 

2 in. 0.102 sec 25.8 kip 11.6 kip West 
0.31 

kip- sec 
0.33   

kip- sec 
4.8 kip 5.1 kip 105 % 

3 in. 0.119 sec 29.0 kip 13.3 kip West 
0.38 

kip- sec 
0.40   

kip- sec 
5.0 kip 5.4 kip 107 % 

4.5 in. 0.134 sec 32.8 kip 16.3 kip West 
0.46 

kip- sec 
0.50   

kip- sec 
5.4 kip 5.8 kip 108 % 

9 in. 0.162 sec 52.0 kip 26.1 kip West 
0.59 

kip- sec 
0.63   

kip- sec 
5.7 kip 6.1 kip 107 % 

12 in.-
01 

0.188 sec 52.9 kip 29.0 kip West 
0.84  

kip- sec 
0.71   

kip- sec 
7.1 kip 6.0 kip 85 % 

12 in.-
02 

0.060 sec 62.7 kip 23.1 kip West 
0.37 

kip- sec 
0.20   

kip- sec 
9.8 kip 5.1 kip 52 % 
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Figure 3.136 Measured applied load and reactions, C-BC-A-6G-02 
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Figure 3.137 Normalized applied load, C-BC-A-6G-02 
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Figure 3.138 Normalized sum of reactions, C-BC-A-6G-02 
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Displacements at the column at different drop heights are plotted in Figure 3.139. 

The initial displacement was not zero for 3 in. and 9 in. drop height tests because of the 

permanent displacement after the previous tests. The shape of the measured displacement 

curves was similar to a half-period sine curve, and the peak displacement increased as the 

drop height of pendulum mass increased. The maximum displacement was 7.28 in. in the 

first 12 in. drop height test which was 3.8 % of the beam span length (16 ft). The 

displacement data for the second 12 in. drop height test is not shown in Figure 3.139 

because it was not possible to determine the deflection at the instant the steel fractured. 
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Figure 3.139 Displacement at the column, C-BC-A-6G-02 
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The location of the strain gages and the maximum measured strain in each gage 

are shown in Figure 3.140 and Figure 3.141. The strain data of 3 in. and the second 12 in. 

drop height tests are provided in this section. The strain distribution of the other tests is 

provided in Appendix A.  

The maximum CFRP strain during the tests was 0.0059 at gage 4 (59 % of the 

ultimate tensile strain of the CFRP). The highest strain occurred in the gage close to the 

center of beam and strain decreased away from the center.  

The response of gage 4 at different drop heights is shown in Figure 3.142. The 

initial values of strain in the tests except the first test, a 2 in. drop height, were not zero 

because of the previous impacts. The peak strain increased as the drop height increased.  
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Figure 3.140 Location of strain gages and distribution of strain in CFRP and bars, C-BC-A-6G-02, 3 in. 
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Figure 3.141 Location of strain gages and distribution of strain in CFRP and bars, C-BC-A-6G-02, 12 in.-02 
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Figure 3.142 CFRP strain, C-BC-A-6G-02 

The location of steel strain gages from the column face and maximum measured 

strain are also shown in Figure 3.140 and Figure 3.141. In the tests at 3 in. and 12 in. drop 

heights, most of the measured strains in the #3 bars were larger than the yield strain of the 

steel although they were away from the column faces. The largest bar strain was observed 

at a location close to the ends of CFRP material (15 in. from the column face) where a 

large crack existed. A steel strain gage (West-15 in.) was installed at the points close to 

the location of the crack.  The responses of these gages at different drop heights were 

shown in Figure 3.143. The bars started yielding from the first impact at 2 in. drop height 

and showed large deformation when drop height increased. The peak measured strain was 

not proportional to the drop height because the strain depended on size, location and 

distribution of cracks in each impact. 

Fracture strain  
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Figure 3.143 Steel reinforcement strain, west, C-BC-A-6G-02 

 

3.6.4.3 C-BC-U-6G 

C-BC-U-6G was a Type C beam and CFRP was applied through the column at the 

bottom face. This beam had one layer of the beam sheet on the east and west side, and the 

sheet was anchored using the CFRP U-wraps. The connection sheet connected the beam 

sheets through the column hole and was lap spliced with the beam sheets on the transition 

ramps. The difference between this beam and C-BC-A-6G-01 was type of anchorage. The 

surface of the bottom face was ground. The measured compressive strength of the 

concrete was 6,000 psi.  Configuration of the beam is shown in Figure 3.144. 
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Figure 3.144 Configuration of , C-BC-U-6G 

C-BC-U-6G was tested under the drop height of 2 in., 3 in. and 4.5 in. At a 3 in. 

drop height, the steel yielded with the concrete cracking.  At a 4.5 in. drop height, the 

beam sheet fractured. This beam was designed to develop yield of the steel reinforcement 

before fracture of CFRP, and Large deformation capacity and yield of the steel 

reinforcement was observed before the fracture of CFRP.  

Initially C-BC-U-6G exhibited stress wee beyond yield of the steel reinforcement 

(Figure 3.145). Two large cracks occurred at the ends of the beam sheets and other cracks 

were evenly distributed over the beam where no CFRP was applied.  

The beam failed when the beam sheet fractured (Figure 3.146). The fracture 

occurred at the end of the lap splice of the beam and connection sheets on the east side. 

The ultimate tensile strength of the CFRP was realized. 

West East 
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Figure 3.145 Failure of C-BC-U-6G, 3 in.  (yield of steel reinforcement) 

 

Figure 3.146 Failure of C-BC-U-6G, 4.5 in.  (fracture of CFRP) 

 

A summary of the applied load and reactions are shown in Table 3.9. The 

measured applied load and reactions plotted are shown in Figure 3.147. The duration of 

event was relatively short in the test at a 4.5 in. drop height (fracture of CFRP) compared 

with that of the other tests (yield of steel reinforcement).   The peak applied load and 

reactions are shown in Table 3.9. In addition, impulse of the applied load and sum of the 

reactions are shown in Table 3.9.  The impulse and the duration of event increased as the 

drop height increased when the failure mode of specimen was yield of the steel.  
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However, they decreased when CFRP fracture occurred although the drop height is 

higher than the previous tests. 

The normalized applied load and sum of the reactions are shown in Figure 3.148 

and Figure 3.149. The peak normalized applied load and sum of the reactions and the 

ratio of two are shown in Table 3.9.  The ratio was relatively lower when CFRP fractured 

than when the steel yielded.  

The calculated static strength of this beam was 4.1 kip and it was based on yield 

of the steel at the ends of the CFRP sheet (24 in. from the column face). The peak 

normalized load was larger than the calculated strength because of inelastic behavior of 

the beam during the impact.  Therefore, impulse during the impact did not represent the 

strength of the beam. 

Table 3.9 Summary of applied load and reactions, C-BC-U-6G 

(calculated static strength: 4.1 kip) 

Measured load Measured impulse Normalized load 

Applied 
load 

Reaction 
Drop 
height 

 
Duration 
of event 

Peak Peak Support 

Applied 
load  

Sum of 
reactions 

Peak 
applied 
load, A 

Peak 
sum of 

reactions
, R 

Ratio, 
R/A 

2 in. 0.110 sec 21.9 kip 8.7 kip West 
0.34 

kip- sec 
0.33   

kip- sec 
4.9 kip 4.8 kip 98 % 

3 in. 0.123 sec 22.8 kip 13.8 kip West 
0.41 

kip- sec 
0.42   

kip- sec 
5.2 kip 5.3 kip 102 % 

4.5 in. 0.041 sec 30.8 kip 20.5 kip West 
0.18 

kip- sec 
0.14   

kip- sec 
6.8 kip 5.4 kip 79 % 
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Figure 3.147 Measured applied load and reactions, C-BC-U-6G 

2 in. drop height  

3 in. drop height  

4.5 in. drop height  
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Figure 3.148 Normalized applied load, C-BC-U-6G 
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Figure 3.149 Normalized sum of reactions, C-BC-U-6G 
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Displacements at the column at different drop heights are plotted in Figure 3.150. 

The initial displacement was not zero for 3 in. drop height test because of the permanent 

displacement after the previous test. The shape of the measured displacement curves was 

similar to a half-period sine curve, and the peak displacement increased as the drop 

height of pendulum mass increased. The maximum displacement was 1.45 in. at a 3 in. 

drop height which was 0.8 % of the beam span length (16 ft). The displacement data for 

4.5 in. drop height test is not shown in Figure 3.150 because it was not possible to 

determine the deflection at the instant the CFRP fractured. 
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Figure 3.150 Displacement at the column, C-BC-U-6G 
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The location of the strain gages and the maximum measured strain in each gage 

are shown in Figure 3.151 and Figure 3.152. The strain data of 3 in. and 4.5 in. drop 

height tests are provided in this section. The strain distribution of 2 in. drop height test is 

provided in Appendix A.  

The maximum CFRP strain measured in the beam sheets during the tests was 

0.003 at gage 10 (30 % of the ultimate tensile strain of the CFRP). The peak strain did not 

reach the ultimate tensile strain because this strain gage was away from the location of 

fracture. From the horizontal distribution of strains in the CFRP sheet, the uniform 

distribution of strain was observed compared with the strain distribution in the beam 

sheets anchored with the CFRP anchors.   

The response of gage 10 at different drop heights is shown in Figure 3.153. This 

gage was installed on the connection sheet. The initial values of strain in the tests except 

the first test, a 2 in. drop height, were not zero because of the previous impacts. The peak 

strain increased as the drop height increased. The response of gage 7, installed in the U-

wrap at different drop heights is shown in Figure 3.154. The peak strain increased as the 

drop height increased and the maximum strain measured in the CFRP U-wrap was larger 

than that in the CFRP sheets. 
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Figure 3.151 Location of strain gages and distribution of strain in CFRP and bars, C-BC-U-6G, 3 in. 
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Figure 3.152 Location of strain gages and distribution of strain in CFRP and bars, C-BC-U-6G, 4.5 in. 
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Figure 3.153 CFRP strain, CFRP sheet, C-BC-U-6G 
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Figure 3.154  CFRP strain, CFRP U-wrap, C-BC-U-6G 
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The location of steel strain gages from the column face and maximum measured 

strain are also shown in Figure 3.151 and Figure 3.152. In the tests at 3 in. and 12 in. drop 

heights, most of the measured strains in the bars were larger than the yield strain of the 

steel although they were away from the center of beam. The largest bar strain was 

observed at location close to the ends of the beam sheet (24 in. from the column face) 

where large cracks existed. Steel strain gages (East-27 in. and West-27 in.) were installed 

at the points close to the location of the cracks. The responses of these strain gages at 

different drop heights were shown in Figure 3.155 and Figure 3.156. The bars started 

yielding from the first impact at 2 in. drop height and showed large deformation when 

drop height increased. The peak measured strain was not proportional to the drop height 

because the strain depended on size, location and distribution of cracks in each impact. 
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Figure 3.155 Steel reinforcement strain, east, C-BC-U-6G 
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Figure 3.156 Steel reinforcement strain, west, C-BC-U-6G 
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3.6.4.4 Comparisons 

The anchorage methods that produced the best response under dynamic loading 

were studied using Type A and Type B beams. In Type C beams, the effectiveness of the 

rehabilitation methods using the CFRP materials for providing continuity in the bottom 

steel reinforcement of the beam was evaluated. By providing continuity to the bottom 

reinforcement, it was anticipated that ductility in the steel reinforcement could be 

mobilized.  Strain in the bottom reinforcement was measured and evaluated with respect 

to yield strain. 

Three Type C beams, C-BC-A-6G-01, C-BC-A-6G-02 and C-BC-U-6G, were 

tested with multiple impacts by increasing the drop height of the pendulum mass until the 

beams failed. The drop heights were 2 in., 3 in., 4.5 in., 9 in. and 12 in.  C-BC-A-6G-01 

and C-BC-A-6G-02 failed at a 12 in. drop height while C-BC-U-6G failed at a 4.5 in. 

drop height.  The failure mode of C-BC-A-6G-01 and C-BC-U-6G was fracture of the 

CFRP sheets while that of C-BC-A-6G-02 was fracture of the bottom steel reinforcement. 

Strain in the bottom steel reinforcement in all Type C beams showed more than 10 times 

yield strain during the loading before the failure occurred.  The largest strain was 

observed at locations close to the ends of the CFRP sheets where large cracks occurred. 

Plastic hinges developed at these locations in all Type C beams indicating that continuity 

of the bottom reinforcement was provided by the rehabilitation methods used.    

C-BC-U-6G was compared with C-BC-A-6G-01 to study the effect of anchorage 

type on dynamic performance of CFRP. Both beams failed by fracture of the CFRP sheet. 

Anchorage method with U-wraps was as effective as anchors. In addition, ductility was 

realized in the bottom steel reinforcement in both cases before the CFRP sheet failed. 

However, C-BC-A-6G-01 with anchors performed better than C-BC-U-6G with U-wraps. 

The drop height of the pendulum mass at fracture of the CFRP sheet was 12 in. with 

anchors and 4.5 in. with U-wraps. It showed that more energy was required to fracture the 

CFRP sheet with anchors. With anchors, the peak displacement at the column was 3.5 in. 

at a 9 in. drop height but with U-wrap, was only 1.5 in. at a 3 in. drop height. These test 
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results indicates that it is possible to achieve more deformation capacity of the beam 

using anchors rather than U-wraps. A summary and comparison of test results of the two 

beams is shown in Table 3.10. 

The differences between C-BC-A-6G-01 and C-BC-A-6G-02 were the length of 

the beam sheet and the location of the second set of the CFRP anchors from the column 

face.  In C-BC-A-6G-01, the length of the beam sheet and the location of the anchors 

were based on a previous study by Orton (2007). In C-BC-A-6G-02, the length was 

reduced and the location was adjusted based on a development length of #3 bars of 11.6 

in. using ACI-318-08 section 12.2.2. In C-BC-A-6G-02, the length of reinforcement from 

the column face to the second set of the anchors was 13 in. which was slightly longer 

than the development length. The 3 in. embedded length in the column was ignored to 

determine the location of the anchors. The test results indicate that it is possible to 

provide continuity to the bottom reinforcement and to achieve ductility of the 

reinforcement if the length between the face of the column where discontinuity of the 

bottom reinforcement exists and the last set of CFRP anchors are longer than the code 

specified development length. 

The location of the plastic hinges in C-BC-A-6G-02 was closer to the center of 

the beam than that in C-BC-A-6G-01 so the level of applied load required to develop 

plastic hinge was relatively low in C-BC-A-6G-02 compared with that in C-BC-A-6G-01. 

Therefore, in C-BC-A-6G-02, the bending moment at the plastic hinge location exceeded 

the rotational capacity before the CFRP sheet reached the ultimate tensile capacity, and 

the failure mode was the fracture of the steel reinforcement. 

It is desirable to use a short length of CFRP sheet because it reduces quantity of 

materials used in rehabilitation and provides more ductility to the beam. More ductility 

can be achieved when plastic hinges are close to the column. 

The peak normalized load in all Type C beams was larger than the calculated 

static strength and it represents that all Type C beams behaved inelastically during the 

test. The difference between the load and strength was the largest in C-BC-A-6G-02, 
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which showed the most significant inelastic behavior among 3 Type C beams, and the 

least in C-BC-U-6G. 

 

Table 3.10 Comparison of the test results of the beams with column 

 

 

 

 

Measured 
load

Normalize
d load

Strain
Drop 

height
Displacement

Drop 
height

C-BC-A-6G-01
Fracture of 
CFRP sheet 12 in. 60.0 kip 10 kip 4.2 kip 0.0231 3 in. 8.1 in. 9 in.

C-BC-A-6G-02
Fracture of 

bars 12 in. 62.7 kip 9.8 kip 3.1 kip 0.0257 3 in. 7.3 in. 12 in.

C-BC-U-6G
Fracture of 
CFRP sheet 4.5 in. 30.8 kip 6.8 kip 4.1 kip 0.0277 3 in. 1.5 in. 4.5 in.

Failure 
mode

Drop 
height at 

failure

Peak applied load at 
failure

Max. displacement 
before failure

Max. bar strain
Static 

strength
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3.7 SUMMARY OF BEHAVIOR 

A summary of the dynamic test results is shown in Table 3.11 to 3.13.  The test 

results of each beam in at the drop heights are summarized in these tables.  Failure modes, 

measured and normalized peak applied load and reactions, impulse of applied load and 

sum of the reactions, strain in CFRP and bar, and displacement in the center of beam are 

presented in these tables.  

The normalized applied load and sum of the reactions were calculated based on 

the duration of event and measured impulse. These data provide the characteristic of 

loading and dynamic response of the test beam. Strain and strain rate of the CFRP sheet 

was measured to observe dynamic performance of CFRP materials.  

In Type A and B beams, failure mode and the peak strain in CFRP sheet indicates 

if the ultimate strain was realized under dynamic loading. Effectiveness of anchorage 

methods was evaluated using these specimens. In Type C beams, large strains of the 

reinforcement at location where plastic hinges were expected indicate if the ductility of 

the bottom steel reinforcement was realized. The development of large deformation in the 

steel reinforcement indicates that CFRP materials provide continuity to the bottom 

reinforcement successfully.  The displacement at the column is only presented when the 

test beam did not fail at a particular drop height. This displacement data provides 

deformation capacity of the beam before it loses load carrying capacity. 
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Table 3.11 Summary of test results, rehabilitation using the flat bottom face 

 

 

Measured, 
kip

Nomalized,   
kip

Measured, 
kip

Nomalized,   
kip

A-BF-N-5S 3 0.026 Delamination 36.8 11.3 8.6 e 15.3 6.9 61% 0.183 0.111 61% 0.0041 0.023 0.182 0.0006 0.00

A-BF-A-2S 3 0.033
Fracture of CFRP 

sheet 40.0 10.2 9.4 w 15.3 8.9 87% 0.214 0.187 87% 0.0112 0.024 0.467 0.00

1 0.055 16.7 8.4 9.3 e 15.2 7.1 84% 0.293 0.247 84% 0.0015 0.026 0.059 0.0008 0.00 0.20 0.20

3 0.067 39.6 11.6 22.0 w 39.6 10.7 92% 0.495 0.455 92% 0.0063 0.030 0.210 0.0013 0.06 0.60 0.54

3 0.071 38.2 10.7 26.1 w 45.9 10.2 96% 0.483 0.462 96% 0.0070 0.031 0.230 0.0015 0.03 0.61 0.58

4.5 0.039
Fracture of CFRP 

sheet 47.4 14.5 26.9 w 50.4 12.0 83% 0.359 0.297 83% 0.0112 0.035 0.325 0.0016 0.10

A-BF-A-2N 3 0.055
Fracture of CFRP 

anchors 34.0 10.1 11.5 e 21.9 8.7 86% 0.354 0.304 86% 0.0051 0.045 0.113 0.00

A-BF-1.3A-5N 3 0.034
Fracture of CFRP 

sheet 34.9 11.9 13.2 e 20.7 9.1 77% 0.258 0.198 77% 0.0106 0.027 0.400 0.0010 0.00

1 0.064 13.6 5.9 12.1 w 21.1 5.6 94% 0.240 0.225 94% 0.0033 0.029 0.114 0.0008 0.00 0.21 0.21

1.5 0.069 21.7 7.2 13.4 w 25.4 7.2 101% 0.313 0.315 101% 0.0074 0.028 0.264 0.0009 0.06 0.48 0.42

3 0.022
Fracture of CFRP 

sheet 28.8 11.6 15.8 w 29.1 5.1 44% 0.166 0.072 43% 0.0077 0.010 0.770 0.0010 0.11

A-BF-A/U-6G 3 0.022
Fracture of CFRP 

sheet 36.0 11.3 12.5 e 19.3 6.9 61% 0.158 0.097 61% 0.0103 0.016 0.644 0.0008 0.00

Ratio of 
nomalized  
load (S/A)

Measured 
raction at one 
support, kip

Peak CFRP atrain

Strain rate, 
strain/sec

Time at 
peak strain, 

sec

CFRP 
strain,      

ultimate 
strain=0.01 

Peak bar 
strain

Beams
Duration of 
event, sec   

Displacement, in

Peak
Relative 

peak

A-BF-U-5S

Sum of 
reaction, kip-

sec

Applied 
load,       

kip-sec

Sum of reactions

Initial 
Failure mode

A-BF-A-5S

impulsePeak load

Applied load

Ratio of 
impulse     
(S/A)

Drop 
height, in

no bond

no bond,, increase CFRPanchor

Overhead application
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Table 3.12 Summary of test results, rehabilitation using the height transition bottom face 

 

 

Table 3.13 Summary of test results, rehabilitation using the side faces 

 

 

Measured, 
kip

Nomalized,   
kip

Measured, 
kip

Nomalized,   
kip

6 0.093 51.6 9.6 16.6 w 28.4 11.8 122% 0.567 0.693 122% 0.0082 0.047 0.174 0.00 1.26 1.26

12 0.031
Fracture of CFRP 

sheet 73.8 12.4 16.9 e 24.9 6.5 53% 0.240 0.126 53% 0.0110 0.026 0.423 0.09

6 0.078 63.8 12.2 18.7 e 36.2 13.0 107% 0.603 0.642 107% 0.0093 0.036 0.258 0.0014 0.00 1.06 1.06

12 0.020
Fracture of CFRP 

sheet 81.4 18.4 17.0 w 28.8 3.0 16% 0.234 0.038 16% 0.0098 0.011 0.891 0.0015 0.16

Beams Measured 
raction at one 
support, kip

Peak
Relative 

peak

Peak bar 
strain

Displacement, in

Applied load Sum of reactions

Applied 
load,       

kip-sec

Sum of 
reaction, kip-

sec

Ratio of 
impulse     
(S/A)

Initial 

Peak CFRP atrain

Drop 
height, in

Duration of 
event, sec   

Failure mode

Peak load impulse

Ratio of 
nomalized  
load (S/A)

CFRP 
strain,      

ultimate 
strain=0.01 

Time at 
peak strain, 

sec

Strain rate, 
strain/sec

A-S-A-6G

A-S-AU-2S

on sides

on sides

Measured, 
kip

Nomalized,   
kip

Measured, 
kip

Nomalized,   
kip

3 0.067 45.9 8.8 13.3 e 21.2 10.0 113% 0.377 0.425 113% 0.0078 0.032 0.244 0.0009 0.00 0.58 0.58

3 0.023
Fracture of CFRP 

sheet (column 
sheet)

41.4 10.1 16.1 w 27.0 8.2 80% 0.164 0.132 80% 0.0084 0.021 0.400 0.0011 0.10

B-BH-U-6S 3 0.025
Fracture of CFRP 

sheet (beam sheet) 45.5 10.4 9.8 e 18.2 5.4 52% 0.165 0.086 52% 0.0060 0.008 0.750 0.0003 0.00

Beams Measured 
raction at one 
support, kip

Peak bar 
strain Relative 

peak

Duration of 
event, sec   

Peak CFRP atrain

Ratio of 
nomalized  
load (S/A)

CFRP 
strain,      

ultimate 
strain=0.01 

Time at 
peak strain, 

sec

Strain rate, 
strain/sec

Initial Peak

Applied load Sum of reactions

Applied 
load,       

kip-sec

Sum of 
reaction, kip-

sec

Ratio of 
impulse     
(S/A)

Peak load impulse Displacement, in

Drop 
height, in

Failure mode

B-BH-A-6S
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Table 3.14 Summary of test results, rehabilitation using the bottom face with column 

Measured, 
kip

Nomalized,   
kip

Measured, 
kip

Nomalized,   
kip

2 0.099 Yield of bar 18.4 7.0 10.7 w 15.3 5.5 78% 0.436 0.342 78% 0.0023 0.047 0.049 0.0051 0.00 0.77 0.77

3 0.114 Yield of bar 18.8 7.0 17.5 w 26.4 5.7 81% 0.506 0.411 81% 0.0039 0.054 0.072 0.0231 0.14 1.25 1.11

4.5 0.128 Yield of bar 31.5 7.2 23.3 w 27.9 6.1 84% 0.589 0.497 84% 0.0047 0.055 0.085 0.0229 0.37 1.96 1.59

9 0.145 Yield of bar 43.9 8.1 28.2 w 32.3 7.1 88% 0.744 0.650 87% 0.0057 0.057 0.100 0.0231 0.86 3.52 2.66

12 0.048
Fracture of CFRP 

sheet (beam sheet) 60.0 10.0 29.3 w 32.2 6.5 65% 0.304 0.198 65% 0.0064 0.037 0.173 0.0129 0.33

2 0.102 Yield of bar 25.8 4.8 11.6 w 13.3 5.1 105% 0.313 0.329 105% 0.0021 0.041 0.052 0.0031 0.00 0.80 0.80

3 0.119 Yield of bar 29.0 5.0 13.3 w 19.9 5.4 107% 0.378 0.404 107% 0.0030 0.061 0.050 0.0257 0.26 1.44 1.18

4.5 0.134 Yield of bar 32.8 5.4 16.3 w 26.4 5.8 108% 0.462 0.496 107% 0.0050 0.057 0.088 0.0150 0.64 2.32 1.68

9 0.162
concrete crusing 

(comp) 52.0 5.7 26.1 w 32.4 6.1 107% 0.586 0.630 107% 0.0059 0.037 0.162 0.0126 1.25 4.29 3.04

12 0.188
concrete crushing 

and conver spalling 52.9 7.1 29.0 w 51.9 6.0 85% 0.841 0.714 85% 0.0058 0.040 0.145 0.0086 2.99 7.28 4.29

12 0.060 Fracture of bar 62.7 9.8 23.1 w 37.8 5.1 52% 0.372 0.195 52% 0.0058 0.026 0.227 0.0094

2 0.110 Yield of bar 21.9 4.9 8.7 w 16.2 4.8 98% 0.341 0.334 98% 0.0024 0.040 0.060 0.0040 0.00 0.82 0.82

3 0.123 Yield of bar 22.8 5.2 13.8 w 18.9 5.3 102% 0.409 0.417 102% 0.0026 0.027 0.096 0.0277 0.23 1.45 1.22

4.5 0.041
Fracture of CFRP 

sheet (beam sheet) 30.8 6.8 20.5 w 23.4 5.4 79% 0.179 0.140 78% 0.0030 0.033 0.092 0.0146 0.55

Peak bar 
strain

Peak
Relative 

peak
Initial 

CFRP 
strain,      

ultimate 
strain=0.01 

Time at 
peak strain, 

sec

Strain rate, 
strain/sec

impulse Displacement, in

Ratio of 
impulse     
(S/A)

Applied load

Applied 
load,       

kip-sec

Sum of 
reaction, kip-

sec

Drop 
height, in

Duration of 
event, sec   

Failure mode

Peak load

Sum of reactions

Measured 
raction at one 
support, kip

Ratio of 
nomalized  
load (S/A)

Peak CFRP atrain

Beams

C-BC-A-6G-01

C-BC-U-6G

C-BC-A-6G-02
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The major findings from the dynamic loading test are as follows; 

1. It was possible to develop the ultimate strength of the CFRP sheets under strain 

rates greater than 0.1 /sec using CFRP anchors and/or CFRP U-wraps. 

2. Anchorage methods with the CFRP anchors and/or U-wraps were tested under 

static loading and were found to be acceptable under dynamic loading as well. 

3. The methods used to anchor CFRP sheets on either the bottom face or side faces 

of a reinforced concrete beam were acceptable.  

4. Concrete strength, surface preparation and direction of application were not 

critical if the CFRP sheets were anchored by the CFRP anchors or U-wraps. 

5. Although rapid changes in shape and quantity of CFRP existed due to the height 

transition, CFRP material passing through a column hole and lap splices of the 

beam and connection sheets, the CFRP sheet developed its ultimate tensile 

strength. 

6. Anchored CFRP sheets successfully provided continuity to the bottom steel 

reinforcement.  Ductility of the bottom reinforcement was realized and large 

rotations were observed. 

7. The length of the CFRP sheet and location of CFRP anchors was based on 

development length of the bars for which continuity is required and was found to 

give satisfactory performance. 

8. The beams with CFRP anchors required more energy to fracture CFRP sheet than 

with CFRP U-wraps. 

The results of this study also indicate that it is possible to successfully provide 

continuity in the bottom steel reinforcement using the CFRP materials. The CFRP sheet 

anchored with proper anchorage methods effectively transferred stress from the CFRP to 

bottom reinforcement and the CFRP did not fail until the ductility of the bottom 

reinforcement and large rotational capacity of the section were realized. 
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This study focused on the behavior of CFRP materials in reinforced concrete 

beams in a high rate loading condition but this condition did not represent a real loading 

condition in the case where a column was suddenly removed.  However, the rate of 

loading used in this study is comparable to that in the case of column removal (Sasani, 

2007). The recommendations for the amplified factored load for static analysis regarding 

this case are provided in several design guidelines (GSA, 2003; DOD, 2005).  If an 

engineer proportions CFRP sheets according to these recommendations, and anchors the 

sheets using the anchorage methods studied, an acceptable design should be achieved.  

The effects of a static load after the column removal were investigated by previous 

studies on the use of CFRP materials under static loading (Kim, 2006; Orton, 2007) 

In this study, one type of CFRP material from a specific manufacturer was tested. 

Therefore, for the general use of other types of CFRP materials in this application, a 

qualification test method for evaluating performance of anchorage methods with CFRP 

anchors and U-wraps is needed. A qualification test method for CFRP anchors proposed 

in the research program is discussed in the next section.  
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3.8 FUTURE RESEARCH: QUALIFICATION TEST FOR CFRP ANCHORS 

CFRP materials used in this study were supplied by a manufacturer and CFRP 

materials from other manufactures were not used. Typical material properties of a CFRP 

composite are provided by the manufacturer and delamination characteristic of CFRP 

sheets from the concrete has been studied based on the properties. However, information 

the effectiveness of CFRP anchors depending on their material properties is limited. 

Although the performance of CFRP anchors has received considerable attention, a 

reliable test method for qualifying of CFRP anchors in reinforced concrete structures 

does not exist. Therefore, development of a simple test method for evaluating 

effectiveness of CFRP anchors is necessary. This test will evaluate effectiveness of CFRP 

anchors without repeating different tests for different applications. In addition, this test 

method may be used in quality control of CFRP anchors. Although a test method for 

evaluating strength of lap spliced region of CFRP anchor and CFRP sheet (Figure 3.157) 

and a pull-out test method for a CFRP anchor installed into the concrete (Figure 3.158) 

exist (SR-CF 工法 硏究會, SR-CF Construction Method Research Council, 2001), these 

test methods can not represent the load transfer mechanism from the CFRP sheets to the 

concrete through the CFRP anchors. 

 

Figure 3.157 Test method for evaluating strength of lap spliced region CFRP anchor 

and CFRP sheet (SR-CF Construction Method Research Council, 2001) 
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Figure 3.158 Pull-out test method for CFRP anchor (SR-CF 工法 硏究會, 2001) 

A test method, which is similar to Standard Test Method for Flexural Strength of 

Concrete Using Simple Beam with Center-Point Loading (ASTM C 293-07), was 

proposed during the study of CFRP rehabilitation. Preliminary tests were conducted using 

the standard concrete beam specimens according to ASTM C 293-07.  CFRP sheets and 

anchors were applied to the bottom face of the beam which was tested under center-point 

loading (Figure 3.159). However, this test method did not provide reliable test results due 

to lack of shear strength in the beam. In some cases, it was possible to achieve a failure 

mode of the beam that was crack in the center and fracture of CFRP sheet (Figure 3.160-

a) while in other cases, failure mode of the beam was shear failure before the CFRP sheet 

developed full tensile strength (Figure 3.160-b). Therefore, the test methods need to be 

improved to develop a reliable and simple test method for CFRP anchors. In addition, 

Details of test setup, specimen, and installation of CFRP need to be studied for a standard 

test method.  Research on qualification test methods for CFRP anchors is continuing at 

the University of Texas at Austin. 
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Figure 3.159 Proposed qualification test method for CFRP anchors 

 

 

a. Fracture of CFRP sheet 

 

 

b. Shear failure of the beam 

 

Figure 3.160 Failure modes in the qualification test 

CFRP anchors 

CFRP sheet 
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CHAPTER 4 

Experimental Program - Rehabilitation of Poorly 

Detailed Reinforced Concrete Columns 

 

4.1 INTRODUCTION 

In many reinforced concrete structures built in the 1970’s and earlier, lap splices 

in column longitudinal reinforcement were based on compression loads only. The length 

of those splices and the amount of transverse reinforcement are inadequate if the lap 

splices are subjected to different types of loading or if ductility is needed. Locations of 

poorly detailed lap splices in the reinforced concrete structures are shown in Figure 4.1.  

 

Figure 4.1 Location of poorly detailed lap splices 

In extreme loading conditions such as loss of a column support due to terrorist 

attack or if earthquake or other extreme actions cause severe damage, the performance of 

the structure may be unsatisfactory. Jacketing of reinforced concrete columns using 

Poorly detailed lap splice 
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CFRP may provide a solution for improving lap splice behavior. Use of CFRP jacketing 

in reinforced concrete columns to transfer tension through the splice region in the case of 

loss of a column support is shown in Figure 4.2. 

 

`  

Figure 4.2 CFRP jacketing in splice region 

 

However, CFRP jacketing of square and rectangular reinforced concrete columns 

(Figure 4.3-b) is not as efficient as it is for circular columns (Figure 4.3-a) because CFRP 

jackets can not confine a rectangular section as effectively as a circular section. Except 

for lap splices located at the corners of a square or rectangular column, splitting caused 

by lap splices of bars away from the corner will not be restrained by the CFRP jacketing.  

The effectiveness of CFRP jacketing in rectangular columns could be improved using 

CFRP anchors (Figure 4.3-c). The CFRP anchors cross the splitting crack that develops at 

the lap splices located away from a corner. 

 

 

Column removed due 
 to extreme event   

CFRP jacketing

Vertical tie force 

Test Column 
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Figure 4.3 Confinement effect of CFRP jackets and CFRP anchors 

 

Two alternative methods of loading, vertical loading (Figure 4.4-a) and lateral 

loading (Figure 4.4-b), were initially considered to apply tension to the lap splices. The 

lateral loading was selected for this study although the vertical loading could create a 

stress condition in the lap splices which was more similar to the condition when a column 

below the lap splices was removed. However, the lateral loading was selected because of 

following reasons. First, more than one test was possible using one column under the 

lateral loading because only one side of the lap splices was in tension when the lateral 

CFRP jacket a. Circular column section with CFRP  

b. Rectangular column section with 
CFRP jacket 

c. Rectangular column section with  
CFRP jackets and CFRP anchor 

CFRP anchor 

Direction of loading 
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load was applied and when the load was reversed, the other side was in tension. 

Therefore, more test variables could be evaluated using two sides of a column by 

applying the lateral loading in both directions. In this study, column specimens were 

tested under monotonic or cyclic lateral loading. Under monotonic loading, a column was 

tested in three different conditions: as-built, repair after loading to splice failure, and 

strengthening prior to loading. Under cyclic loading, different strengthening methods 

were evaluated using each side of a column. Details of the loading program are presented 

in Section 4.4.2. Second, under lateral loading, a drift ratio vs lateral load response of a 

column was obtained. This information provided a clear indication of performance of the 

column before and after rehabilitation and was easy to compare with test results from 

other studies with similar loading. Third, the test setup and specimens could be compared 

to those reported by Aboutaha (1994) in which steel jackets were used. 

The difference in the stress condition of the lap splices under vertical loading and 

lateral loading was variable moment along the lap spliced region. The effect of the 

variable moment was studied by Ferguson and Krishnaswamy (1971). According to their 

study, the lap splice length can be decreased by multiplying the splice length by a factor, 

)1(
2

1
k   and k is ratio of stresses at the ends of the lap spliced region )15.0(  k . In 

Figure 4.4-b, if bending moment at the bottom of the column is just at yield, the stress in 

the lap spliced bar at that point is fy and the stress in the other lap spliced bar at the top of 

the splice is y
s f

L

LL 
 (

L

LL
k s
 ). In our test program, k was equal to 0.78 (L=108 in. 

and Ls=24 in.) and the lap splice length could be reduced by 11%. Although less 

development length was required in a variable moment condition than in a constant 

moment condition, lateral loading was selected because the effect of the variable moment 

was small for the specimen dimensions selected.  

Different approaches for strengthening and repairing inadequate lap splices in 

square and rectangular reinforced concrete columns using combinations of CFRP jackets 
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and CFRP anchors were studied. Three square columns (1-A-S8-M, 2-A-S8-M and 3-B-

S10-M) and three rectangular columns (4-C-R20-M, 5-C-R20-C and 6-C-R20-C) were 

fabricated and rehabilitated using CFRP jackets only, CFRP anchors only, or by a 

combination of CFRP jackets and CFRP anchors. Both damaged and undamaged 

columns were strengthened and tested. 
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Figure 4.4 Vertical loading vs lateral loading 

a. Vertical loading, no moment 

b. Lateral loading, no axial load 

Variable 
moment 

L 

Ls

P

PL 

P(L - Ls) 
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4.2 TEST VARIABLES 

The test variables were as follows: 1. Section shape and number of lap splices; 2. 

Loading programs (monotonic or cyclic); 3. Rehabilitation methods (use of CFRP jackets 

and/or anchors, design method)  

4.2.1 Test Specimens 

The geometry and dimensions for the test specimens are provided in Figure 4.5. 

The longitudinal bars in the column and the bars from the footing were lap spliced above 

the construction joint between the column and the footing. All the spliced longitudinal 

bars were #8 and the length of the lap splices was 24 in. In the lap spliced region, 

transverse reinforcement was provided by #3 bars at 16 in. spacing with the first tie at 4 

in. from the footing.  Design of columns was based on provisions of the ACI 318-63. 

Three types of reinforced concrete columns were fabricated. Dimensions of 

columns and details of transverse reinforcement are shown in Figure 4.5 and Figure 4.6. 

Six columns, two Type A (1-A-S8-M and 2-A-S8-M) with 8 splices, one Type B (3-B-

S10-M) with 10 splices and three Type C (4-C-R20-M, 5-C-R20-C and 6-C-R20-C) with 

20 splices, were tested.  A summary of specimens is shown in Table 4.1. In specimen 

notation, characteristics of a test column are indicated as follows:  

 Specimen number 

 Type of column (Type A, B or C), 

  Shape of section (Square or Rectangle) 

  Number of lap splices (8, 10 or 20 lap splices in a column) 

  Type of loading (Monotonic or Cyclic) 
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Table 4.1 Summary of test columns 

Specimen 
Section 

type 
Size of 

specimen 

Number 
of lap 
splices  

Type of 
loading 

Test 
condition 

Compressive 
strength of 

concrete 

Age  on 
test day 

As-built 5,300 psi 56 days 

1-A-S8-M Type A 
18 in. x 18 in. 

(Square) 
8 Monotonic 

Repair and 
strengthening 

5,600 psi 79 days 

As-built 4,700 psi 28 days 

2-A-S8-M Type A 
18 in. x 18 in. 

(Square) 
8 Monotonic 

Repair and 
strengthening 

5,300 psi 47 days 

As-built 4,200 psi 28 days 

3-B-S10-M Type B 
18 in. x 18 in. 

(Square) 
10 Monotonic 

Repair and 
strengthening 

4,500 psi 39 days 

As-built 4,600 psi 53 days 

4-C-R20-M Type C 
18 in. x 36 in. 
(Rectangle) 

20 Monotonic 
Repair and 

strengthening 
4,600 psi 69 days 

5-C-R20-C Type C 
18 in. x 36 in. 
(Rectangle) 

20 Cyclic Strengthening 5,600 psi 63 days 

6-C-R20-C Type C 
18 in. x 36 in. 
(Rectangle) 

20 Cyclic Strengthening 5,600 psi 82 days 

Specimen notation: A: Type A; B: Type B; C: Type C  (Figure 4.5) 

     S: Square; R: Rectangle 

                    8: 8 lap splices; 10: 10 lap splices; 20: 20 lap splices 

                   M: Monotonic loading; C: Cyclic loading  

 

Design compressive strength of concrete was 4,000 psi. The measured 

compressive strengths of concrete at the day of the test are shown in Table 4.1.  Two 

columns were fabricated at the same time (3 castings: 1-A-S8-M and 2-A-S8-M; 3-B-

S10-M and 4-C-R20-M; 5- C-S20-C and 6- C-R20-C). 2-A-S8-M was tested prior to 1-

A-S8-M and the other columns were tested in the same order as the number of the 
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specimen   In Table 4.1, two values of compressive strengths are provided for 1-A-S8-M, 

2-A-S8-M, 3-B-S10-M and 4-C-R20-M because these columns were tested as-built and 

after rehabilitation.  

Grade 60 reinforcement was used for the longitudinal (#8) and transverse (#3) 

reinforcement.  The measured tensile yield strength of longitudinal reinforcement was 63 

ksi and that of transverse reinforcement was between 66 ksi and 74 ksi.  A measured 

strain-stress curve of the longitudinal reinforcement (#8) is shown in Figure 4.7. 

 

Figure 4.5 Geometry and dimensions for test specimens 
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Figure 4.6 Transverse reinforcement details 
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Figure 4.7 Strain-stress curves of steel and CFRP  
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4.2.2 Loading Program 

Two types of lateral loading were applied to the columns. Monotonic loading was 

applied to 1-A-S8-M, 2-A-S8-M, 3-B-S10-M and 4-C-R20-M and cyclic loading was 

applied to 5-C-R20-C and 6-C-R20-C. 

No axial load was applied to the columns. The dominant action of the bottom 

portion of the columns, lap spliced region, was flexure. To minimize the effect of shear 

on the failure mechanism, the columns were designed to have considerably higher 

nominal shear strength than flexural strength. The loading program is shown in Table 4.1. 

Lateral applied load and displacement was measured at the load point. Drift ratio 

corresponds to the measured lateral displacement divided by the height of the loading 

location from the top of the footing (108 in.). Details of test setup are described in 

Section 4.4. 

4.2.2.1   Monotonic Loading Test 

In the columns tested under monotonic loading, two tests, as-built and after 

rehabilitation, were conducted on each column. First, a column was tested as-built. 1-A-

S8-M, 2-A-S8-M, 3-B-S10-M and 4-C-R20-M were first loaded to determine the load 

and deformation capacity up to the point where the capacity of the splices on only one 

face of the column was reached (Figure 4.8-a). When a rapid drop of the load was 

observed, the loading was stopped in order to prevent severe damage to the splice region. 

The drift ratio at this point was about 1%.  

After unloading, the column was repaired (damaged side during first loading) and 

strengthened (undamaged side) using CFRP materials. Rehabilitation details for each test 

column are discussed in Section 4.3.  As part of the repair procedure of the side damaged 

in the as-built test, epoxy crack injection preceded application of the CFRP. HILTI CI 

060 Crack Injection System was used to inject cracks. (Figure 4.8-b) The crack injection 

procedure recommended by the manufacturer was used and is introduced in Appendix 

B.1. 
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After rehabilitation, the column was loaded in the opposite direction of load in the 

first test (Figure 4.8-c).  Under the second load, the bars in the face undamaged in the 

first test were in tension.  After the column reached a drift of 2.3 % and the spliced bars 

in the undamaged side yielded, the load was reversed so that bars in the damaged side 

were subjected to tension (Figure 4.8-d).  After the column reached a drift of about 6 % 

and the bars yielded, the direction of loading changed so the bars in the initially 

undamaged side were again subjected to tension (Figure 4.8-e). The column was loaded 

up to the stroke limit of the hydraulic actuator in this direction.  

Using this test procedure, lap splices of bars in three different conditions were 

evaluated using one test column: (1) as-built, (2) repaired column after damage and (3) 

strengthened undamaged column.  

4.2.2.2   Cyclic Loading Test 

5-C-R20-C and 6-C-R20-C were tested under cyclic loading to assess of strength 

and deformation capacity of the splice after CFRP rehabilitation under seismic loading.   

The loading history suggested by Krawinkler (1996) was selected for the cyclic 

loading test.  Because 4-C-R20-M was tested under monotonic loading and was identical 

to 5-C-R20-C and 6-C-R20-C, the yield displacement was 1.3 in. and corresponded to a 

drift ratio of 1.2 %. The amplitude of cyclic loading was based on the yield displacement. 

The amplitude of displacement in the first 3 cycles was 50 % of the yield displacement 

and in the second 3 cycles was 75 % of the yield displacement. The amplitude of 

displacement in the third 3 cycles was the same as the yield displacement.  After the yield 

displacement was reached, the incremental increase in displacement was equal to the 

yield displacement. Deflections increased up to the stroke limit of the hydraulic actuator. 

The cyclic loading histories for 5-C-R20-C and 6-C-R20-C are shown in Figure 4.9 and 

Figure 4.10. 
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                                 a. As-built test                                      b. Repair and strengthening 

 

   
c. Tension of undamaged side          d. Tension of damaged side     e. Tension of initially undamaged side 

Figure 4.8 Monotonic loading test procedure 
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b. Drift ratio 

Figure 4.9 Cyclic loading history of 5-C-R20-C 
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b. Drift ratio 

Figure 4.10 Cyclic loading history of 6-C-R20-C 
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4.2.3 Rehabilitation Methods Using CFRP 

4.2.3.1 Rehabilitation Design 

Using CFRP materials, 1-A-S8-M, 2-A-S8-M, 3-B-S10-M and 4-C-R20-M were 

repaired and strengthened after the as-built column was tested, and 5-C-R20-C and 6-C-

R20-C were strengthened in the as-built condition. 

All strengthened and repaired tests had CFRP jackets except the west face of 6-C-

R20-C.  The number of CFRP anchors and width of CFRP material used in the anchors 

varied depending on the design method. In Table 4.2, details of the rehabilitation are 

given.  

One layer of CFRP sheet was used to wrap in all the test columns as a jacketing 

element to provide confinement of the lap splices. The number of layers of CFRP in the 

jackets was not varied because the confinement effect of CFRP jackets on rectangular 

columns is limited to the corner bars and many researchers have investigated columns 

confined with multiple layers of CFRP. CFRP jackets with no anchor were used in 1-A-

S8-M to study effectiveness of the CFRP jacket only.  In contrast, a combination of 

CFRP jackets and CFRP anchors was used in the other columns. In 1-A-S8-M, 2-A-S8-M, 

3-B-S10-M, 4-C-R20-M and 5-C-R20-C, CFRP jackets wrapped the entire section of the 

lap spliced region while on the east face of 6-C-R20-C, ends of the partial CFRP jackets 

were anchored. On west side of 6-C-R20-C, anchors only were provided. Layout of 

CFRP jackets in the test columns are described in Section 4.3. 

When CFRP anchors were used, they were installed with the CFRP jackets except 

on the west side of 6-C-R20-C. The CFRP anchors were installed so at least one side of 

every lap spliced longitudinal bars was next to anchors.  CFRP anchors were applied 

either in 2 (18 in. vertical spacing) or 4 rows (6 in. vertical spacing). Different numbers 

of rows of CFRP anchors were studied to determine whether the number of anchors could 

be reduced to save installation costs.  



 

 

198

Table 4.2 Details of the rehabilitation 

* East side was damaged under monotonic loading except 3-B-S10-M. 

**Partial jacket with anchors were used on the east side of 6-C-R20-C. 

 

 

Specimen 
Type of 
loading 

Test conditions 
CFRP 
jacket 

CFRP 
anchors 

No. of 
rows of 
CFRP 

anchors 

No. of 
total 

CFRP 
anchors 

Design 
of CFRP 

As-built      

Undamaged side 
(West) 

x     1-A-S8-M Monotonic 
Repair and 

strengthening Damaged side 
(East) 

x     

As-built      

Undamaged side 
(West) 

x x 4 4 
Shear 

friction 
2-A-S8-M Monotonic 

Repair and 
strengthening Damaged side 

(East) 
x x 4 4 

Shear 
friction 

As-built      

Undamaged side 
(East) 

x x 4 8 
Previous 

test 
3-B-S10-M Monotonic 

Repair and 
strengthening Damaged side* 

(West) 
x x 4 8 

Shear 
friction 

As-built      

Undamaged side 
(West) 

x x 2 8 
Previous 

test 
4-C-R20-M Monotonic 

Repair and 
strengthening Damaged side 

(East) 
x x 4 16 

Previous 
test 

West x x 2 8 
Previous 

test 
5-C-R20-C Cyclic Strengthening 

East x x 4 16 
Previous 

test 

West  x `4 20 
Previous 

test 
6-C-R20-C Cyclic Strengthening 

East x**
 x 4 16 

Previous 
test 
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CFRP materials for rehabilitation of 2-A-S8-M and the west side of 3-B-S10-M 

were initially designed using shear friction as shown in Figure 4.11. 

 

 

Figure 4.11 Shear friction mechanism, 3-B-S10-M  

CFRP anchor 
CFRP jacket 

Va/2 

Vs/3 

Vs/3 

Vj/2 

Vj/2 

Vj+ Va+ Vs 

Tb 

Tb 

Tb : transferred by shear friction across by this plane
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Vs/3 

μ: coefficient of friction 
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 The total width of CFRP materials across the shear plane was calculated using 

the shear friction equation. The tensile force in the lap spliced bars was assumed to be 

transferred across a shear plane where splitting cracking was expected. A stress of 

1.25 yf  assumed to account for the possibility of strain hardening. CFRP jackets, CFRP 

anchors and ties were assumed to contribute a force perpendicular to the shear plane.  

When calculating this force, it was assumed that only 1/3 of ultimate strength of CFRP 

can be developed. One third of the ultimate strain of CFRP was 0.0033 which was less 

than the delamination strain of CFRP (0.0040) but larger than the yield strain of steel 

(0.0021). After determining the total width of CFRP needed, the distribution of that 

material between the jacket and the anchors was determined. First, one layer of CFRP 

jacket with the same width as the lap splice length was used for jacketing. Second, 

vertical spacing of CFRP anchors in the lap spliced region was 6 in. Third, CFRP anchors 

were placed at the middle of the lap splices on at least one side of every lap spliced 

longitudinal bar except corner bars. Forth, the diameter and depth of the anchor hole was 

selected to prevent bond failure of a CFRP anchor. The diameter of the anchor and the 

hole was assumed to be the same. The preliminary design procedure and a design 

example for CFRP jackets and anchors using shear friction are described below. 

 

Design Procedure 

1. Calculate tensile force in the longitudinal bars, Tb and check Tb with the upper 

limit on shear-friction strength, Vn,max  

syb AfT 25.1       Equation 4-1 

sn vbLV max,       Equation 4-2  

  bn TV max,       Equation 4-3  

Tb: expected tensile force in the longitudinal bars, lb 

yf : yield strength of reinforcement, psi 
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'
cf : compressive strength of concrete, psi 

 
 

 

As: area of longitudinal bars, in2 

Vn,max: upper limit on shear friction strength, lb(ACI 318-08,11.6.5) 

v: maximum stress transferred by shear friction smaller of  0.2 '
cf  or 800 psi  

(ACI 318-08, Section 11.6.5) 

 

b: width of column  

2. Determine the total effective width of CFRP anchors using one layer of CFRP 

jackets and Vn> Tb  (Assume 1/3 of ffu is effective) 

bsajn TVVVV  )(     Equation 4-4 

)2()3/( jffuj LtfV       Equation 4-5 

afuaa AfnV )3/(      Equation 4-6 

sV vfy Af       Equation 4-7 









 vfyjffu

b

fuff

aa AfLtf
T

ftt

An
)2()3/(

31


 Equation 4-8 

 : coefficient of friction =1.4 (ACI 318-08,11.6.4.3) 

Vn: nominal shear strength, lb 

Vj: force perpendicular to shear plane contributed by CFRP  

     jackets, lb  

Va: force perpendicular to shear plane contributed by CFRP  

     anchors, lb 

Vs: force perpendicular to shear plane contributed by transverse steel  

    reinforcement, lb 

ffu: tensile strength of CFRP, psi 

tf: thickness of CFRP sheet, in. 
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Lj: width of CFRP jacket, in. 

na: number of CFRP anchors 

Aa: area of a CFRP anchor, in2 

Avf: area of steel shear-friction reinforcement, in2 

f

aa

t

An
: effective width of total CFRP anchors, in2 

3. Determine the number of CFRP anchors using the following detailing 

requirements 

- Vertical spacing of CFRP anchors in the lap spliced region: 6 in. 

- Horizontal distribution of CFRP anchors: at the middle of lap splices on 

at least one side of every lap spliced longitudinal bar except corner bars 

- Diameter and depth of anchor hole to prevent bond failure of a CFRP 

anchor: (Equation 4-10 is discussed in Section 2.1) 

nafu PAf )3/(     Equation 4-9 

                   )(22)(4 ''
caccchccn hLhfhdhfP      

                                                                                                            Equation 4-10 

   nP : tensile strength of CFRP anchor, lb, Equation 2-3 

ch : concrete cone depth, 2 in. (Ozdemir et al,. 2005) 

dh: diameter of anchor hole, in. 

La: depth of anchor hole from the shear plane, in,. >  4 in. (Ozdemir et 

al,. 2005) 
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Design Example, the West face of 3-B-S10-M  

1. Calculate tensile force in the longitudinal bars, Tb and check Tb with the upper 

limit on shear-friction strength, Vn,max  

lbAfT syb 250,296)79.05(000,6025.125.1    

 lbvbLV sn 600,3452418800max,    

   bn TV max,    O.K.     

As= 5-#8(5x0.79 in2) 

b=18 in. 

 

2. Determine the effective width of total CFRP anchors using one layer of CFRP 

jackets and Vn> Tb  

bsajn TVVVV  )(      

lbLtfV jffuj 520,912404.0)3/000,143()2()3/(    

 sV lbAf vfy 600,39)11.06(000,60    

 







 vfyjffu

b

fuff

aa AfLtf
T

ftt

An
)2()3/(

31



 .2.42000,396520,91
4.1

250,296

000,143

3

04.0

1
in

t

An

f

aa 



   

 =1.4  

ffu=143,000 psi,  

tf= 0.04 in. 

Lj = 24 in. 

Avf = 6x0.66 in2, (6-#3 ties across the shear plane)  
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3. Determine the number of CFRP anchors using the detailing requirements 

- Vertical distribution: 24 in./6 in. = 4 rows of anchors 

- Horizontal distribution: 2 columns of anchors  

- Total number of anchor, na= 4x2=8 anchors 

   anchorperin
anchors

in
.275.5.

8

2.42
Use 5.5 in. anchor 

- Diameter and depth of anchor hole:  

Try dh=5/8 in. and La= 6 in. >  4 in.  

lbAf afu 487,10)5.504.0)(3/000,143()3/(     

lb

hLhfhdhfP caccchccn

304,15)26(2000,422)28/5(2000,44

)(22)(4 ''








            

nafu PAf )3/(    O.K. 

   

The design procedure using shear friction was evaluated using data from the 

experimental program and a modified design guideline is proposed in Section 5. 

The test results of 2-A-S8-M and the west side of 3-B-S10-M indicated that a 

reduced width of material could be used for the CFRP anchors in the rest of test columns 

to optimize the quantity of CFRP originally selected using shear friction. Columns with a 

fewer number of the anchors and less anchor area were tested to find an acceptable area 

for splice rehabilitation. Details of the CFRP materials used in each test column are 

discussed in Section 4.3. 
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4.2.3.2 Material Properties of CFRP 

The CFRP material used in fabricating the CFRP jackets and CFRP anchors was 

Tyfo® SCH-41 Composite with Tyfo® S Epoxy from FYFE Co. LLC. 

The CFRP material was unidirectional and had no tensile capacity transverse to 

the fiber. The specified properties from the manufacturer are shown in Table 4.3. 

Previous studies showed that the measured properties of this CFRP material were 

consistent with the specified properties from the manufacturer. (Kim, 2006; Orton, 2007)  

 A stress-strain curve of the CFRP material provided by the manufacturer is 

shown in Figure 4.7. Although the CFRP has higher strength than the Grade 60 

reinforcement, the CFRP is less stiff than the reinforcement and has a linear strain-stress 

relationship up to fracture. 

Table 4.3  Material properties of CFRP suggested by manufacturer 

Properties 
Ultimate Tensile 

Strength 
Elongation 
at Break 

Tensile 
modulus 

Laminate 
thickness 

Typical Test Value 143 ksi 1.0 % 13,900 ksi 0.04 in. 

Design Value 121 ksi 0.85 % 11,900 ksi 0.04 in. 

 

4.2.3.3 Advantages of Rehabilitation Methods Using CFRP 

Rehabilitation methods using CFRP jackets and anchors are comparable to 

rehabilitation methods using steel jackets and anchor bolts. Advantages of rehabilitation 

methods of reinforced concrete columns using CFRP over steel are as follows. First, easy 

and rapid installation is possible through rehabilitation methods using CFRP materials 

compared with those using steel. CFRP sheets and devices for installing these materials 

are relatively light and small compared with steel plates requiring welding. Steel plate 

may be difficult to install and may require non-shrinking grout between the steel plate 

and concrete column. The time required for applying CFRP is shorter than for steel plates 
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because the application procedure is relatively simple. CFRP would appear to be more 

versatile than steel for rehabilitation of existing structures which have limited work space 

and speed of construction is important.  

In addition, CFRP conforms to the shape of the column and does not result in any 

substantial change in column dimensions. If steel jackets and anchor bolts are used in 

rehabilitating reinforced concrete columns, the size of the column section increases due 

to thickness of the steel plates and grout, and the anchor bolts or nuts protrude from the 

column surface.(Figure 4.12-b) However, layers of CFRP jackets and CFRP anchors are 

thin and easy to cover after installation. (Figure 4.12-a) 

Therefore, use of CFRP can be an effective and efficient solution for repair and 

strengthening existing reinforced concrete columns. 

 

   

            a. CFRP jackets with CFRP anchors                b. Steel jackets with anchor bolts (Aboutaha, 1994) 

Figure 4.12 Change in column dimensions after rehabilitation 

CFRP anchorCFRP jacket Anchor bolt Steel jacket 

Grout
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4.3 REHABILITATION OF TEST COLUMNS 

4.3.1 Grouting of Cracks 

In specimen 1-A-S8-M, 2-A-S8-M, 3-B-S10-M and 4-C-R20-M, crack injection 

preceded application of CFRP on the damaged side due to the as- built test. HILTI CI 060 

Crack Injection System was used to inject cracks.  Details of crack injection are described 

in Appendix B.1. In 5-C-R20-C and 6-C-R20-C, CFRP was applied to undamaged 

columns so crack injection was not necessary.  

4.3.2 Preparation of Concrete Surface and Column Corners for CFRP Jackets 

The concrete surface of all the test columns where CFRP would be applied was 

ground to remove cement paste. The concrete surface before and after grinding is shown 

in Figure 4.13. The concrete surface was prepared to meet the requirement for a 

minimum Concrete Surface Profile (CPS) 3 as defined in the International Concrete 

Research Institute (ICRI) surface-profile-chips. Based on the test results discussed in the 

previous section, the surface preparation may not be essential for the CFRP application. 

However, the column surface was ground to reduce the variables of the test program. In 

addition, grinding the concrete surface was relatively easy. Residual epoxy on the 

concrete surface due to crack injection was removed by grinding to expose the concrete 

surface. 

The corners of all the test columns with CFRP jackets were also rounded to 2 in. 

radius to make a smooth transition of CFRP around a corner. The radius of the corner 

was selected based on a study by Johnson (2004). The rounded corner is shown in Figure 

4.14. 
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Figure 4.13 Concrete surface before and after grinding 

 

 

Figure 4.14 Rounded corner 

Before grinding 

After grinding 
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Before applying CFRP to a column, any needed anchor holes were drilled. The 

size and geometry of anchor holes varied depending on the number of the lap splices and 

the rehabilitation detail. Details of geometry of the anchor holes in each test column are 

described in Section 4.3.3 to 4.3.8 where the rehabilitation is discussed. Details of 

installation of the CFRP jackets and anchors are also described in Appendix B.2. 
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4.3.3 1-A-S8-M 

1-A-S8-M was a Type A column with 8 splices. It was rehabilitated using only 

CFRP jackets and no CFRP anchors were used.  It was tested under monotonic loading. 

4.3.3.1 CFRP Jacket  

Details of the CFRP jacket are shown in Figure 4.15. One layer of CFRP sheet 

was used in 1-A-S8-M as a jacketing element to provide confinement of the lap splices. 

Two CFRP sheets 12 in. wide x 80 in. long were used to confine the 24 in. lap spliced 

region. The CFRP jacket was applied to the column with a 2 in. gap from the top of the 

footing because of the irregularities in the column surface next to the footing. The CFRP 

sheet was overlapped by 5 in. on the north face of the column. The 2 in. gap was exposed 

in all the test columns and the same overlap was used in all the columns except 6-C-R20-

C. 

 

 

Figure 4.15 Layout of the CFRP jackets, 1-A-S8-M 
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4.3.4 2-A-S8-M 

2-A-S8-M was a Type A column with 8 splices. It was rehabilitated using CFRP 

jackets and CFRP anchors.  It was tested under monotonic loading. 

4.3.4.1 Preparation of Holes for CFRP Anchors 

A CFRP anchor requires a hole in the concrete for installation. Four holes were 

drilled on the east and the west face of 2-A-S8-M. The holes were drilled with a 3/4 in. 

diameter masonry drill bit in 9 in. depth, and they were cleaned with compressed air. The 

edge of the hole was ground to provide a smooth transition of the CFRP anchor from the 

hole to the CFRP jacket. In all the other test columns, the edge of anchor hole was 

prepared in the same way as 2-A-S8-M and the anchor holes were cleaned with 

compressed air. The anchor holes in 2-A-S8-M prior to installation of CFRP are shown in 

Figure 4.16. 

  

Figure 4.16 Anchor holes in 2-A-S8-M 

3/4  in. dia. 

east 
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4.3.4.2 CFRP Jacket and CFRP Anchor 

Details of the CFRP jacket and CFRP anchors are shown in Figure 4.17. One 

layer of CFRP sheet was used in 2-A-S8-M as a jacketing element to provide 

confinement of the lap splices. Two CFRP sheets 12 in. wide x 80 in. long were used to 

confine the 24 in. lap spliced region.  

CFRP anchors consist of a roll of CFRP material inserted into a 9 in. deep hole 

drilled into the concrete. The inserted depth of the CFRP anchor from the expected plane 

of splitting cracking was 6 in. The inserted depth of the anchor holes in all the other 

columns was the same as 2-A-S8-M. The CFRP protruding from the hole was splayed out 

in a 6 in. radius over the CFRP jacket. The anchors were installed at the center of the 

column so at least one side of every lap spliced longitudinal bars was next to CFRP 

anchors or column ties. Four anchors were installed in both the damaged and undamaged 

sides of 2-A-S8-M (at 5 in., 11 in., 17 in. and 23 in. from the top of the footing).  Clear 

spacing between the CFRP anchor and a lap splice bars was 1.25 in. 

 

Figure 4.17 Layout of the CFRP jackets and CFRP anchors, 2-A-S8-M 
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The width of CFRP across the expected plane of splitting is shown in Figure 4.18. 

The width of the CFRP sheet used in fabricating an anchor was 7 in. and the width of the 

CFRP sheet used to fabricate the anchors in each side of 2-A-S8-M was 28 in. (7 in. x 4 

pc).  Total width of CFRP across the plane of splitting was 76 in. (CFRP jacket: 24 in. x 2 

sides; CFRP anchor: 28 in.) The width of the CFRP anchors was selected using shear- 

friction equations discussed in Section 4.2.3. 

  

Figure 4.18 Width of CFRP across the expected plane of splitting 
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4.3.5 3-B-S10-M 

3-B-S10-M was a Type B column with 10 splices. It was rehabilitated using 

CFRP jackets and CFRP anchors.  It was tested under monotonic loading. 

4.3.5.1 Preparation of Holes for CFRP Anchors 

Eight holes were drilled on the east and west face of 3-B-S10-M. The holes were 

drilled with a 1/2 in. diameter masonry drill bit on the east face and a 5/8 in. bit on the 

west face. The anchors on the damaged face (west) of 3-B-S10-M were larger than those 

on the undamaged face (west). Therefore, the holes on the west face needed to be larger 

than those on the east face. The width of anchors on each face was determined through 

the shear friction equation and the results from the previous test. The calculated width 

using shear friction required a larger width of CFRP anchors than the previous test results. 

The larger width of CFRP was installed on the damaged face because strength of the face 

was expected be lower than the undamaged face. The anchor holes of 3-B-S10-M prior to 

installation of CFRP are shown in Figure 4.19. 

 

Figure 4.19 Anchor holes in 3-B-S10-M 
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4.3.5.2 CFRP Jacket and CFRP Anchor 

Details of the CFRP jacket and CFRP anchors are shown in Figure 4.20. One 

layer of CFRP sheet was used in 3-B-S10-M as a jacketing element to provide 

confinement of the lap splices. Two CFRP sheets 12 in. wide x 80 in. long were used to 

confine the 24 in. lap spliced region. 

The portion of CFRP anchor protruding from the hole was splayed out in 4 in. 

radius over the CFRP jacket. Eight anchors were applied to damaged and undamaged side 

in 3-B-S10-M. The anchors were installed in two columns so at least one side of every 

lap spliced longitudinal bars was next to the anchors except for the corner bars. Two 

anchors were installed in each row at 5 in., 11 in., 17 in. and 23 in. from the top of the 

footing.  Clear spacing between the CFRP anchor and a lap splice bars was 0.91 in. on the 

east face and 0.84 in. on the west face. 

The width of a CFRP sheet used in fabricating an anchor was 5.5 in. on the west 

face (damaged) and 3.5 in. on the east face (undamaged). The width of the CFRP anchors 

on the west face was 44 in. (5.5 in. x 8 pc) and on the east face was 28 in. (3.5 in x 8 pc).  

Total width of CFRP across the plane of splitting was 92 in. on the west face (CFRP 

jacket: 24 in. x 2 sides; CFRP anchor: 44 in.) and 76 in. (CFRP jacket: 24 in. x 2 sides; 

CFRP anchor: 28 in.) on the east face. The width of CFRP anchors on the west face was 

selected using the shear- friction mechanism and that on the east face was selected to 

provide the same width of CFRP anchors to 3-B-S10-M as 2-A-S8-M. The design 

method of deciding the width of the CFRP anchors on the west face is discussed in 

Section 4.2.3. 
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Figure 4.20 Layout of the CFRP jackets and CFRP anchors, 3-B-S10-M 
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4.3.6 4-C-R20-M 

4-C-R20-M was a Type C column with 20 splices. It was rehabilitated using 

CFRP jackets and CFRP anchors.  It was tested under monotonic loading. 

4.3.6.1 Preparation of Holes for CFRP Anchors 

Sixteen holes were drilled on the east face and eight holes were drilled on the 

west face of 4-C-R20-M. The holes were drilled with a 1/2 in. diameter masonry drill bit 

on the east face and a 3/4 in. bit on the west face in 9 in. depth. The total width of CFRP 

used in the anchors on the each side was the same but anchors on the damaged face (east) 

were ½ of the width of those on the undamaged face (west) because larger number of 

CFRP anchors was used on the damaged face where low strength was expected. 

Therefore, the holes on the west face needed to be larger than those on the east face. The 

anchor holes of 4-C-R20-M prior to installation of CFRP are shown in Figure 4.21. 

Some honeycombing occurred in 4-C-R20-M due to lack of vibration during 

casting. The honeycombing in the lap spliced region was repaired using a patching 

polymer mortar (Tyfo® P from FYFE Co. LLC) after removing all loose materials. The 

surface of 4-C-R20-M after the repair is shown in Figure 4.21. 
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Figure 4.21 Anchor holes in 4-C-R20-M 
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4.3.6.2 CFRP Jacket and CFRP Anchor 

Details of the CFRP jacket and CFRP anchors are shown in Figure 4.22. One 

layer of CFRP sheet was used in 4-C-R20-M as a jacketing element to provide 

confinement of the lap splices. Two CFRP sheets 12 in. wide x 116 in. long were used to 

confine the 24 in. lap spliced region.  

The portion of CFRP anchor protruding from the hole was splayed out in a 4 in. 

radius over the CFRP jacket. The anchors were installed in four columns so at least one 

side of every lap spliced longitudinal bars was next to the anchors except for the corner 

bars. On the east face, four anchors were installed in each row at 5 in., 11 in., 17 in. and 

23 in. from the top of the footing. On the west face, four anchors were installed in each 

row at 5 in. and 23 in. from the top of the footing. Clear spacing between the CFRP 

anchor and a lap splice bars was 1.0 in. on the east face and 0.875 in. on the west face. 

The width of a CFRP sheet used in fabricating an anchor was 3.5 in. on the 

damaged face (east) and 7 in. on the undamaged face (west). However, the total width of 

CFRP in the anchors on each face was the same. The width of the CFRP anchors on the 

east face was 56 in. (3.5 in. x 16 pc) and on the west face was also 56 in. (7 in x 8 pc).  

Total width of CFRP across the plane of splitting was 104 in. on the east and the west 

face (CFRP jacket: 24 in. x 2 sides; CFRP anchor: 56 in.).  

The width of CFRP was selected based on the test results of the west face of 3-B-

S10-M. Four 3.5 in. or two 7 in. anchors were placed in a column of CFRP anchors so the 

total width of CFRP material in the anchors next to a lap spliced bars was 14 in.   
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Figure 4.22 Layout of the CFRP jackets and CFRP anchors, 4-C-R20-M 
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4.3.7 5-C-R20-C 

5-C-R20-C was a Type C column with 20 splices. It was rehabilitated using CFRP 

jackets and CFRP anchors. The specimen was tested under cyclic loading. 

4.3.7.1 Preparation of Holes for CFRP Anchors 

Size and depth of anchor holes in 5-C-R20-C was the same as those in 4-C-R20-

M because the identical rehabilitation method was used. The anchor holes were prepared 

in the same way as those in 4-C-R20-M.  

4.3.7.2 CFRP Jacket and CFRP Anchor 

Details of the CFRP jacket and CFRP anchors are shown in Figure 4.23. The 

geometry of the CFRP jackets and anchors in 5-C-R20-C was identical to that in 4-C-

R20-M except that the lowest row of CFRP anchors started 7 in. from the top of the 

footing.  During casting, the bottom tie moved upward about 1 in. and it was located at 

level of the anchors. Therefore, the location of the anchors needed to change. The width 

of CFRP used in the rehabilitation of 5-C-R20-C was the same as those in 4-C-R20-M. 
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Figure 4.23 Layout of the CFRP jackets and CFRP anchors, 5-C-R20-C 
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4.3.8 6-C-R20-C 

6-C-R20-C was a Type C column with 20 splices. It was rehabilitated using CFRP 

jackets and CFRP anchors on the east face and using only CFRP anchors on the west face. 

6-C-R20-C reflected a column with walls as shown in Figure 4.24 and rehabilitation 

without removing the walls was desired. The walls may contribute to the strength of the 

lap splices because the walls may restrain opening of the splitting cracks at the wall. 

However, in this specimen, the walls were not fabricated to isolate the effect of the 

rehabilitation. The specimen was tested under cyclic loading. 

4.3.8.1 Preparation of Holes for CFRP Anchors 

Sixteen holes were drilled on the east face and twenty holes were drilled on the 

west face of 6-C-R20-C. The holes were drilled with a 1/2 in. diameter masonry drill bit 

on the east face and a 5/8 in. bit on the west face in 9 in. depth. In one anchor, a 3.5 in. 

wide CFRP sheet was used on the east side and a 5.2 in. wide CFRP sheet was used on 

the west side. Therefore, the holes on the west face needed to be larger than those on the 

east face. On the north and south face, 4 holes were drilled with 3/4 in. diameter in 6 in. 

depth to install 6 in. wide CFRP anchors to anchor the CFRP jackets. These holes are 

drilled at about a 45 degree angle. The anchor holes of 6-C-R20-C prior to installation of 

CFRP are shown in Figure 4.24. 
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Figure 4.24 Anchor holes in 6-C-R20-C 
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this column. The CFRP partial jackets covered the east face and 6 in. of the south and 

north face up to the wall. The short sides of the jacket were anchored by four 6 in. CFRP 

anchors (Partial CFRP jacket). One layer of CFRP sheet was used in 6-C-R20-C as a 

jacketing element to provide confinement of the lap splices. Two CFRP sheets 12 in. 

wide x 47 in. long were used to confine the 24 in. lap spliced region. The CFRP jacket 

was applied to the column with a 2 in. gap from the top of the footing because of 

irregularities in the column surface next to the footing.  

On the west face, one layer of CFRP sheet was applied to the face before applying 

the anchors to provide a more uniform distribution of confining force from the anchors.  

The portion of CFRP anchor protruding from the hole was splayed out in a 4 in. 

radius over the partial CFRP jacket on the east face and over the CFRP sheet on the west 

face. Sixteen anchors were applied on the east face and twenty anchors were applied on 

the west face in 6-C-R20-C. The anchors were installed in four columns on the east face 

and five columns on the west face so at least one side of every lap spliced longitudinal 

bars was next to anchors. Four anchors on the east face and five anchors on the west face 

were installed in each row at 5 in., 11 in., 17 in. and 23 in. from the top of the footing. 

Clear spacing between the CFRP anchor and a lap splice bars was 1.0 in. on the east face 

and 0.93 in. on the west face. 

The width of a CFRP sheet used in fabricating an anchor was 3.5 in. on the east 

face and 5.2 in. on the west face. The width of the CFRP anchors in the east face was 56 

in. (3.5 in. x 16 pc) and in the west face was also 104 in. (5.2 in x 20 pc).  However, Total 

width of CFRP across the plane of splitting was the same on either face. It was 104 in. on 

the east (CFRP jacket: 24 in. x 2 sides; CFRP anchor: 56 in.) and west face (CFRP 

anchors: 104 in.). The width of CFRP on the east face was selected based on the test 

results of 4-C-R20-M and 5-C-R20-C.  
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Figure 4.25 Layout of the CFRP jackets and CFRP anchors, 6-C-R20-C 
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4.3.9 Summary of Rehabilitation Methods 

A summary of the rehabilitation of the test columns is shown in Table 4.4.  

Two Type A (1-A-S8-M and 2-A-S8-M) with 8 splices, one Type B (3-B-S10-M) 

with 10 splices and three Type C (4-C-R20-M, 5-C-R20-C and 6-C-R20-C) with 20 

splices specimens were tested under either monotonic or cyclic loading. Under monotonic 

loading, the column was initially tested as-built and tested again after being repaired and 

strengthened using CFRP materials. Under cyclic loading the column was strengthened in 

the as-built condition and tested. One layer of CFRP was used to jacket in all the test 

columns and CFRP anchors were installed in all columns except 1-A-S8-M. The total 

width of CFRP in the CFRP jackets and anchors was determined using the shear friction 

equation or modified using the results of the previous tests. The CFRP anchors were 

distributed so at least one side of every lap spliced longitudinal bars was next to the 

anchors. Depth and diameter of anchor holes were selected to avoid bond failure of a 

CFRP anchor. The effective width of CFRP jackets or anchors represents the width of 

CFRP sheet used in fabricating CFRP jackets or anchors across the plane of the splitting 

cracking (shear plane).   
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Table 4.4 Summary of rehabilitation methods using CFRP 

CFRP Jacket CFRP Anchor 

Specimen Test condition 
No. of  
Layers 

Effective 
Width 

No. of 
Anchors 

Width 
of a 

Anchor 

Effective 
Width 

Dia. 
of 

Hole 

Total 
Effective 

Width 
of CFRP 

As-built        

Undamaged 
side 

(West) 
1 48 in.     48 in. 1-A-S8-M 

Repair and 
strengthening 

Damaged side 
(East) 

1 48 in.     48 in. 

As-built        

Undamaged 
side 

(West) 
1 48 in. 4 7 in. 28 in. 

3/4 
in. 

76 in. 
(S.F.) 

2-A-S8-M 
Repair and 

strengthening 
Damaged side 

(East) 
1 48 in. 4 7 in. 28 in. 

3/4 
in. 

76 in. 
(S.F.) 

As-built        

Undamaged 
side 

(East) 
1 48 in. 8 3.5 in. 28 in. 

1/2 
in. 

76  in. 3-B-S10-M 
Repair and 

strengthening 
Damaged side 

(West) 
1 48 in. 8 5.5 in. 44 in. 

5/8 
in. 

92 in. 
(S.F.) 

As-built        

Undamaged 
side 

(West) 
1 48 in. 8 7 in. 56 in. 

3/4 
in. 

104 in. 4-C-R20-M 
Repair and 

strengthening 
Damaged side 

(East) 
1 48 in. 16 3.5 in. 56 in. 

1/2 
in.  

104 in. 

West 1 48 in. 8 7 in. 56 in. 
3/4 
in. 

104 in. 

5-C-R20-C Strengthening 

East 1 48 in. 16 3.5 in. 56 in. 
1/2 
in.  

104 in. 

West   20 5.2 in. 104 in. 
5/8 
in. 

104 in. 

6-C-R20-C Strengthening 

East 1 48 in. 16 3.5 in. 56 in. 
1/2 
in.  

104 in. 
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4.4 TEST SETUP AND INSTRUMENTS 

The test setup and loading configuration are shown in Figure 4.26. The footing 

was fixed to a strong floor by threaded rods and lateral load was applied to the column at 

108 in. from the top of the footing. The lateral load was applied using a 150 kip hydraulic 

actuator with 12 in. stroke.  The load was measured using a 100 kip load cell.  

The location of linear transducers is shown in Figure 4.27. Displacement at the 

load point was measured using two linear string transducers and was used in calculating 

the drift ratio of the column under the lateral loading. Drift ratio corresponds to measured 

displacement using these transducers divided by the height of the loading location from 

the top of the footing (108 in.).  Two linear transducers were placed in the vertical 

direction at 30 in. from the top of the footing on the east and west faces of the column. 

Using these linear transducers, rotation of a section above the lap spliced region was 

measured to monitor slip of the lap spliced bars.  Four linear transducers were placed at 

the footing to measure vertical and horizontal displacement of the footing.  The footing 

displacement was small compared with the tip displacement of the column. Therefore, 

footing displacement was ignored and the measured displacement at the tip of the column 

was used as the lateral displacement of the column. 

Strain gages were placed on longitudinal and transverse bars and on CFRP jackets.  

Layout of the strain gages is discussed in Section 4.5. 



 

 

230

 

Figure 4.26 Test setup  

 

 

Figure 4.27  Location of linear transducers 
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4.5 TEST RESULTS AND COMPARISONS 

For each of the tests, the drift ratio vs normalized lateral load and steel or CFRP 

strain vs load will be presented. The lateral load was normalized using the computed 

nominal strength of the column. The nominal strength was calculated using the design 

strength of concrete (4,000 psi) and steel (60 ksi). Under monotonic loading, a positive 

value of loading corresponds to the direction of loading in which the bars in the 

undamaged side were in tension while a negative value of loading corresponds to the 

direction of loading in which the bars in the damaged side were in tension (1-A-S8-M, 2-

A-S8-M, 3-B-S10-M and 4-C-R20-M). Under cyclic loading, a positive value of loading 

corresponds to the direction of loading in which the bars in the west side were in tension 

while a negative value of loading corresponds to the direction of loading in which the 

bars in the east side were in tension (5-C-R20-C and 6-C-R20-C). The measured lateral 

displacement vs measured lateral load response for all tests is presented in Appendix C. 

4.5.1   1-A-S8-M 

A summary of the test results of 1-A-S8-M is shown in Table 4.5 in the end of 

this section. 

4.5.1.1 Drift Ratio VS Normalized Lateral Load 

Figure 4.28 shows drift ratio vs normalized lateral load response of 1-A-S8-M as-

built and after rehabilitation. The actual yield strength (P/Pn = 1.09) and ultimate strength 

(P/Pn = 1.72) calculated based on measured strength of the concrete and reinforcement 

are also provided.  The measured compressive strength of the concrete was 5,600 psi and 

the measured yield and ultimate strength of the reinforcement were 63 ksi and 106 ksi.   

Although the nominal strength (P/Pn = 1.14) was reached in the as-built test, the 

load dropped once splitting of the concrete occurred at the splice. However, significant 

improvement of strength and deformation capacity was observed in 1-A-S8-M after 

rehabilitation with CFRP on both the damaged and undamaged sides of the column. The 
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strength increased by 13 % for the damaged side and by 18% for the undamaged side 

after rehabilitation compared with the as-built strength of this column. The drift ratio of 

1-A-S8-M as-built was 1.1 % at the maximum load.  The drift ratio corresponding to the 

peak strength was 1.9 % in the damaged side and 2.3 % in the undamaged side after 

rehabilitation. In both directions, there was a gradual reduction in strength beyond the 

peak load up to the stroke limit of the load actuator.  
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Figure 4.28  Drift ratio vs normalized lateral load, 1-A-S8-M 
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The failure mode of 1-A-S8-M as-built was a brittle splice failure (Figure 4.29). A 

sudden drop of load was observed at the peak load during the test of this column as-built 

(Figure 4.28). The use of the CFRP jackets effectively confined lap splices and changed 

the failure mode of 1-A-S8-M from a brittle splice failure to yielding of tension steel 

indicated by measured strains in the steel reinforcement presented in the next section. 

 

  

Figure 4.29 Splice failure of 1-A-S8-M, before rehabilitation 

4.5.1.2 Steel Reinforcement Strain 

Layout of steel reinforcement strain gages in 1-A-S8-M is shown in Figure 4.30.  

For all the columns, strain gages were installed on base bars (longitudinal bars extending 

from the footing), column bars (longitudinal bars starting at the top of the footing) and 

ties in the 24 in. lap spliced region. In Section 4.5, only strain data of the base bars are 

presented because maximum strain in the lap splice bars is expected to occur at the 

location of base bar strain gages. Strain data in ties are not presented in this section 
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because the data were not reliable. Strain gages in ties were not located at the cracked 

section. Additional strain data in the steel reinforcement including ties and column bars 

are presented in Appendix C. 

 

Figure 4.30 Layout of steel reinforcement strain gages, 1-A-S8-M 
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Tensile strains in the base bars during the initial test are shown in Figure 4.31. 
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Figure 4.31  Base bar strains, as-built test, 1-A-S8-M 

4.5.1.2.2 Base Bar Strain, Test after Rehabilitation 

Base bar strains during the test after rehabilitation are shown in Figure 4.32 and 

Figure 4.33.  The bars on the east face (damaged) of 1-A-S8-M were initially in 

compression while the bars on the west face (undamaged) of 1-A-S8-M were in tension. 

When the load was reversed the bars on the east face were in tension. All the bars yielded 

during tension loading. After the base bars reached large tensile strains, the strain gages 

on the bars were damaged during loading reversal. Therefore, strain hardening of the bars 

could not be observed although the lateral deformation of the column was significant and 

the measured lateral load reflected strain hardening of the bars. 
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Figure 4.32 Base bar strains, test after rehabilitation, east face, 1-A-S8-M 
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Figure 4.33 Base bar strains, test after rehabilitation, west face, 1-A-S8-M 
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4.5.1.3 CFRP Strain 

The layout of strain gages on the CFRP jackets in 1-A-S8-M is shown in Figure 

4.34. On the north and south face of 1-A-S8-M, six gages are installed on each face at the 

location where splitting cracking was expected.  Gages NE-B, M and T and NW-B, M 

and T were installed at location where splitting cracking was expected on the north face, 

and gages SE-B, M and T and SW-B, M and T were installed at location where splitting 

cracking was expected on the south face. Strains in the CFRP jackets were measured at 

three levels on the north and south face (B: bottom, M: middle and T: top). Strain gages 

were also installed at the bottom corners on the south face to observe strain transition 

around the corners (E-C, SE-C, W-C and SW-C). Two strain gages were installed on the 

middle of the east (E-B and E-T) and west (W-B and W-T) face. The level of those gages 

corresponded to that of the top and bottom gages on the north and south faces. 

 In this section, measured strains on the south face and at the corners of 1-A-S8-M 

are provided. Additional strain data are shown in Appendix C. 

Strain vs lateral load for the strain gages at the location of expected splitting 

cracking is shown in Figure 4.35 and Figure 4.36. The maximum measured strain was 

between 0.0015 and 0.0025 (15 ~ 25 % of ultimate tensile strain of the CFRP) on the 

south-east side and between 0.0030 and 0.0045 (30 ~ 45 % of ultimate tensile strain of 

the CFRP) on the south-west side.  The highest strain was observed in the gages closest 

to the footing which were the bottom strain gages. The strain reduced as the distance 

from the footing increased. 

Strain vs lateral load for strain gages at the corners of 1-A-S8-M is shown in 

Figure 4.37 and Figure 4.38. From the data of the distribution of CFRP strains at the 

corners, a smooth transition of strains was observed around the corner.  The measured 

strain in the gage at the corner on the east face (E-C) was close to that in the gage at the 

corner on the south face (SE-B). The measured strain in the gage at the corner on the west 

face (W-C) was close to that in the gage at the corner on the south face (SW-B).  The 



 

 

 

239

measured strain at the arc of the corners (SW-C and SE-C) also showed a similar 

response as the strains at the corners. 

 

Figure 4.34 Layout of CFRP strain gages, 1-A-S8-M 
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Figure 4.35 CFRP strains at location of splitting cracking, south-east, 1-A-S8-M 
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Figure 4.36 CFRP strains at location of splitting cracking, south-west, 1-A-S8-M 
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Figure 4.37 CFRP strains at south-east corner, 1-A-S8-M 
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Figure 4.38 CFRP strains at south-west corner, 1-A-S8-M 
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Table 4.5 Summary of test results, 1-A-S8-M  

   Face 

Effective 
width of 
CFRP 
jackets 

No. of 
CFRP 

anchors 

Effective 
width of 
CFRP 

anchors 

Total 
effective 
width of 
CFRP 

Measured 
peak 

strength 
(Max. Load) 

P/Pn 

Drift ratio at 
measured 

peak strength 

Strain in CFRP 
jackets at location 
of splice cracking 

expected 
 

East 
(As-built) 

    1.14* 1.1 %  

West 
(Undamaged) 

48 in.   48 in. 1.34 2.3 % 0.0030 ~ 0.0045 

East 
(Damaged) 

48 in.   48 in. 1.29 1.9 % 0.0015~ 0.0025 

*: splice failure 

Computed:   Nominal Strength (Pn): 22.9 kip;  Yield strength: 25.0 kip;  Ultimate Strength: 39.4 kip  

 

4.5.2 2-A-S8-M 

A summary of the test results of 2-A-S8-M is shown in Table 4.6 at the end of this 

section. 

4.5.2.1 Drift Ratio VS Normalized Lateral Load 

Figure 4.39 shows drift ratio vs normalized lateral load response of 2-A-S8-M as-

built and after rehabilitation.  The actual yield strength (P/Pn = 1.08) and ultimate 

strength (P/Pn = 1.71) based on measured strength of the concrete and reinforcement are 

also provided.  The measured compressive strength of the concrete was 5,300 psi and the 

measured yield and ultimate strength of the reinforcement were 63 ksi and 106 ksi.   

Although the nominal strength was realized in the as-built test (P/Pn = 1.10), the 

load dropped once splitting of the concrete occurred at the splice. However, significant 

improvement of strength and deformation capacity was observed in 2-A-S8-M after 

rehabilitation with CFRP on both the damaged and undamaged sides of the column. The 
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strength increased by 35 % for both the damaged and undamaged side after rehabilitation 

compared with the as-built strength. The drift ratio of 2-A-S8-M as-built was 1.1 % at the 

maximum load.  The drift ratio corresponding to the peak strength was 4.5 % for the 

damaged side and 4.8 % for the undamaged side after rehabilitation. On the damaged side, 

there was a gradual reduction in strength up to the stroke limit of the load actuator while 

on undamaged side, no reduction of strength was observed. 

The failure mode of 2-A-S8-M as-built was a brittle splice failure (Figure 4.40). A 

sudden drop of load was observed at the peak load during the test of this column as-built 

(Figure 4.39). The use of the CFRP jackets and anchors effectively confined lap splices 

and changed the failure mode of 2-A-S8-M from a brittle splice failure to yielding of 

tension steel indicated by measured strains in the steel reinforcement presented in the 

next section. 
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Figure 4.39 Drift ratio vs normalized lateral load, 2-A-S8-M
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Figure 4.40 Splice failure of 2-A-S8-M before rehabilitation 
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4.5.2.2 Steel Reinforcement Strain 

Layout of steel reinforcement strain gages in 2-A-S8-M is shown in Figure 4.41.   

 

Figure 4.41 Layout of steel reinforcement strain gages, 2-A-S8-M 

4.5.2.2.1 Base Bar Strain, As-Built Test 

Tensile strains in the base bars during the initial test are shown in Figure 4.42.   

Strain gages were installed on the base bars at the same level as the top of the footing. 

The bars yielded although the failure mode of 2-A-S8-M in the as-built test was a brittle 

splice failure that occurred before the column developed significant ductility.  The bars 

developed strains larger than the yield strain but the column section developed little 

rotational capacity.  
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Figure 4.42  Base bar strains, as-built test, 2-A-S8-M 

4.5.2.2.2 Base Bar Strain, Test after Rehabilitation 

Base bar strains during the test after rehabilitation are shown in Figure 4.43 and 

Figure 4.44.  The bars on the east face (damaged) of 2-A-S8-M were initially in 

compression while the bars on the west face (undamaged) of 2-A-S8-M were in tension. 

When the load was reversed, the bars on the east face were in tension. All the bars 

yielded during tension loading. After the base bars reached large tensile strains, the gages 

on the bars were damaged during loading reversal. Therefore, strain hardening of the bars 

could not be observed although the lateral deformation of the column was significant and 

the measured lateral load reflected strain hardening of the bars. 
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Figure 4.43 Base bar strains, test after rehabilitation, east face, 2-A-S8-M 
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Figure 4.44 Base bar strains, test after rehabilitation, west face, 2-A-S8-M 
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4.5.2.3 CFRP Strain 

The layout of strain gages on the CFRP jackets in 2-A-S8-M is shown in Figure 

4.45. On the north and south face of 2-A-S8-M, six gages are installed on each face at the 

location where splitting cracking was expected. Gages NE-B, M and T and NW-B, M and 

T were installed at location where splitting cracking was expected on the north face, and 

gages SE-B, M and T and SW-B, M and T were installed at location where splitting 

cracking was expected on the south face. Strain in CFRP jackets were measured at three 

levels on the north and south face (B: bottom, M: middle and T: top). No strain gages 

were installed at the corners of 2-A-S8-M. Two strain gages were installed on the middle 

of the east (E-B and E-T) and west (W-B and W-T) face in the CFRP jackets. 

 In this section, measured strains on the south face of 2-A-S8-M are provided. 

Additional strain data are shown in Appendix C. 

Strain vs lateral load for strain gages at the location of splitting cracking expected 

is shown in Figure 4.46 and Figure 4.47. The maximum measured strain was between 

0.0020 and 0.0030 (20 ~ 30 % of ultimate tensile strain of the CFRP) on the south-east 

side and between 0.0015 and 0.0035 (15 ~ 35 % of ultimate tensile strain of the CFRP) 

on the south-west side. In the south-west side, the highest strain was observed in the gage 

closest to the footing which was the bottom gage (SW-B) while the highest strain was 

observed in the top gage in the south-east side (SE-T). Strains of the corners in 2-A-S8-M 

were not measured. 
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Figure 4.45 Layout of CFRP strain gages, 2-A-S8-M 
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Figure 4.46 CFRP strains at location of splitting cracking, south-east, 2-A-S8-M 
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Figure 4.47 CFRP strains at location of splitting cracking, south-west, 2-A-S8-M 
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Table 4.6 Summary of test results, 2-A-S8-M  

Face 

Effective 
width of 
CFRP 
jackets 

No. of 
CFRP 

anchors 

Effective 
width of 
CFRP 

anchors 

Total 
effective 
width of 
CFRP 

Measured 
peak 

strength 
(Max. Load) 

P/Pn 

Drift ratio at 
measured 

peak strength 

Strain in CFRP 
jackets at location 
of splice cracking 

expected 
 

East 
(As-built) 

    1.10* 1.1 %  

West 
(Undamaged) 

48 in. 4 28 in. 76 in. 1.48 4.8 % 0.0015 ~ 0.0035 

East 
(Damaged) 

48 in. 4 28 in. 76 in. 1.49 4.5 % 0.0020 ~ 0.0030 

* : splice failure 

Computed:   Nominal Strength (Pn): 22.9 kip;  Yield strength: 24.8 kip;  Ultimate Strength: 39.2 kip 

 

4.5.3 Comparison of 1-A-S8-M and 2-A-S8-M 

Contribution of CFRP Jackets and CFRP Anchors  

The response of 1-A-S8-M and 2-A-S8-M after rehabilitation is shown in Figure 

4.48.  1-A-S8-M and 2-A-S8-M were Type A column with 8 lap splices and their 

nominal strength was the same. 2-A-S8-M, which was rehabilitated by a combination of a 

CFRP jacket and CFRP anchors, showed better performance than 1-A-S8-M, which was 

rehabilitated only by a CFRP jacket. After rehabilitation, the strength of 2-A-S8-M was 

around 50 % more than the nominal strength while strength of 1-A-S8-M was around 

30% more than the nominal strength. Because of the limitation in the stroke of the 

actuator, 2-A-S8-M was not tested up to its full deformation capacity. However, the 

response of 2-A-S8-M showed a larger drift ratio at the maximum lateral load than the 

drift ratio at the maximum lateral load of 1-A-S8-M. In addition, a decrease of strength 

was not observed in the undamaged side of 2-A-S8-M up to 5 % drift ratio. 

 In the spliced bars away from the corner, larger strain was observed in 2-A-S8-M 

than in 1-A-S8-M. The strain gage of a middle bar in the undamaged side (B-2-W) of 2-

A-S8-M reached higher strain than in 1-A-S8-M (Figure 4.49).  
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Figure 4.48 Response of 1-A-S8-M and 2-A-S8-M after rehabilitation 
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Figure 4.49 response of gage B-2-W in 1-A-S8-M and 2-A-S8-M  
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4.5.4 3-B-S10-M 

A summary of the test results of 3-B-S10-M is shown in Table 4.7 at the end of 

this section. 

4.5.4.1 Drift Ratio VS Normalized Lateral Load 

Figure 4.50 shows drift ratio vs normalized lateral load response of 3-B-S10-M 

as-built and after rehabilitation. The actual yield strength (P/Pn = 1.06) and ultimate 

strength (P/Pn = 1.68) based on measured strength of the concrete and reinforcement are 

also provided.  The measured compressive strength of the concrete was 4,500 psi and the 

measured yield and ultimate strength of the reinforcement were 63 ksi and 106 ksi.   

Although the nominal strength was realized in this column as-built (P/Pn = 1.01), 

the load dropped once splitting of the concrete occurred at the splice. However, 

significant improvement of strength and deformation capacity was observed in 3-B-S10-

M after rehabilitation with CFRP on both the damaged and undamaged sides of the 

column. The strength increased by 56 % for the damaged and by 54 % for the undamaged 

side after rehabilitation compared with the as-built strength. The drift ratio of 3-B-S10-M 

as-built was 1.0 % at the maximum load.  The drift ratio corresponding to the peak 

strength was 5.5 % in the damaged side and 8.6 % in the undamaged side after 

rehabilitation.  On the undamaged side, there was a gradual reduction in strength up to 

the stroke limit of the load actuator while on damaged side, no reduction of strength was 

observed.
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Figure 4.50 Drift ratio vs normalized lateral load, 3-B-S10-M 
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The failure mode of 3-B-S10-M as-built was a brittle splice failure (Figure 4.51). 

A sudden drop of load was observed at the peak load during the test of this column as-

built (Figure 4.50). The use of the CFRP jackets and anchors effectively confined lap 

splices and changed the failure mode of 3-B-S10-M from a brittle splice failure to 

yielding of tension steel indicated by measured strains in the steel reinforcement 

presented in the next section. 

 

  

Figure 4.51 Splice failure of 3-B-S10-M before rehabilitation 
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4.5.4.2 Steel Reinforcement Strain 

Layout of steel reinforcement strain gages in 3-B-S10-M is shown in Figure 4.52.   

 

Figure 4.52 Layout of steel reinforcement strain gages, 3-B-S10-M 

4.5.4.2.1 Base Bar Strain, As-Built Test 

Tensile strains in the base bars during the initial test are shown in Figure 4.53.   

Strain gages were installed on the base bars at the same level as the top of the footing. All 

the base bars yielded but only one bar (B-5-W) exhibited inelastic response. A brittle 

splice failure occurred right after the base bars reached yield and significant ductility was 

not realized. The actual yield strain of the bars was 0.0022 and the maximum strain 

measured in the gages except B-5-W was about 0.0025. 
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Figure 4.53  Base bar strains, as-built test, 3-B-S10-M 

4.5.4.2.2 Base Bar Strain, Test after Rehabilitation 

Base bar strains during the test after rehabilitation are shown in Figure 4.54 and 

Figure 4.55.  The bars on the west face (damaged) of 3-B-S10-M were initially in 

compression while the bars on the east face (undamaged) of 3-B-S10-M were in tension. 

When the load was reversed the bars on the west face were in tension. All the bars 

yielded during tension loading. After the base bars reached large tensile strains the gages 

on the bars were damaged during loading reversal. However, strain hardening of the bars 

could be observed before the gages were damaged and the lateral draft and load response 

of 3-B-S10-M indicated strain hardening was reached. 
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Figure 4.54 Base bar strains, test after rehabilitation, west face, 3-B-S10-M 
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Figure 4.55 Base bar strains, test after rehabilitation, east face, 3-B-S10-M 
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4.5.4.3 CFRP Strain 

The layout of strain gages on the CFRP jackets in 3-B-S10-M is shown in Figure 

4.56. On the north and south face of 3-B-S10-M, six gages are installed on each face at 

the location where splitting cracking was expected.  Gages NE-B, M and T and NW-B, M 

and T were installed at location where splitting cracking was expected on the north face, 

and gages SE-B, M and T and SW-B, M and T were installed at location where splitting 

cracking was expected on the south face. Strain in CFRP jackets were measured at three 

levels on the north and south face (B: bottom, M: middle and T: top). Strain gages were 

also installed at the bottom corners on the south face to observe strain transition around 

the corners (SE-C and SW-C). Two strain gages were installed on the east (E-B and E-T) 

and west (W-B and W-T) face in the CFRP jackets. These strain gages could be installed 

at a few locations in the CFRP jackets because the fan-portion of the CFRP anchors 

covered much of the sheet. 

 In this section, measured strains on the south face and at the corners of 3-B-S10-

M are provided. Additional strain data are shown in Appendix C. 

Strain vs lateral load for strain gages at the location of expected splitting cracking 

is shown in Figure 4.57 and Figure 4.58. The maximum measured strain was between 

0.0015 and 0.0030 (15~ 30 % of ultimate tensile strain of the CFRP) on the south-west 

side and between 0.0015 and 0.0035 (15 ~ 35 % of ultimate tensile strain of the CFRP) 

on the south-east side. In the south-west side, the highest strain was observed in the gage 

closest to the footing which was the bottom gage (SW-B) while the highest strain was 

observed in the top gage in the south-east side (SE-T).  

Strain vs lateral load for strain gages at the corners of 3-B-S10-M is shown in 

Figure 4.59 and Figure 4.60. From the data of the distribution of CFRP strains at the 

corners, a smooth transition of strains was observed around the corner. The measured 

strain in the gage at the corner on the west face (W-B) was close to that in the gage at the 

arc of the south-west corner (SW-C).  The measured strain at the arc of the south-east 
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corner (SE-C) showed a similar response as the strain at the corner on the south face (SE-

B). 

 

 

Figure 4.56 Layout of CFRP strain gages, 3-B-S10-M 
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Figure 4.57 CFRP strains at location of splitting cracking, south-west, 3-B-S10-M 
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Figure 4.58 CFRP strains at location of splitting cracking, south-east, 3-B-S10-M 
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Figure 4.59 CFRP strains at south-west corner, 3-B-S10-M 
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Figure 4.60 CFRP strains at south-east corner, 3-B-S10-M 
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Table 4.7 Summary of test results, 3-B-S10-M 

Face 

Effective 
width of 
CFRP 
jackets 

No. of 
CFRP 

anchors 

Effective 
width of 
CFRP 

anchors 

Total 
effective 
width of 
CFRP 

Measured 
peak 

strength 
(Max. Load) 

P/Pn 

Drift ratio at 
measured 

peak strength 

Strain in CFRP 
jackets at location 
of splice cracking 

expected 
 

West 
(As-built) 

    1.01* .0 %  

East 
(Undamaged) 

48 in. 8 28 in. 76  in. 1.56 8.6 % 0.0015 ~ 0.0035 

West  
(Damaged) 

48 in. 8 44 in. 92 in. 1.58 5.5 % 0.0015 ~ 0.0030 

* : splice failure 

Computed:   Nominal Strength (Pn): 27.9 kip;  Yield strength: 29.5 kip;  Ultimate Strength: 46.9 kip 

 

4.5.5 Comparison of the East and West Sides of  3-B-S10-M 

Effect of Width of CFRP per CFRP Anchor  

On the west face of 3-B-S10-M, the total width of CFRP sheet used in CFRP 

anchors was 44 in. (Design using the shear friction equation) while that on the east face 

was 28 in (designed using the test results of 2-A-S8-M).  Only 64 % of CFRP required by 

the shear friction calculation was applied to the east side of 3-B-S10-M.  However, as 

indicated by the response plotted in Figure 4.50, the performance of the east face of 3-B-

S10-M was comparable to that of the west face of 3-B-S10-M. The strength increased by 

54 % and the drift ratio at the maximum load increased by a factor of 8 on the east face of 

3-B-S10-M after the rehabilitation. Therefore, the design procedure based on the shear 

friction mechanism provided a conservative estimation of material needed for CFRP 

anchors. 
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4.5.6 4-C-R20-M 

A summary of the test results of 4-C-R20-M is shown in Table 4.8 in the end of 

this section. 

4.5.6.1 Drift Ratio VS Normalized Lateral Load 

Figure 4.61 shows drift ratio vs normalized lateral load response of 4-C-R20-M 

as-built and after rehabilitation. The actual yield strength (P/Pn = 1.06) and ultimate 

strength (P/Pn = 1.69) based on measured strength of the concrete and reinforcement are 

also provided.  The measured compressive strength of the concrete was 4,600 psi and the 

measured yield and ultimate strength of the reinforcement were 63 ksi and 106 ksi.   

The nominal capacity and significant deformation capacity was not realized in 4-

C-R20-M in the as-built test (P/Pn = 0.96 at 1.1 % drift ratio). However, improvement of 

strength and deformation capacity was observed in 4-C-R20-M after rehabilitation with 

CFRP both on damaged and undamaged sides of the column. The strength increased by 

20 % for the damaged and by 35 % for the undamaged side after rehabilitation compared 

with the as-built strength. The drift ratio corresponding to the peak strength was 2.1 % in 

the damaged side and 2.3 % in the undamaged side after rehabilitation.  In both directions, 

there was a gradual reduction in strength up to the stroke limit of the load actuator. 

The failure mode of 4-C-R20-M as-built was a brittle splice failure (Figure 4.62). 

A sudden drop of load was observed at the peak load during the test of this column as-

built (Figure 4.61). The use of the CFRP jackets and anchors effectively confined lap 

splices and changed the failure mode of 4-C-R20-M from a brittle splice failure to 

yielding of tension steel indicated by measured strains in the steel reinforcement 

presented in the next section. 
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Figure 4.61 Drift ratio vs normalized lateral load, 4-C-R20-M 
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Figure 4.62 Splice failure of 4-C-R20-M before rehabilitation 

4.5.6.2  Steel Reinforcement Strain 

Layout of steel reinforcement strain gages in 4-C-R20-M is shown in Figure 4.63.   

4.5.6.2.1 Base Bar Strain, As-Built Test 

Tensile strains in the base bars during the initial test are shown in Figure 4.64.   

Strain gages were installed on the base bars at the same level as the top of the footing. 

Two base bars (B-2-E and B-4-E) out of 5 base bars with strain gages just reached yield 

but did not exhibited inelastic response because a brittle splice failure occurred right 

before the bars developed ductility.  The actual yield strain of steel reinforcement was 

0.0022 and the maximum strain measured in the base bar gages was also 0.0022. 
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Figure 4.63 Layout of steel reinforcement strain gages, 4-C-R20-M 
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Figure 4.64  Base bar strains, as-built test, 4-C-R20-M 

4.5.6.2.2 Base Bar Strain, Test after Rehabilitation 

Base bar strains during the test after rehabilitation are shown in Figure 4.65 and 

Figure 4.66.  The bars on the east face (damaged) of 4-C-R20-M were initially in 

compression while the bars on the west face (undamaged) of 4-C-R20-M were in tension. 

When the load was reversed, the bars on the east face were in tension. All the bars 

yielded during tension loading. After the base bars reached large tensile strains, the gages 

on the bars were damaged during loading reversal. Therefore, strain hardening of the bars 

could not be observed although the lateral deformation of the column was significant and 

measured lateral load reflected strain hardening of the bars. 
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Figure 4.65 Base bar strains, test after rehabilitation, east face, 4-C-R20-M 
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Figure 4.66 Base bar strains, test after rehabilitation, west face, 4-C-R20-M 
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4.5.6.3 CFRP Strain 

The strain data on the CFRP jackets were could not be measured because of an 

error in the data acquisition system. However, the rehabilitation method used in 4-C-R20-

M was also used in 5-C-R20-C, and the CFRP strain data on 5-C-R20-C showed the 

effectiveness of the CFRP jackets in confining the lap spliced region of a rectangular 

column. 

Table 4.8 Summary of test results, 4-C-R20-M 

Face 

Effective 
width of 
CFRP 
jackets 

No. of 
CFRP 

anchors 

Effective 
width of 
CFRP 

anchors 

Total 
effective 
width of 
CFRP 

Measured 
peak 

strength 
(Max. Load) 

P/Pn 

Drift ratio at 
measured 

peak strength 

Strain in CFRP 
jackets at location 
of splice cracking 

expected 
 

East 
(As-built) 

    0.96* 1.1 %  

West 
(Undamaged) 

48 in. 8 56 in. 104 in. 1.30 2.3 %  

East 
(Damaged) 

48 in. 16 56 in. 104 in. 1.15 2.1 %  

* : splice failure 

Computed:   Nominal Strength (Pn): 55.8 kip;  Yield strength: 59.2 kip;  Ultimate Strength: 94.1 kip  

 

 

 



 

 

 

272

4.5.7 5-C-R20-C 

A summary of the test results of 5-C-R20-C is shown in Table 4.9 at the end of 

this section. 

4.5.7.1 Drift Ratio VS Normalized Lateral Load 

Figure 4.67 shows drift ratio vs normalized lateral load response of 5-C-R20-C 

after rehabilitation. Different colors are used in different portions of the cyclic loading in 

the plot. 5-C-R20-C was not damaged before rehabilitation. In Figure 4.67, the drift ratio 

vs normalized lateral load response of 4-C-R20-M before rehabilitation was provided as a 

reference. The actual yield strength (P/Pn = 1.08) and ultimate strength (P/Pn = 1.71) 

based on measured strength of the concrete and reinforcement are also provided.  The 

measured compressive strength of the concrete was 5,300 psi and the measured yield and 

ultimate strength of the reinforcement were 63 ksi and 106 ksi.   

Significant improvement of strength and deformation capacity was observed in 5-

C-R20-C after rehabilitation with CFRP under cyclic loading on the east (16 anchors) and 

west (8 anchors) faces of 5-C-R20-C. The strength increased by 42 % for the east face 

and by 41 % for the west face after rehabilitation compared with the as-built strength of 

4-C-R20-M. The drift ratio of 4-C-R20-M as-built was 1.1 % at the maximum load.  In 5-

C-R20-C, the drift ratio corresponding to the peak strength was 3.6 % on the east face 

and 2.4 % on the west face after rehabilitation.   

The west face of 5-C-R20-C showed rapid degradation cyclic loading to 3.6% 

drift while the east face showed degradation cyclic loading to 4.8 % drift.  

The final failure mode of 5-C-R20-C was a splice failure. The splitting cracks due 

to splice failure were observed after cutting the column from the footing (Figure 4.68).  

However, the column developed significant ductility before it failed. 
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Figure 4.67 Drift ratio vs normalized lateral load, 5-C-R20-C 
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Figure 4.68 Splice failure of 5-C-R20-C 

4.5.7.2 Steel Reinforcement Strain 

Layout of steel reinforcement strain gages in 5-C-R20-C is shown in Figure 4.69.   

4.5.7.2.1 Base Bar Strain 

Base bar strains of 5-C-R20-C under cyclic loading are shown in Figure 4.70 and 

Figure 4.71.  The bars on the east face (16 anchors) of 5-C-R20-C were initially in 

compression while the bars on the west face (8 anchors) were in tension. All the bars 

yielded during tension loading.  The bars on the east face developed more ductility than 

those on the west face, and this result agreed with the drift ratio vs normalized lateral 

load response. 
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Figure 4.69 Layout of steel reinforcement strain gages, 5-C-R20-C 
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Figure 4.70 Base bar strains, east face, 5-C-R20-C 
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Figure 4.71 Base bar strains, west face, 5-C-R20-C 
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4.5.7.3 CFRP Strain 

The layout of strain gages on the CFRP jackets in 5-C-R20-C is shown in Figure 

4.72. On the north and south face of 5-C-R20-C, six gages were installed on each face at 

the location where splitting cracking was expected. Gages NE-B, M and T and NW-B, M 

and T were installed at location where splitting cracking was expected on the north face, 

and gages SE-B, M and T and SW-B, M and T were installed at location where splitting 

cracking was expected on the south face. Strain in CFRP jackets were measured at three 

levels on the north and south face (B: bottom, M: middle and T: top). Strain gages were 

also installed at the bottom corners on the south face to observe strain transition around 

the corners (SE-C and SW-C). Two strain gages were installed on the east (E-B and E-T) 

and west (W-B and W-T) face in the CFRP jackets. These strain gages were able to 

install only at the limited locations in the CFRP jackets because of the fan-portion of the 

CFRP anchors. 

 In this section, measured strains on the south face and at the corners of 5-C-R20-

C are provided. Additional strain data are shown in Appendix C. 

Strain vs lateral load for strain gages at the location of expected splitting cracking 

is shown in Figure 4.73 and Figure 4.74. The maximum measured strain was between 

0.0020 and 0.0040 (20~ 40 % of ultimate tensile strain of the CFRP) on the south-east 

side and between 0.0025 and 0.0040 (25 ~ 40 % of ultimate tensile strain of the CFRP) 

on the south-west side. In the south-west side, the highest strain was observed in the gage 

closest to the footing which was the bottom gage (SW-B) while the highest strain was 

observed in the top gage in the south-east side (SE-T).  

Strain vs lateral load for strain gages at the corners of 5-C-R20-C is shown in 

Figure 4.75 and Figure 4.76. From the data of the distribution of CFRP strains at the 

corners, a smooth transition of strains was observed around the corner.  The measured 

strain in the gage at the corner on the east face (E-B) was close to that at the corner on the 

south face (SE-B).  The measured strain at the arc of the south-west corner (SW-C) 
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showed a similar response as the strain at the corner on the west (W-B) and south (SW-B) 

faces. 

 

 

Figure 4.72 Layout of CFRP strain gages, 5-C-R20-C 
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Figure 4.73 CFRP strains at location of splitting cracking, south-east, 5-C-R20-C 
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Figure 4.74 CFRP strains at location of splitting cracking, south-west, 5-C-R20-C 
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Figure 4.75 CFRP strains at south-east corner, 5-C-R20-C 
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Figure 4.76 CFRP strains at south-west corner, 5-C-R20-C 
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Table 4.9 Summary of test results, 5-C-R20-C 

Face 

Effective 
width of 
CFRP 
jackets 

No. of 
CFRP 

anchors 

Effective 
width of 
CFRP 

anchors 

Total 
effective 
width of 
CFRP 

Measured 
peak 

strength 
(Max. Load) 

P/Pn 

Drift ratio at 
measured 

peak strength 

Strain in CFRP 
jackets at location 
of splice cracking 

expected 
 

West 
(Undamaged) 

48 in. 8 56 in. 104 in. 1.35 2.4 % 0.0025 ~ 0.0040 

East 
(Undamaged) 

48 in. 16 56 in. 104 in. 1.36 3.6 % 0.0020 ~ 0.0040 

Computed:   Nominal Strength (Pn): 55.8 kip; Yield strength: 60.3 kip; Ultimate Strength: 95.5 kip 

 

4.5.8 Comparison of the East and West Sides of 5-C-R20-C 

Effect of Number of CFRP Anchors 

Sixteen CFRP anchors were used on the east and 8 on the west faces of 5-C-R20-

C. The width of sheet used in a CFRP anchor on the east and west face was 3.5 in. and 7 

in. so the total width of CFRP used in the anchors maintained the same, 56 in. Neither of 

the faces was damaged before rehabilitation so the only difference between the east and 

west face of 5-C-R20-C was the number of CFRP anchors.  The layout of CFRP anchors 

in 5-C-R20-C is shown in Figure 4.23. Envelope of the cyclic response of 5-C-R20-C is 

shown in Figure 4.77. During the cyclic loading test, improvement of strength on both 

faces was similar (Figure 4.78). The east and west face of 5-C-R20-C reached about 

135 % of the nominal strength. However, the east face of 5-C-R20-C (16 anchors) 

showed more deformation capacity than the west face (8 anchors). The draft ratio 

corresponding to the calculated yield strength was 4.8 % on the east face and 3.3 % on 

the west face (Figure 4.78). In addition, the east face showed rapid degradation cyclic 

loading to 4.8 % drift while the west face showed degradation cyclic loading to 3.6 % 

drift. 
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This test results indicate that the number of CFRP anchors does not effect the 

strength of a column rehabilitated by CFRP jackets and anchors but does influence the 

deformation capacity. 
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Figure 4.77 Envelope of cyclic response, 5-C-R20-C 

4.5.9 Comparison of 4-C-R20-M and 5-C-R20-C 

Monotonic Loading VS Cyclic Loading  

The geometry of CFRP jackets and anchors in 4-C-R20-M and 5-C-R20-C was 

identical but 4-C-R20-M was tested under the monotonic loading while 5-C-R20-C was 

tested under cyclic loading. The east side of 4-C-R20-M was damaged before applying 

CFRP while 5-C-R20-C was undamaged.  

As indicated by the responses plotted in Figure 4.78, 4-C-R20-M and 5-C-R20-C 

showed a similar response up to 2.5 % drift ratio while the east side of 4-C-R20-M 
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showed less strength than that of 5-C-R20-C because of damage before rehabilitation. 

After reaching 2.5 % drift ratio, 4-C-R20-M and 5-C-R20-C showed different responses 

due to different level of degradation. 
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Figure 4.78 Drift ratio vs normalized lateral load, 4-C-R20-M and 5-C-R20-C 

4.5.10 Comparison of 3-B-S10-M, 4-C-R20-M and 5-C-R20-C 

Effect of Shape of Column Section, Square or Rectangle  

Comparing the east face of 3-B-S10-M, 4-C-R20-M and 5-C-R20-C, the same 

width and geometry of CFRP anchors were used on one face of the column. However, the 

strength and deformation capacity in 4-C-R20-M and 5-C-R20-C (rectangular column) 

improved less than in 3-B-S10-M (square column). Eight spliced bars out of 10 spliced 

bars were away from the corners in 4-C-R20-M and 5-C-R20-C while 3 bars were away 

from the corners in 3-B-S10-M. The measured peak strength on the east face of 3-B-S10-

M was 56 % more than the nominal capacity while that on the east face of 4-C-R20-M 

and 5-C-R20-C was 35% more than the nominal capacity. The longitudinal reinforcement 
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used in 3-B-S10-M, 4-C-R20-M, and 5-C-R20-C had the same strength but the 

compressive strength of concrete in 3-B-S10-M was the lowest among these 3 columns. 

The draft ratio corresponding to the calculated yield strength on the east face was 10.0% 

in 3-B-S10-M and 2.7 % and 4.8 % in 4-C-R20-M and 5-C-R20-C. 

The rehabilitation method using CFRP jackets and anchors was not as effective as 

in the rectangular column (8 splice bars were away from the corners) as in the square 

columns (3 splice bars were away from the corners)  because CFRP jackets did not 

confine lap splices of longitudinal bars away from the corner as effectively.  However, 

considerable increase of strength and deformation capacity was still observed in the 

rehabilitated rectangular column compared to that before rehabilitation. 
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4.5.11 6-C-R20-C 

A summary of the test results of 6-C-R20-C is shown in Table 4.10 in the end of 

this section.  

4.5.11.1 Drift Ratio VS Normalized Lateral Load 

Figure 4.79 shows drift ratio vs normalized lateral load response of 6-C-R20-C 

after rehabilitation. 6-C-R20-C was not damaged before rehabilitation. In Figure 4.79, the 

drift ratio vs normalized lateral load response of 4-C-R20-M as-built was provided as a 

reference. The actual yield strength (P/Pn = 1.08) and ultimate strength (P/Pn = 1.72) 

based on measured strength of the concrete and reinforcement are also provided.  The 

measured compressive strength of the concrete was 5,400 psi and the measured yield and 

ultimate strength of the reinforcement were 63 ksi and 106 ksi.   

Improvement of strength and deformation capacity was observed in 6-C-R20-C 

after rehabilitation with CFRP under cyclic loading on the east (16 anchors) and west (20 

anchors) faces of 6-C-R20-C. The strength increased by 42 % for the east face and by 

44 % for the west face after rehabilitation compared with the as-built strength of 4-C-

R20-M. The drift ratio of 4-C-R20-M as-built was 1.1 % at the maximum load.  The drift 

ratio corresponding to the peak strength was 3.6 % for the east face and 2.4 % for the 

west face after rehabilitation.   

Both the east and west faces of 5-C-R20-C showed rapid degrading under cyclic 

loading to 3.6% drift. 

The final failure mode of 6-C-R20-C was a splice failure after yield of the spliced 

longitudinal bars was reached (Figure 4.80). Ductility of the column was developed 

before failure. Splice cracks were observed in the column section after cutting the column 

from the footing. The use of the CFRP jackets and anchors effectively confined lap 

splices. 
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Figure 4.79 Drift ratio vs normalized lateral load, 6-C-R20-C 
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Figure 4.80 Splice failure of 6-C-R20-C 
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4.5.11.2 Steel Reinforcement Strain 

Layout of steel reinforcement strain gages in 6-C-R20-C is shown in Figure 4.81.   

4.5.11.2.1 Base Bar Strain 

Base bar strains of 6-C-R20-C under cyclic loading are shown in Figure 4.82 and 

Figure 4.83.  The bars on the east face (16 anchors) of 6-C-R20-C were initially in 

compression while the bars on the west face (20 anchors) were in tension. All the bars 

yielded during tension loading. The bars on both faces developed inelastic strain, and this 

result agreed with the drift ratio vs normalized lateral load response. 
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Figure 4.81 Layout of steel reinforcement strain gages, 6-C-R20-C 
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Figure 4.82 Base bar strains, east face, 6-C-R20-C 
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Figure 4.83 Base bar strains, west face, 6-C-R20-C 
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4.5.11.3 CFRP Strain 

The layout of strain gages on the CFRP jackets in 6-C-R20-C is shown in Figure 

4.84. On the north and south face of 6-C-R20-C, no strain gage was installed because the 

fan portion of the CFRP anchors covered the CFRP jackets. Five gages were installed on 

the east face and four gages were installed on the west face in the CFRP jackets. Strain 

gages were also installed at the north-east corner to observe strain transition around 

corners (EN-B and EN-C).  

In this section, measured strains on the east and west face and at the corners of 6-

C-R20-C are provided. Additional strain gage data installed in the east and west faces are 

shown in Appendix C. 

Strain vs lateral load for strain gages on the east and west face is shown in Figure 

4.85 and Figure 4.86. The maximum measured strain was between 0.0010 and 0.0025 

(10~ 25 % of ultimate tensile strain of the CFRP) on the east side and between 0.0010 

and 0.0015 (10 ~ 15 % of ultimate tensile strain of the CFRP) on the west face.  

Strain vs lateral load for strain gages at the corners of 6-C-R20-C is shown in 

Figure 4.87. From the CFRP strains at the corners, a smooth transition of strains was 

observed.  The measured strain at the arc of the north-east corner (EN-C) showed a 

similar response as the strain at the corner on the east face (EN-B).  However, the 

maximum measured strain of CFRP jacket at the corner of 6-C-R20-C was smaller than 

that of 5-C-R20-C. 
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Figure 4.84 Layout of CFRP strain gages, 6-C-R20-C 
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Figure 4.85 CFRP strains, east face, 6-C-R20-C 
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Figure 4.86 CFRP strains, west face, 6-C-R20-C 
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Figure 4.87 CFRP strains at north-east corner, 6-C-R20-C 

 

Table 4.10 Summary of test results, 6-C-R20-C 

Face 

Effective 
width of 
CFRP 
jackets 

No. of 
CFRP 

anchors 

Effective 
width of 
CFRP 

anchors 

Total 
effective 
width of 
CFRP 

Measured 
peak 

strength 
(Max. Load) 

P/Pn 

Drift ratio at 
measured 

peak strength 

Strain in CFRP 
jackets at location 
of splice cracking 

expected 
 

West 
(Undamaged) 

 20 104 in. 104 in. 1.38  2.4 %  

East 
(Undamaged) 

48 in. 16 56 in. 104 in. 1.36 3.6 %  

Computed:   Nominal Strength (Pn): 55.8 kip;  Yield strength: 60.4 kip;  Ultimate Strength: 95.7 kip  

 

Pn=55.8 

Pn=55.8 
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4.5.12 Comparison of 5-C-R20-C and 6-C-R20-C 

Performance of a Column with Walls after CFRP Rehabilitation  

In 6-C-R20-C, 16 CFRP anchors with the partial CFRP jackets were used on the 

east face, and 20 CFRP anchors without a CFRP jacket were used on the west face. The 

total width of CFRP across the plane of splitting cracking was the same (104 in. width). 

The layout of CFRP in 6-C-R20-C is shown in Figure 4.25. 

The rehabilitation method of 6-C-R20-C was comparable to that of the east face 

of 5-C-R20-C. 5-C-R20-C and 6-C-R20-C were tested under cyclic loading and had the 

same total width of CFRP across the pane of splitting cracking.  The number of CFRP 

anchors (4) in each column of anchors in 6-C-R20-C was also the same as that on the east 

face of 5-C-R20-C. Envelopes of the cyclic response of both faces of 6-C-R20-C and the 

east face of 5-C-R20-C are shown in Figure 4.88.  

The strength of both faces of 6-C-R20-C was similar to the east face of 5-C-R20-

C but the east face of 5-C-R20-C showed more deformation capacity than 6-C-R20-C. 

The measured peak strength of the east and west face of 6-C-R20-C was 36 % and 38% 

more than the nominal strength while that of the east face of 5-C-R20-C was 36%. The 

draft ratio corresponding to the calculated yield strength on the east and west face of 6-C-

R20-C was 3.6 % while that on the east face of 5-C-R20-C was 4.8% (Figure 4.78 and 

Figure 4.79). 

The rehabilitation methods using CFRP anchors with partial CFRP jackets or 

without CFRP jackets was as effective as the rehabilitation method using CFRP anchors 

with fully wrapped CFRP jackets in improving strength.  However, they were less 

effective in improving deformation capacity. 

In addition, drift ratio at the measured peak strength on the east face of 6-C-R20-

C was 3.6% while that on the west face was 2.4 %. Therefore, the rehabilitation method 

using the partial CFRP jackets may be a more efficient use of CFRP than that using no 

CFRP jackets. 
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Figure 4.88 Envelope of cyclic response, 5-C-R20-C and 6-C-R20-C 

4.5.13 Comparison of Rehabilitations Using CFRP and Steel  

The rehabilitation using CFRP jackets and anchors is comparable to the 

rehabilitation using steel jackets and adhesive anchor bolts. Two columns, one square and 

one rectangular column, were selected from the study of Aboutaha (1994) to compare the 

effectiveness of the rehabilitation using CFRP and steel.  

Square column FC 17 was identical to the Type A (1-A-S8-M and 2-A-S8-M) 

column in this study. FC 17 was strengthened as-built using a steel jacket only on the 

west face and a steel jacket and anchor bolts on the east face (Figure 4.89).  FC 17 was 

tested under cyclic loading and an envelope of the cyclic response of FC 17 was used for 

comparison with the response of 1-A-S8-M and 2-A-S8-M which were tested under 
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monotonic loading. The lateral load was normalized using the computed nominal strength 

of FC 17. The nominal strength was calculated using the design strength of concrete 

(4,000 psi) and steel (60 ksi).  

The rehabilitation on the west face of FC 17 was comparable to that of 1-A-S8-M 

because only jackets were used in these columns without anchor bolts or CFRP anchors. 

The envelope of the cyclic response on the west face of FC 17 is plotted with the 

monotonic response of the undamaged face (west) of 1-A-S8-M in Figure 4.90. The 

strength of the west face of FC 17 was similar to the undamaged face of 1-A-S8-M, but 

the west face of FC 17 showed more deformation capacity than the undamaged face of 1-

A-S8-M without strength degradation. However, the difference in the deformation 

capacity may be influenced by the width of the jackets. While the width of the CFRP 

jacket was 24 in., which was the same as the splice length, the width of the steel jackets 

was 34.5 in.    

The rehabilitation on the east face of FC 17 was comparable to that of 2-A-S8-M 

because a combination of steel jackets and anchor bolts and a combination of CFRP 

jackets and anchors were used in these columns. The envelope of the cyclic response on 

the east face of FC 17 is plotted with the monotonic response of the undamaged face 

(west) of 2-A-S8-M in Figure 4.91. The strength of the east face of FC 17 was similar to 

the undamaged face of 2-A-S8-M, but the undamaged face of 2-A-S8-M showed more 

deformation capacity than the east face of FC 17 without strength degradation. A larger 

number of CFRP anchors (4 anchors) were used on the undamaged face of 2-A-S8-M 

than the number of anchor bolts on the east face of FC 17 (2 anchor bolts). 
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Figure 4.89 Square column with steel jackets and anchor bolts,                                

FC 17, (Aboutaha, 1994) 



 

 

 

299

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

-6.0% -4.0% -2.0% 0.0% 2.0% 4.0% 6.0%

Drift Ratio, %

P/Pn

1-A-S8-M, CFRP jacket only

FC 17, steel jacket only

 

Figure 4.90 Comparison of CFRP and steel jackets in square columns 
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Figure 4.91 Comparison of CFRP jackets with anchors and steel jackets with anchor 

bolts in square columns 
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In Figure 4.92, the rehabilitation of a rectangular column FC 11 using steel 

jackets and anchor bolts is shown. Dimensions of FC 11 were identical to 5-C-R20-C 

although the number of lap splices in FC 11 was 16 while 20 bars are spliced in 5-C-R20-

C. FC 11 was strengthened as-built using steel jackets with 6 anchor bolts on the west 

face and with 8 anchor bolts on the east face. 5-C-R20-C was also strengthened as-built 

using CFRP jackets with 8 anchors on the west face and with 16 anchors on the east face. 

The width of the jackets in theses columns was similar (steel jacket: 27 in.; CFRP jacket: 

24 in.). Both FC 11 and 5-C-R20-C were tested under cyclic loading and envelopes of the 

cyclic response were used to compare the two columns (Figure 4.93). The lateral load 

was normalized using the computed nominal strength of the columns. The nominal 

strength was calculated using the design strength of concrete (4,000 psi) and steel (60 ksi).  

Envelopes of the cyclic response on each face of two columns are shown in 

Figure 4.93. The effect of the number of anchor bolts or CFRP anchors were evaluated 

using these columns. The strength of both faces of FC 11 and 5-C-R20-C was similar, but 

the east face of 5-C-R20-C (16 anchors) showed more deformation capacity than both 

faces of FC 11 and the west face of 5-C-R20-C without degrading of the strength. The 

west face of 5-C-R20-C (8 anchors) exhibited a response similar to that of both faces of 

FC 11 until a drift ratio of about 3.5 % was reached. At that drift, the splices were still 

carrying a force equal to their nominal capacity. At larger drift, there was a rapid strength 

degradation of the west face of 5-C-R20-C compared with FC 11. The number of anchor 

bolts had little influence on the behavior of FC 11. 
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Figure 4.92 Rectangular column with steel jackets and anchor bolts,                             

FC 11 (Aboutaha, 1994) 
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Figure 4.93 Comparison of CFRP jackets with anchors and steel jackets with anchor 

bolts in rectangular columns 

For both a square and a rectangular column, rehabilitation using the CFRP jackets 

and anchors was as effective as that using the steel jackets and anchor bolts. A similar 

level of strength improvement was achieved in the rehabilitated columns. However, 

deformation capacity depended on the rehabilitation details. Larger deformation capacity 

was achieved using CFRP than steel jackets but a larger number of the CFRP anchors 

were required than steel anchor bolts. When CFRP or steel jackets were used without 

CFRP anchors or steel bolts, a column with steel jackets maintained strength over a larger 

deformation range than a column with the CFRP jackets. 
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4.6 SUMMARY OF BEHAVIOR 

A summary of the column test results is shown in Table 4.11.  The nominal 

strength (Pn) was calculated using the design strength of concrete (4,000 psi) and steel 

(60 ksi). The calculated yield strength was based on measured strength of the concrete 

and reinforcement. The actual compressive strength of concrete is provided in Table 4.1 

and the tensile strength of longitudinal reinforcement is provided in Section 4.2.1. The 

measured peak strength is the normalized value of the maximum applied lateral load 

using the nominal capacity of the column. Drift ratio at the measured peak strength and 

drift ratio at the calculated yield strength were also provided in Table 4.11.  The drift 

ratio at the calculated yield strength is a drift corresponding to a measured load which is 

equal to the calculated yield load during the reduction of strength after the peak strength 

was reached. This drift is presented if it is within the stroke limit of the load actuator.  

A brittle splice failure occurred in all the as-built columns which were designed 

based on provisions of the ACI 318-63. The as-built columns exhibited little or no 

ductility before splice failure occurred. However, the columns rehabilitated with CFRP 

showed a significant increase in deformation capacity under both monotonic and cyclic 

loading. CFRP jackets and anchors effectively confined lap splices and changed the 

failure mode of square and rectangular columns from brittle splice failure to yielding of 

column reinforcement.  

The measured peak strength of the columns increased by 13 ~ 56 % after 

rehabilitation with respect to the as-built strength (Figure 4.94). The measured peak 

strength was larger than calculated yield strength in all the columns after rehabilitation. 

Drift at splice failure of the as-built column was about 1 %. However, after rehabilitation, 

drifts of 1.9 ~ 8.6 % were reached before the columns strength began to degrade (drift at 

the measured peak strength, Figure 4.95) and drifts of 2.7 ~ 10.0 % were exhibited at the 

yield load after the column strength began to degrade (drift at the calculated yield 

strength, Figure 4.96). The improvement was observed for both damaged and undamaged 
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faces of the column.  The test results indicate that the rehabilitation methods using CFRP 

jackets and anchors were effective in improving deformation capacity and strength of 

poorly detailed reinforced concrete columns.    

Table 4.11 Summary of Test Results 

Specimen Test condition 
CFRP 
jacket 

No. of 
CFRP 

anchors 

Measured 
peak strength 
(Max. Load) 

P/Pn 

Drift at 
measured 

peak 
strength 

Drift at  
calculated 

yield 
strength 

As-built   1.14*** 1.1 %  

Undamaged side 
(West) 

x  1.34 2.3 % 4.3 % 1-A-S8-M 
Repair and 

strengthening Damaged side 
(East) 

x  1.29 1.9 %  

As-built   1.10*** 1.1 %  

Undamaged side 
(West) 

x 4 1.48 4.8 %  2-A-S8-M 
Repair and 

strengthening Damaged side 
(East) 

x 4 1.49 4.5 %  

As-built   1.01*** 1.0 %  

Undamaged side 
(East) 

x 8 1.56 8.6 % 10.0 % 3-B-S10-M 
Repair and 

strengthening Damaged side* 
(West) 

x 8 1.58 5.5 %  

As-built   0.96*** 1.1 %  

Undamaged side 
(West) 

x 8 1.30 2.3 %  4-C-R20-M 
Repair and 

strengthening Damaged side 
(East) 

x 16 1.15 2.1 % 2.7 % 

West x 8 1.35 2.4 % 3.3 % 
5-C-R20-C Strengthening 

East x 16 1.36 3.6 % 4.8 % 

West  20 1.38  2.4 % 3.6 % 
6-C-R20-C Strengthening 

East x**
 16 1.36  3.6 % 3.6 % 

* East side was damaged under monotonic loading except 3-B-S10-M. 

**Partial jacket with anchors were used on the east side of 6-C-R20-C. 
***Splice failure 
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             Figure 4.94 Measured peak strength 
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    Figure 4.95      Drift ratio at measured peak strength              Figure 4.96      Drift ratio at calculated yield strength 
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Findings from the column splice tests can be summarized as follows: 

 

1. Strength and deformation capacity improved more when the column was 

rehabilitated by a combination of CFRP jackets and anchors than when 

rehabilitated by CFRP jackets only or CFRP anchors only. 

2. Rehabilitation was more effective for a square column (4 or 5 spliced bars on 

a face) than for a rectangular column (10 spliced bars on a face). However, 

rectangular columns exhibited good performance after rehabilitation. 

3. The width of CFRP anchors can be calculated conservatively using shear 

friction. 

4. A decrease in the number of CFRP anchors improved the strength of the 

splice if total width of CFRP material was maintained. However, deformation 

capacity was improved by using more anchors. 

5. The rehabilitation method using partial CFRP jackets or a CFRP sheet on one 

face can be applied to a column with walls. Such rehabilitation improved the 

deformation capacity less than when using fully wrapped CFRP jackets. 

However, the same improvement in the strength was achieved using partial 

jackets. 

6. The rehabilitation using CFRP jackets and anchors was as effective as that 

using steel jackets and adhesive anchor bolts. 

 



 307

CHAPTER 5 

Design Guidelines 

5.1 OVERVIEW 

Based on the test results, design guidelines for CFRP rehabilitation for existing 

reinforced concrete structures with poor detailing for continuity of reinforcement 

subjected to extreme loads such as loss of support due to blast or impact, wind or 

earthquake loads were developed. In previous studies use of CFRP for strengthening or 

repair of structures subjected to static loads has been discussed. Design guidelines for 

CFRP rehabilitation for two critical members, beams and columns, that are important for 

structural integrity under extreme loading are presented. 

5.2 USE OF CFRP TO PROVIDE CONTINUITY IN BOTTOM REINFORCEMENT OF BEAMS 

In this section, guidelines for bottom face application of CFRP with CFRP 

anchors are provided for situations requiring continuity of reinforcement. Although 

rehabilitation using CFRP U-wraps was studied, the dynamic performance of U-wraps 

was inferior to anchors. Design guidelines for rehabilitation using side faces of a beam 

are not presented because proof-of-concept tests using Type C beams (development of 

flexural hinges) were not conducted.  

 The width of beam sheets needs to be selected based on the tensile capacity of the 

bottom reinforcement that will be developed at the hinge. When designing the test 

specimens, the typical test value of the tensile strength of the CFRP (143 ksi) was used 

rather than the design value (121 ksi). In the guidelines, the design value is used. The 

width of connection sheets and CFRP anchors are based on the width of the beam sheets. 

In the test program, 33 % more CFRP was used in the connection sheets and anchors than 

the beam sheets but the use of 50 % more CFRP is recommended in the guideline. The 

location of column hole, through which the connection sheets passes, is assumed to be 

located at less than 2 in. from the bottom face of the beam. A height transition ramp with 



1:4 slope is assumed to be used regardless of geometry of beams and columns.  The 

anchors are should be placed at least two locations in a beam sheet. The first set of 

anchors should be located at the toe of the ramp where ramp meets the beam and the 

second set of anchors should be located a point that is at least equal to the development 

length of the bottom reinforcement from the column face. Detailing requirements for 

anchors are discussed in the next section. 

5.2.1 Design Procedure  

1. Determine width of beam sheets based on tensile strength of the bottom reinforcement. 

Use at least 50 % more materials than the materials needed to develop tensile strength of 

the bottom reinforcement. Select the number of layers based on the available width of the 

bottom face which is at least 2 in. less than the width of the beam. 

syb AfT 25.1      Equation 5-1 

fffuf twfT       Equation 5-2  

5.1/ bf TT     Equation 5-3 

                                
ffu

sy
f tf

Af
w

)25.1(5.1 
           Equation 5-4 

   Tb: expected tensile strength of the bottom reinforcement, lb 

   Tf: tensile strength of  CFRP  sheet, lb 

 : yield strength of reinforcement, psi yf

  : compressive strength of concrete, psi '
cf

   As: area of the bottom reinforcement, in2 

   ffu: tensile strength of CFRP, psi 

   tf: thickness of CFRP sheet, in. 

  : width of CFRP beam sheet, in. fw

 

2. Calculate width for CFRP anchors and connection sheets 

- Width of a set of CFRP anchors = Width of connection sheets: 1.5  fw
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3. Determine length of the connection sheets  

- Length of Connection sheet=  

    Length of height transition regions, 28 in. + Width of the column passed through,  cb

    (2 in. : 8 in. height transition ramp was assumed to be used) 

 

4. Determine length of the beam sheets and location of the second set of anchors based 

on development length,  (ACI 318-08, Section 12.2) of the bottom reinforcement.  dl

- Location of the second set of anchors: 1.1  from the column face  dl

(location of the anchors / #3 bar development length = 13 in /11.6 in.=1.1, C-BC-A-6G-

02) 

- Length of beam sheets: Ls=1.2   dl

(10 % increase for the height transition and length beyond the second set of anchors) 

 

5. Distribute the anchors based on the detailing requirements 

 A. First anchor should be located at the toe of the ramp where ramp meets the beam. 

 B. The center to center spacing of anchors at the same distance from the column face 

    should be larger than 2dh (dh = diameter of a hole) and 1.5 in. 

 C. Area of an anchor hole needs to be at least 40% larger than area of an anchor 

                   (Section 5.2.1.3) 

 D. The anchor should be inserted at least 4 in. into the core 

E. The angle of the fan portion of an anchor should be less than 90 degree. At least 0.5 in.  

                 overlap is required between anchors. The fan portion of anchors should cover entire 

                 width of the beam sheets and be placed on the concrete surface at least 0.5 in. from  

                 the edge of the beam sheet. 

F. Based on D and E, select length of an anchor 

  

6. Column hole needs to be located at less than 2 in. from the beam face. If connection 

sheets needs to be distributed, use following requirements:  
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A. The center to center spacing of anchors at the same distance from the column face 

    should be larger than 2dh and 1.5 in. 

 B. Area of an column hole needs to be at least 40% larger than area of an connection 

                  sheet 

                   (Section 5.2.1.3) 

C. the angle of the fan portion of connection sheet should be less than 90 degrees.  

At least 0.5 in. overlap is required between anchors. The fan portion of anchors should  

cover entire width of the beam sheets and be placed on the concrete surface  

at least 0.5 in. from the edge of the beam sheet. 

 

It is unlikely that moment along the CFRP-strengthened region will exceed the 

flexural capacity of the strengthened section because the tensile strength provided by 

beam sheets is 50 % more than that of the bottom reinforcement. However, if length of 

the CFRP-strengthened region is long with respect to span length of the beam or large 

moment occurs at the ends of the CFRP-strengthened region, a check should be made to 

ensure that the moment does not cause premature fracture of CFRP.  

Because half scale specimens were tested under dynamic loading in the 

experimental program, the tests with the specimens reflecting actual geometry of 

structural members may be needed before applying this guideline to practice. Distribution 

of multiple connection sheets was not studied so tests for verifying performance of 

multiple connection sheets may also be needed. Above requirements for distribution of 

connection sheets are based on the test results of the anchors. 

 

 

 



5.2.2 Design Example 

Design for loss an interior column in a perimeter frame 

 

14 in. 

3-#11

d= 29 in. 32 in. 

3-#8  

* GR 60 reinforcement;  =4,000 psi '
cf

Figure 5.1 Example Girder (ACI 315-74) 

1. Determine width of beam sheets based on tensile strength of the bottom reinforcement. 

Use at least 50 % more materials than the materials needed to develop tensile strength of 

the bottom reinforcement. Select the number of layers based on the available width of the 

bottom face which is at least 2 in. less than the width of the beam. 

lbAfT syb 750,177)79.03(000,6025.125.1    

 .1.55
04.0000,121

))79.03(000,6025.1(5.1)25.1(5.1
in

tf

Af
w

ffu

sy
f 







    

- Available width for the beam sheet =14 in. -2 in. =12 in.  

- Use 5 layers of 11 in. wide beam sheets (5 11=55 in.) 

lbtwfT fffuf 200,26604.055000,121   
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2. Calculate width for CFRP anchors and connection sheets 

- Width of a set of CFRP anchors or connection sheet: 1.5  = 1.555 =82.5 in.  fw

 

3. Determine length of the connection sheets 

- Length of Connection sheet= 28 +18.5 = 34.5 in. 

       

4. Determine length of the beam sheets and location of the second set of anchors based 

on development length,  (ACI 318-08, Section 12.2) of the bottom reinforcement.  dl

.4.470.1
40000.120

0.10.1000,60

20 '
ind

f

f
l b

c

ety
d 





























 

- Location of the second set of anchors: 1.1  = 1.1dl 47.4= 52.1 in., Use 52 in.   

- Length of beam sheets: Ls=1.2 = 1.2dl 47.4= 56.9 in., Use 57 in.   
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5. Distribute anchors based on the detailing requirements 

- Try two 20 in. width anchor and two 22 in. anchor  

- 2.5 in. spacing and 60 degree fan 

- 1.25 in. diameter and 9 in. depth anchor hole 
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11 in 

0.75 in 1.5 in 

Over lap, 
2.5 in 

1.125 in

2.5 in

1.25 in

5  in 

30° 

1.75 in 

Height transition, 8 in 

Column 

1 in 

4 in Beam 
sheet 

Connection 
sheet 

14 in 

Figure 5.2 Layout of the first set of anchors 



 

A. A. First anchor should be located at the toe of the ramp where ramp meets the beam. 

                                                                                                                       O.K. 

B. The center to center spacing of anchors at the same distance from the column face 

    should be larger than 2dh and 1.5 in. 

spacing of anchor, 2.5 in.   2 dh= 2.5 in.    O.K. 

 C. Area of an anchor hole needs to be at least 40% larger than area of an anchor 

                   (Section 5.2.1.3) 

  40.139.1
04.022

4/)25.1( 2





      O.K. 

D. The anchor should be inserted at least 4 in. into the core 

  depth of hole, 9 in. – cover, 3 in. = 6 in.    O.K. 

E. The angle of the fan portion of an anchor should be less than 90 degrees.  

    At least 0.5 in. overlap is required between anchors. The fan portion of anchors should  

    cover entire width of the beam sheets and be placed on the concrete surface at least  

    0.5 in. from the edge of the beam sheet. 

              See Figure 5.2       O.K. 

F. Based on D and E, select length of an anchor 

 depth of hole, 9 in + fan portion, 5 in. =14 in.   O.K. 

 

6.  Column hole needs to be located at less than 2 in. from the beam face. If connection 

sheets needs to be distributed, use following requirements: 

- Try two 42 in. width connection sheets  

- 4 in. spacing and 53 degree fan  

- 1.75 in. diameter  

  

A. The center to center spacing of connection sheet should be larger than 2dh or 1.5 in. 

spacing of anchor, 4 in.   2 dh= 3.5 in.                                                       O.K. 

B. Area of a column hole needs to be at least 40% larger than area of an connection sheet 

                   40.143.1
04.042

4/)75.1( 2





                      O.K. 
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C. the angle of the fan portion of connection sheet should be less than 90 degrees.  

At least 0.5 in. overlap is required between anchors. The fan portion of anchors should  

cover entire width of the beam sheets and be placed on the concrete surface  

at least 0.5 in. from the edge of the beam sheet. 

See Figure 5.2       O.K 



 

5.3 USE OF CFRP TO REHABILITATE POORLY DETAILED LAP SPLICES 

5.3.1 Design of CFRP Jackets and Anchors Using Shear Friction 

CFRP jackets and anchors used in the rehabilitation were initially designed using 

shear friction equation. The test results indicated that the design procedure provided a 

conservative estimation of the CFRP needed to develop the splice strength. In this section, 

design guidelines based on the test results are presented.  

5.3.1.1 Minimum Required Splice Length for Rehabilitation 

Effectiveness of confinement using rehabilitation was evaluated to find the 

minimum of the existing splice length needed for rehabilitation. Required splice length of 

the steel reinforcement in tension can be calculated using ACI 318-08, Section 12.2.3.   

3.2.1208318
40

3
'

SectionACId

d

Kcf

f
l b

b

trb

set

c

y
d 




























 



            Equation 5-5 

dl : development length for deformed bar in tension, in. 

bd : diameter of bar, in. 
'

cf : compressive strength of concrete, psi 

yf :yield strength of reinforcement, psi 

t , e , s : modification factor based on bar location, coating and size 

bc : a factor represents smallest of the side cover 

trK : a factor represents the contribution of confining reinforcement 

         across potential splitting planes. 
 

The term 






 

b

trb

d

Kc
 in Equation 5-5 represents contribution of confining 

reinforcement and the concrete around the spliced bars that restrain against splitting 

cracks. This term should not be greater than 2.5 in the code. However, using the test 
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results, 






 

b

trb

d

Kc
 could be calculated according to the strength of the lap splices in the 

specimens and the calculated value of this term represents the effectiveness of the CFRP 

confinement for rehabilitating the lap splices. Equation 5-5 can be rearranged as Equation 

5-6 if the values of t , e , and s  were assumed to be 1.0. 
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40

3
'

y

bd

K tr 



                        Equation 5-6 

The values used or measured in the tests can be substituted for the terms in 

Equation 5-6. For all the columns,  was equal to 24 in. and  was equal to 1 in. (#8 

bar). In the calculation, measured compressive strength was used for  (3rd column of 

dl bd

'
cf

Table 5.1) and the peak normalized strength (4th column of Table 5.1) multiplied by 

60,000 psi was used instead of  to reflect the actual stress level in the bars because the 

strength was normalized by nominal strength which was based on GR60 reinforcement. 

The modified stresses in the bars are shown in 5th column of 

yf

Table 5.1. The calculated 

values of 



 are presented in 6th column of 


 

b

trb

d

Kc
Table 5.1 and are between 3.2 and 4.4 

which are larger than the code specified value, 2.5. Those large values indicate that actual 

effectiveness of the CFRP confinement can be larger than the code allows.  

Another way of expressing the effectiveness of the CFRP confinement for 

rehabilitating lap splices is the use of a factor   which is derived in Equation 5-7. 

Calculated value of   for the splices in the specimens are presented in 7th column of 

Table 5.1 

bd






'
c

y
d

f

f
l






   ,      








 


b

trb

d

Kc

1

40

3         Equation 5-7 

 



 

The effectiveness of the CFRP confinement also can be expressed by a multiplier 

to bar diameter, . This value can be determined using the calculated value bd   and the 

normal strength of the concrete ( =4,000 psi) and steel ( =60,000 psi.) in Equation 5-

7.  The required length,  in terms of is shown in the last column of 

'
cf yf

dl bd Table 5.1. 

 
 

Table 5.1 Summary of calculation results of minimum required lap splice length 

1 2 3 4 5 6 7

Specimen Face f c', psi Ppeak/Pn
(Ppeak/Pn)f y

 

8

,             

f y= 60,000 psi
(cb+Ktr)/db

α for 
mimimum 

required lap 
splice length

Minimum required 
splice length,       
fc'=4,000psi,  
fy=60,000psi

West 1.34 80,400 3.36 0.022 21.2d b

East 1.29 77,400 3.23 0.023 22.0d b

West 1.48 88,800 3.81 0.020 18.7d b

East 1.49 89,400 3.84 0.020 18.5d b

West 1.58 94,800 4.42 0.017 16.1d b

East 1.56 93,600 4.36 0.017 16.3d b

West 1.30 78,000 3.59 0.021 19.8d b

East 1.15 69,000 3.18 0.024 22.4d b

West 1.35 81,000 3.38 0.022 21.0d b

East 1.36 81,600 3.41 0.022 20.9d b

West 1.38 82,800 3.46 0.022 20.6d b

East 1.36 81,600 3.41 0.022 20.9d b

5,600

5,600

4,600

3-B-S10-M

1-A-S8-M 5,600

5,300

4,500

4-C-R20-M

5-C-R20-C

6-C-R20-C

2-A-S8-M

The   factor and the bar diameter multiplier were used in the previous codes to 

determine the lap splice length in compression. ACI 318-63, Section 805 requires using a 

lap splice length of 24  for GR 60 reinforcement in compression and this length is 

linearly proportional to . However, the largest value of the minimum required splice 

length is 22.4 (the east face of 4-C-R20-M) which is less than 24  and the minimum 

required splice length is also linearly proportional to . Therefore, if a structure was 

designed according to ACI 318-63, it is possible to strengthen or repair the lap splices for 

tensile load using CFRP. 

bd

yf

bd bd

yf

ACI 318-71, Section 7.7 requires using α=0.02 to calculate the length of a lap 

splice in compression. The test results indicate that α is not more than 0.02 for the square 

columns (4 or 5 spliced bars on a face) rehabilitated using a combination of the CFRP 
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jackets and anchors (2-A-S8-M and 3-B-S10-M). This means that the minimum lap splice 

length required for rehabilitation is less than the length of a lap splice in compression 

based on ACI 318-71.  The test results indicate that α is larger than 0.02 for the lap 

splices on all the faces of the rectangular columns (10 spliced bars on a face). However, α 

is close to 0.02 (α=0.021 ~ 0.022) when the lap splices of 5-C-R20-C, 6-C-R20-C and the 

west face of 4-C-R20-M were strengthened. Considering conservatism in the 

development length equation, the calculated α’s are close enough to 0.02 so that it can be 

recommended that lap splices designed using α=0.02 can be strengthened using CFRP 

rehabilitation.   In contrast, when the lap splices were repaired, α was 0.024 and was 

20 % larger than the code requirement for compression lap splices (the east face of 4-C-

R20-M). Therefore, strengthening of the lap splices in a column which contains 10 

spliced bars on a face and was designed according to ACI 318-71 is possible but repair of 

the lap splices in a damaged column may not result in development of the splice in 

tension. However, if the actual length of the lap splices is longer than the length 

calculated using α=0.024, lap splices can be repaired.  A summary of lap splices that can 

be rehabilitated according to various codes is shown in Table 5.2 based on the results of 

this report. Another method to check the applicability of the rehabilitation is comparison 

of the actual spice length with the length calculated using α=0.024 (lap splice in a 

damaged column containing between 5 and 10 spliced bars on a face) or α=0.020 (all the 

other cases). 

 

Table 5.2 Summary of lap splice conditions needed for rehabilitation 

 

Design code

Number of spliced bars on a column 
face

Less than 5 spliced bars
Between 5 and 10 

spliced bars
Less than 5 spliced bars

Between 5 and 10 
spliced bars

Strengtheing  (As-built column) Yes Yes Yes Yes

Repair (Damaged column) Yes Yes Yes No

ACI 318- 63 ACI 318- 71
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5.3.1.2 Contribution of CFRP Jackets, CFRP Anchors and Transverse 

Reinforcement 

In the rehabilitated column, CFRP jackets, CFRP anchors and transverse 

reinforcement contributed to the force perpendicular to the shear plane where splitting 

cracking was expected. In the initial shear-friction design equation, it was assumed that 

1/3 of the ultimate strength of the CFRP jackets and anchors and the yield strength of the 

transverse reinforcement can be developed. 

  The strain in the CFRP jackets and transverse reinforcement at the expected 

location of the splitting cracks were measured. Although strain gages were located at the 

cracked section, the measure strain in the CFRP jackets was 0.0015 ~ 0.0045 (15~ 45 % 

of the ultimate strain) and in the transverse reinforcement was 0.0005 ~ 0.005 (yield 

strain = 0.0021). Therefore, the design assumptions regarding the contribution of the 

CFRP jackets and transverse reinforcement were reasonable.  The strain data for the 

CFRP jackets and transverse reinforcement were presented in Section 4.5 and Appendix 

C. Strain in the CFRP anchors could not be measured but failure of the CFRP anchors 

was not observed in any specimens. 

5.3.1.3 Details of CFRP anchors 

Distribution of CFRP anchors was based on the detailing requirements presented 

in Section 4.2.3. The vertical spacing of CFRP anchors in the lap splice region needed to 

be less than 6 in. In the west faces of 4-C-R20-M and 5-C-R20-C, vertical spacing was 18 

in. (1/2 of the lap splice length) while the spacing was 6 in. (1/4 of the lap splice length) 

in the other columns. The lap splices with the anchors at 18 in. vertical spacing exhibited 

the least deformation capacity of all the columns although the strength was comparable. 

Therefore, vertical spacing of the CFRP anchors in the lap splice region smaller than 6 in. 

or 1/4 of the lap splice length appears to be a reasonable detailing requirement. 

For the horizontal spacing, the CFRP anchors were placed at the middle of the lap 

splices on at least one side of every lap spliced longitudinal bar except corner bars. No 

other spacing was examined but the splices performed well using this spacing.  



 

In addition, it was found that clear spacing between a CFRP anchor and #8 lap 

spliced bars was less than 1.25 in. for all the CFRP anchors tested (Table 5.3). It should 

be noted that anchors must be located close to the spliced bars to effectively restrain 

splitting and as shown in Figure 5.3 . The effectiveness of an anchor may be factor of 

cover and bar size also. 

Clear spacing, 
less than 1.25 in.

Cover, 2 in. 

Effective region of an anchor 

CFRP anchor CFRP jacket 

Bar size, # 8 

  

Figure 5.3 Spacing between CFRP anchor and lap spliced bars 
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Table 5.3 Ratio of hole area to CFRP anchor area and clear spacing between 

CFRP anchor and lap spliced bars 

 

Specimen Face
Width of anchor, 

in.

Area of anchor, 

in.
2

Diameter of Hole, 
in. Area of hole, in.

2 Area of hole/ 
Area of anchor

Clear spacing 
between lap splice 

and anchor, in.

West 7 0.28 0.750 0.44 1.58 1.25

East 7 0.28 0.750 0.44 1.58 1.25

West 5.5 0.22 0.625 0.31 1.39 0.84

East 3.5 0.14 0.500 0.20 1.40 0.91

West 7 0.28 0.750 0.44 1.58 0.88

East 3.5 0.14 0.500 0.20 1.40 1.00

West 7 0.28 0.750 0.44 1.58 0.88

East 3.5 0.14 0.500 0.20 1.40 1.00

West 5.2 0.21 0.625 0.31 1.47 1.00

East 3.5 0.14 0.500 0.20 1.40 0.93

2.7 0.11 0.500 0.20 1.82

3 0.12 0.500 0.20 1.64

2 0.08 0.375 0.11 1.38

5-C-R20-C

6-C-R20-C

Pendulum test

2-A-S8-M

3-B-S10-M

4-C-R20-M

 

Diameter and depth of anchor hole were selected to prevent bond failure of a 

CFRP anchor (Equation 4-10). No bond failure of the anchors was observed during the 

tests and this equation was a reasonable estimate of the tensile strength of the CFRP 

anchors. However, when size of an anchor hole is selected, area of a hole must be large 

enough to insert a CFRP anchor. This is a practical requirement for selecting size of an 

anchor hole. The ratios of the hole area to the CFRP anchor area are shown in Table 5.3. 

The smallest value of the ratios is 1.38. Therefore, area of an anchor hole should be 40 % 

greater than that of the CFRP anchor. This detailing requirement can be used with 

Equation 4-10 to select size of an anchor hole. Equation 4-10 (= Equation 5-17) and the 

detailing requirements are summarized in the next section. 

 

 322



 

5.3.1.4 Design Procedure  

The shear friction equation and detailing requirements initially used to design the 

CFRP jackets and anchors for the specimens provided a conservative estimation of CFRP 

materials. The rehabilitation based on this design procedure improved the strength and 

deformation capacity of the columns with poorly detailed lap splices. In this section, a 

modified design procedure is proposed based on the test results. The design equations are 

basically the same as the equations presented in Section 4 but several requirements are 

added based on the findings in this study. 

 

1. Determine if the lap splice can be rehabilitated using Table 5.2 or compare of 

the actual spice length with the length calculated using α=0.024 (lap splice in a 

damaged column containing between 5 and 10 spliced bars on a face) or α=0.02 

(all the other cases). 

 lengthspliceactuald
f

f
l b

c

y
d 














'
  

     

2. Calculate tensile force in the longitudinal bars, Tb and check Tb with the upper 

limit on shear-friction strength, Vn,max  

syb AfT 25.1       Equation 5-8 

sn vbLV max,       Equation 5-9  

        Equation 5-10  bn TV max,

Tb: expected tensile force in the longitudinal bars, lb 

yf : yield strength of reinforcement, psi 

'
cf : compressive strength of concrete, psi 

 As: area of longitudinal bars, in2 

Vn,max: upper limit on shear friction strength, lb(ACI 318-08,11.6.5) 

 323



 

v: maximum stress transferred by shear friction smaller of  0.2  or 800 psi  '
cf

(ACI318-08, Section 11.6.5) 
b: width of column  

 

3. Determine the total effective width of CFRP anchors using one layer of CFRP 

jackets and Vn> Tb  (Assume 1/3 of ffu is effective) 

bsajn TVVVV  )(     Equation 5-11 

)2()3/( jffuj LtfV       Equation 5-12 

afuaa AfnV )3/(      Equation 5-13 

sV vfy Af       Equation 5-14 









 vfyjffu

b

fuff

aa AfLtf
T

ftt

An
)2()3/(

31


 Equation 5-15 

 : coefficient of friction =1.4 (ACI 318-08,11.6.4.3) 

Vn: nominal shear strength, lb 

Vj: force perpendicular to shear plane contributed by CFRP  

     jackets, lb  

Va: force perpendicular to shear plane contributed by CFRP  

     anchors, lb 

Vs: force perpendicular to shear plane contributed by transverse steel  

    reinforcement, lb 

ffu: tensile strength of CFRP, psi 

tf: thickness of CFRP sheet, in. 

Lj: width of CFRP jacket, in. 

na: number of CFRP anchors 

Aa: area of a CFRP anchor, in2 

Avf: area of steel shear-friction reinforcement, in2 

f

aa

t

An
: effective width of total CFRP anchors, in2 
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4. Determine the number of CFRP anchors using the following detailing 

requirements 

- Vertical spacing of CFRP anchors in the lap spliced region should be 

smaller than 6 in. or 1/4 of the lap splice length. 

- Horizontal distribution of CFRP anchors: at the middle of lap splices on 

at least one side of every lap spliced longitudinal bar except corner bars 

- Diameter and depth of anchor hole to prevent bond failure of a CFRP 

anchor:  

nafu PAf )3/(     Equation 5-16 

                   )(22)(4 ''
caccchccn hLhfhdhfP      

                                                                                                            Equation 5-17 

   : tensile strength of CFRP anchor, lb nP

ch : concrete cone depth, 2 in. (Ozdemir et al,. 2005) 

dh: diameter of anchor hole, in. 

La: depth of anchor hole from the shear plane, in,. >  4 in. (Ozdemir et 

al,. 2005) 

- Clear spacing between CFRP anchor and lap spliced bars  1.25 in. 

- Area of an anchor hole needs to be at least 40% larger than area of a 

anchor  
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5.3.1.5 Design Example, the West Face of 3-B-S10-M  

1. Determine if the lap splice is possible to rehabilitate using Table 5.2. 

The West face of 3-B-S10-M:  24 in. long 5 spliced bars in a damaged  

column designed according to ACI 318-63 

 

Design code

Number of spliced bars on a column 
face

Less than 5 spliced bars
Between 5 and 10 

spliced bars
Less than 5 spliced bars

Between 5 and 10 
spliced bars

Strengtheing  (As-built column) Yes Yes Yes Yes

Repair (Damaged column) Yes Yes Yes No

ACI 318- 63 ACI 318- 71

OR 

.24.0.191
4000

000,60
020.0

'
inind

f

f
l b

c

y
d 





















         O.K.  

 

2. Calculate tensile force in the longitudinal bars, Tb and check Tb with the upper 

limit on shear-friction strength, Vn,max  

lbAfT syb 250,296)79.05(000,6025.125.1 

lbvbLV sn 600,3452418800max,

  

    

As= 5-#8(5x0.79 in2),    b=18 in. 

      O.K.     bn TV max,

 

2. Determine the total effective width of CFRP anchors using one layer of CFRP 

jackets and Vn> Tb  

bsajn TVVVV  )(      
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lbLtfV jffuj 520,912404.0)3/000,143()2()3/( 

sV lbAf vfy 600,39)11.06(000,60

  

 

 







 vfyjffu

b

fuff

aa AfLtf
T

ftt

An
)2()3/(

31



 .2.42000,396520,91
4.1

250,296

000,143

3

04.0

1
in



 

t

An

f

aa
 

 =1.4 ,    ffu=143,000 psi,    tf= 0.04 in. 

Lj = 24 in.,  Avf = 6x0.66 in2, (6-#3 ties across the shear plane)  

      

4. Determine the number of CFRP anchors using the detailing requirements 

- Vertical distribution: 24 in./6 in. = 4 rows of anchors (Figure 5.4) 

- Horizontal distribution: 2 columns of anchors (Figure 5.4) 

 

 

Figure 5.4 Distribution of CFRP anchors 

  

- Total number of anchor, na= 4x2=8 anchors 

   anchorperin
anchors

in
.275.5.

8

2.42
Use 5.5 in. anchor 
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- Diameter and depth of anchor hole:  

Try dh=5/8 in. and La= 6 in. >  4 in.  

lbAf afu 487,10)5.504.0)(3/000,143()3/(   

lb

hLhfhdhfP caccchccn

304,15)26(2000,422)28/5(2000,44

)(22)(4 ''








     

nafu PAf )3/(    O.K. 

- Clear spacing between CFRP anchor and lap spliced bars: 

                0.84 in.   1.25 in.   O.K. 

- Area of an anchor hole needs to be at least 40% larger than area of an 

anchor  

 39.1
04.05.5

4/)8/5( 2





    O.K.  
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5.3.2 Backbone Curves for the Rehabilitated Columns 

In FEMA 365, Prestandard and Commentary for the Seismic Rehabilitation of 

Buildings (2000), procedures to evaluate capacity of existing buildings under seismic 

loading are discussed. Nonlinear static analysis is one of the procedures and reflects 

nonlinear behavior of structural components through component force vs deformation 

curves which consist of a series of linear segments (Figure 5.5).  

 

Figure 5.5 Component force vs deformation curves (FEMA 356, 2000) 

A component force vs deformation curve is an approximate curve of a backbone 

curve which is developed from the results of a structural component test under cyclic 

loading. Backbone curves of the columns tested under cyclic loading (5-C-R20-C and 6-

C-R20-C) were developed based on the experimental data of cyclic lading tests according 

to FEMA 356, Section 2.8 (2000). The backbone curves were drawn through the 

intersection of the first cycle curve of the (i)th deformation step with the second cycle 

curve of the (i-1)th deformation step, for all i steps. This procedure is indicated in Figure 

5.6 and Figure 5.8.  

The backbone curves were approximated by a series of linear segments conforming to a 

Type 2 curve shown in Figure 5.5. A Type 2 curve was selected because of a lack of 

information about the residual strength of the splice. Backbone curves were normalized 

by the calculated yield strength of the columns based on the measured strength of the 

concrete and the steel reinforcement. Development of Type 2 curves from the backbone 
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curves is described in Figure 5.7 and Figure 5.9. Three deformation parameters, g, e and 

a are used to characterize Type 2 curves. Parameters g and e are deformations 

corresponding to the end of the elastic and plastic ranges. The deformation range 

corresponding to the plastic range is denoted as a. A summary of these parameters for the 

columns are shown in Table 5.4. 

Table 5.4 Summary of Type 2 curves for different rehabilitation methods 

Rehabilitation method 
Specimen 

CFRP jacket No. of anchors 
a g e e  2g ? 

Full  8 1.20 % 1.20 % 2.40 % Yes 
5-C-R20-C 

Full 16 2.05 % 1.55 % 3.60 % Yes 

 20 1.20 % 1.20 % 2.40 % Yes 
6-C-R20-C 

Partial 16 1.70 % 1.70 % 3.40 % Yes 

 

According to FEMA 356 all structural behavior can be classified either 

deformation-controlled or force-controlled using component force vs deformation curves.  

If a structural component exhibits deformation capacity without losing strength, the 

behavior is classified as a deformation-controlled otherwise it is classified force-

controlled. For structural behavior following a Type 2 curve, e must not be less than 2g to 

be classified as deformation-controlled behavior. Response of all the strengthened 

columns using CFRP satisfied this requirement and could be classified as deformation-

controlled.   

Type 2 curves for the different rehabilitation methods are shown in Figure 5.10. 

The column face with a CFRP jacket and 16 anchors (the east face of 5-C-R20-C) 

exhibited the largest strength and deformation capacity. For this case, a was 2.0 % which 

was equal to a for a column with conforming transverse reinforcement, 2.0 % indicated in 

Table 5.5 (For all test columns, axial load, P was 0 and 3
'


cw fdb

V
). A component has 

conforming transverse reinforcement if hoops are spaced at not more than d/3 within the 
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plastic hinge region. Rehabilitation with a CFRP jacket and 16 anchors provided the same 

level of confinement as the conforming transverse reinforcement. 

The Type 2 curve for the column face with a CFRP jacket and 8 anchors (the west 

face of 5-C-R20-C) exhibited the least deformation capacity (a = 1.2%). Although a at 

the column face was less than 2.0 %, it was twice as large as the specified a of a column 

with nonconforming transverse reinforcement, 0.6% indicated in Table 5.5. 

The Type 2 curves derived from the test program provide a conservative 

estimation of the strength and deformation capacity of a column with CFRP rehabilitation 

because residual strength and deformation were not considered. In addition, the curve for 

the rectangular column with a CFRP jacket and 16 anchors (the east face of 5-C-R20-C) 

can be safely applied to a CFRP rehabilitated column with a fewer spliced bars away 

from corners such as the square specimens (1-A-S8-M, 2-A-S8-M, and 3-B-S10-M).  

Eight spliced bars out of 10 spliced bars were away from the corners in 5-C-R20-C while 

2 or 3 bars were away from the corners in the square columns. The test results indicate 

that rehabilitation was more effective in the square columns than in rectangular columns. 

Therefore, the backbone curve presented can be used in CFRP rehabilitated columns 

which contain less than 10 splices on a face if the rehabilitation is designed according to 

the design method discussed in the previous section. 
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Figure 5.6 Development of backbone curve, 5-C-R20-C 
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Figure 5.7 Development of Type 2 curve, 5-C-R20-C 
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Figure 5.8 Development of backbone curve, 6-C-R20-C 
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Figure 5.9 Development of Type 2 curve, 6-C-R20-C 
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Figure 5.10 Type 2 curves for different rehabilitation methods 
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Table 5.5 Modeling parameters for reinforced concrete columns (FEMA 356, 

2000) 
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CHAPTER 6 

Summary and Conclusions 

 

6.1 SUMMARY 

CFRP materials were used to rehabilitate existing reinforced concrete structures 

that had inadequate reinforcement details to withstand the effects of extreme loading that 

could lead to collapse or progressive collapse. The deficient details involve discontinuity 

in bottom reinforcement in beams (horizontal discontinuity) and poorly detailed lap 

splices in columns (vertical discontinuity). Two separate experimental studies were 

conducted using CFRP materials to rehabilitate beam and column specimens.  

 

Use of CFRP to Provide Continuity in Bottom Reinforcement in Beams 

The CFRP rehabilitation techniques to provide continuity in bottom reinforcement 

under static loading conditions were developed by Kim (2006) and Orton (2007).  The 

techniques needed to be verified under dynamic loading conditions because of the nature 

of loading which caused progressive collapse.  The use of CFRP anchors and U-wraps 

were investigated under dynamic loading. After verifying that these methods resulted in 

the CFRP reaching full strength under dynamic loading, rehabilitation methods to 

produce ductile response (or energy absorbing hinging regions) in regions of bottom 

reinforcement discontinuity were studied. CFRP sheets were anchored to effectively 

transfer stress from CFRP to bottom reinforcement under dynamic loading. So the 

strength of CFRP was utilized and large rotational capacity of the beam was developed 

by yielding of the bottom reinforcement. The CFRP rehabilitation techniques, which 

were effective under static loading, were found to be acceptable under dynamic loading 

as well.   
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Use of CFRP to Rehabilitate Poorly Detailed Lap Splices in Columns 

Square and rectangular column specimens were designed based on provisions of 

the ACI 318-63 and tested as-built or after rehabilitation. A brittle splice failure occurred 

in the as-built columns. However, after rehabilitating the columns using CFRP jackets 

and anchors, the failure mode changed from a brittle splice failure to yield of column 

reinforcement and the strength and deformation capacity were improved under both 

monotonic and cyclic loading. The improvement was observed in damaged splices that 

had failed and were repaired as in undamaged splices that were strengthened using a 

combination of CFRP jackets and anchors.  

 

Design Guidelines 

Based on the test results of beams and columns, design guidelines for CFRP 

rehabilitations were proposed. For the rehabilitation to provide continuity in bottom 

reinforcement in beams, The width of CFRP sheets to provide continuity were selected 

based on tensile strength of bottom reinforcement. The width of CFRP anchors were 

selected based on the width of the anchored sheets. The length of CFRP sheets and 

locations of CFRP anchors were selected according to required code development lengths 

of the bottom reinforcement. 

  CFRP jackets and anchors to rehabilitate poorly detailed lap splices in columns 

were designed using shear friction equations. The test results indicated that the design 

procedure provided a conservative estimation of CFRP materials needed to restrain 

concrete splitting along a plane through the splices. Based on the results of cyclic loading 

tests, backbone curves for the response of columns rehabilitated using CFRP were 

developed. The backbone curves can be used in nonlinear static analysis of reinforced 

concrete columns with CFRP rehabilitation. 
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6.2 CONCLUSIONS 

Horizontal and vertical continuities can be provided through the use of CFRP for 

rehabilitating existing reinforced concrete structures that were designed prior to the 

introduction of codes that require continuous reinforcement along members and between 

adjacent members. The vulnerability of such structures to collapse can be reduced 

through rehabilitation. Key findings are listed below. 

 

1. CFRP rehabilitation techniques that produced failure (full strength of the CFRP 

material) under static loading performed satisfactorily under dynamic (impact) 

loading. 

 

2. By designing the CFRP rehabilitation to provide a continuous tensile force path 

in regions where bars were discontinuous under earlier codes, it was possible to 

develop yielding in the existing beam reinforcement and flexural hinging to 

absorb energy under extreme loading (impact or earthquake). 

 

3. A splice region in columns designed for compression only can be detailed to 

prevent premature splice failure before inelastic strains are developed in the 

longitudinal reinforcement. 

 

4. Design procedure using shear friction provided a conservative estimation of 

CFRP materials needed to restrain concrete splitting along a plane through the 

splices in columns. 

 

5. The rehabilitation using CFRP jackets and anchors was as effective as that 

using steel jackets and adhesive anchor bolts to rehabilitate poorly detailed lap 

splices in columns. 
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6.3 FUTURE RESEARCH 

6.3.1 Qualification Test for CFRP Anchors 

As discussed in Section 3.8, although the performance of CFRP anchors has 

received considerable attention, a reliable test method for qualifying of CFRP anchors in 

reinforced concrete structures does not exist. Therefore, development of a simple test 

method for evaluating effectiveness of CFRP anchors is necessary. In addition, this test 

method may be used in quality control of CFRP anchors in practice. Research on 

qualification test methods for CFRP anchors is continuing at the University of Texas at 

Austin. 

6.3.2 Rehabilitation of Poorly Detailed Reinforced Concrete Beams under 

Dynamic Loading 

The dynamic loading condition used in this study was an impact load which was 

applied at the center point of a beam. In this loading condition, continuity was 

successfully provided through a rehabilitation method using CFRP, and the strength and 

deformation capacity of rehabilitated beams was evaluated under dynamic loading. The 

tests results of this study indicate that it was possible to select the quantity of CFRP 

materials to provide required strength for a beam. It was assumed that the maximum 

required strength due to dynamic loading is already known. GSA and DOD require using 

a dynamic amplification factor of 2 which means applying 2 times the static load to a 

structure to reflect effect of dynamic loading (GSA, 2003; DOD, 2005). This guideline 

may provide a target strength for designing CFRP materials. 

 However, in this study, the characteristics of dynamic loading were not 

investigated when a column was removed. When a column is removed, the applied load 

is distributed over a floor area while the applied load in this study was an impact point 

load. Effect of a dynamic load in a condition of column removal may not be as large as 2 

times the static load due to the characteristics of the loading and the geometry of a 
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structure such as support conditions, transverse beams and slabs. The effect of loading 

should be verified using a more realistic test structure with multiple bays and stories 

under distributed and sustained dynamic loading after the column removal. Such a study 

may allow using lower dynamic amplification factor and reduced quantities of CFRP for 

rehabilitation. 

    Another way to provide continuity in a beam in an existing structure is to 

provide CFRP transverse reinforcement that confines the region where the top and 

bottom reinforcement overlap. The development of continuous load path consisting of 

transverse CFRP sheets and anchors should be studied  

6.3.3 Rehabilitation of Poorly Detailed Reinforced Concrete Columns 

Shear friction equation were used to design CFRP jackets and anchors. The test 

results shows that the design of CFRP materials based on shear friction provide a 

conservative estimation. Design guidelines, which provide more efficient use of the 

materials, can be developed through further research. The effectiveness of CFRP anchors 

depending on variables such as concrete cover, size of spliced bars, spacing between an 

anchor and spliced bars, and spacing of the anchors needs to be studied to use CFRP 

more efficiently. The effect of extension of CFRP jackets along a member and multiple 

layers CFRP in jackets combined with anchors also needs to be studied. 
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APPENDIX A 

Additional Experimental Data –Beam Tests under 

Dynamic Loading 
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Figure A.1 Measured applied load and reactions, A-BF-A-5S, 1 in. 
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Figure A.2 Normalized applied load and sum of reactions, A-BF-A-5S, 1 in.  
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Figure A.3 Displacement in the center, A-BF-A-5S, 1 in.  

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0 0.01 0.02 0.03 0.04 0.05 0.06

sec.

st
ra

in
, i

n
./i

n
.

CFRP 4

CFRP 3

CFRP 1

 

Figure A.4 CFRP strain, A-BF-A-5S, 1 in.  
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Figure A.5 Location of strain gages and distribution of strain in CFRP and bars, A-BF-A-5S, 1 in.
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Figure A.6 Measured applied load and reactions, A-BF-A-5S, 3 in.-01 

 

0

10

20

30

40

50

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

sec.

k
ip

Applied load

Sum of reactions

 

Figure A.7 Normalized applied load and sum of reactions, A-BF-A-5S, 3 in.-01 
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Figure A.8 Displacement in the center, A-BF-A-5S, 3 in.-01 
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Figure A.9 CFRP strain, A-BF-A-5S, 3 in.-01 
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Figure A.10 Location of strain gages and distribution of strain in CFRP and bars, A-BF-A-5S, 3 in.-01
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Figure A.11 Measured applied load and reactions, A-BF-A-5S, 3 in.-02 
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Figure A.12 Normalized applied load and sum of reactions, A-BF-A-5S, 3 in.-02 
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Figure A.13 Displacement in the center, A-BF-A-5S, 3 in.-02 
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Figure A.14 CFRP strain, A-BF-A-5S, 3 in.-02 
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Figure A.15 Location of strain gages and distribution of strain in CFRP and bars, A-BF-A-5S, 3 in.-02
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Figure A.16 Measured applied load and reactions, A-BF-U-5S, 1 in. 
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Figure A.17 Normalized applied load and sum of reactions, A-BF-U-5S, 1 in. 
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Figure A.18 Displacement in the center, A-BF-U-5S, 1 in. 
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Figure A.19 CFRP strain, A-BF-U-5S, 1 in. 
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Figure A.20 Location of strain gages and distribution of strain in CFRP and bars, A-BF-U-5S, 1 in. 
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Figure A.21 Measured applied load and reactions, A-BF-U-5S, 1.5 in. 
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Figure A.22 Normalized applied load and sum of reactions, A-BF-U-5S, 1.5 in. 
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Figure A.23 Displacement in the center, A-BF-U-5S, 1.5 in. 
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Figure A.24 CFRP strain, A-BF-U-5S, 1.5 in. 
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Figure A.25 Location of strain gages and distribution of strain in CFRP and bars, A-BF-U-5S, 1.5 in.
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Figure A.26 Measured applied load and reactions, B-BH-A-6S, 3 in. 
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Figure A.27 Normalized applied load and sum of reactions, B-BH-A-6S, 3 in. 
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Figure A.28 Displacement in the center, B-BH-A-6S, 3 in. 
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Figure A.29 CFRP strai , B-BH-A-6S, 3 in. 
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Figure A.30 Location of strain gages and distribution of strain in CFRP and bars, B-BH-A-6S, 3 in.
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Figure A.31 Measured applied load and reactions, A-S-A-6G, 6 in. 

0

10

20

30

40

50

60

70

80

90

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

sec.

k
ip Applied load

Sum of reactions

 

Figure A.32 Normalized applied load and sum of reactions, A-S-A-6G, 6 in. 
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Figure A.33 Displacement in the center, A-S-A-6G, 6 in. 
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Figure A.34 CFRP strain, A-S-A-6G, 6 in. 
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Figure A.35 Location of strain gages and distribution of strain in CFRP and bars, A-S-A-6G, 6 in.
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Figure A.36 Measured applied load and reactions, A-S-AU-2S, 6 in. 
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Figure A.37 Normalized applied load and sum of reactions, A-S-AU-2S, 6 in. 

 363



 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.

sec.

in
.

1

 

Figure A.38 Displacement in the center, A-S-AU-2S, 6 in. 
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Figure A.39 CFRP strain, A-S-AU-2S, 6 in. 
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Figure A.40 Location of strain gages and distribution of strain in CFRP, A-S-AU-2S, 

6 in. 
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Figure A.41 Location of strain gages and distribution of strain in CFRP and bars, C-BC-A-6G-01, 2 in.
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Figure A.42 Measured applied load and reactions, C-BC-A-6G-01, 4.5 in. 
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Figure A.43 Normalized applied load and sum of reactions, C-BC-A-6G-01, 4.5 in. 
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Figure A.44 Displacement in the center, C-BC-A-6G-01, 4.5 in. 
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Figure A.45 CFRP strain, C-BC-A-6G-01, 4.5 in. 
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Figure A.46 Location of strain gages and distribution of strain in CFRP and bars, C-BC-A-6G-01, 4.5 in. 
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Figure A.47 Steel reinforcement strain, C-BC-A-6G-01, 4.5 in. 
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Figure A.48 Location of strain gages and distribution of strain in CFRP and bars, C-BC-A-6G-01, 9 in. 
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Figure A.49 Location of strain gages and distribution of strain in CFRP and bars, C-BC-A-6G-02, 2 in.
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Figure A.50 Measured applied load and reactions, C-BC-A-6G-02, 4.5 in. 
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Figure A.51 Normalized applied load and sum of reactions, C-BC-A-6G-02, 4.5 in. 
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Figure A.52 Displacement in the center, C-BC-A-6G-02, 4.5 in. 
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Figure A.53 CFRP strain, C-BC-A-6G-02, 4.5 in. 

 



 

 

375

 

          

0.0000 0.0002

0.0031
0.0021

0.0036
0.0050

0.0020

0.0000
0.000

0.002

0.004

0.006

0.008

0.010

0.012

-30 -27 -24 -21 -18 -15 -12 -9 -6 -3 0 3 6 9 12 15 18 21 24 27 30in

CFRP strain

 

  

0.0020
0.0028

0.0150

0.00270.0022

0.0000
0.0050
0.0100
0.0150
0.0200
0.0250
0.0300
0.0350
0.0400

-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45in

rebar strain

 

 

Figure A.54 Location of strain gages and distribution of strain in CFRP and bars, C-BC-A-6G-02, 4.5 in. 
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Figure A.55 Steel reinforcement strain, C-BC-A-6G-02, 4.5 in. 
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A.7.3 Drop Height: 9 in. 
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Figure A.56 Location of strain gages and distribution of strain in CFRP and bars, C-BC-A-6G-02, 9 in.
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Figure A.57 Measured applied load and reactions, C-BC-A-6G-02, 12 in.-01 
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Figure A.58 Normalized applied load and sum of reactions, C-BC-A-6G-02, 12 in.-01 
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Figure A.59 Displacement in the center, C-BC-A-6G-02, 12 in.-01 
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Figure A.60 CFRP strain, C-BC-A-6G-02, 12 in.-01 
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Figure A.61 Location of strain gages and distribution of strain in CFRP and bars, C-BC-A-6G-02, 12 in.-01 
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Figure A.62 Steel reinforcement strain, C-BC-A-6G-02, 12 in.-01 
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A.8 C-BC-U-6G 

A.8.1 Drop Height: 2 in. 
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Figure A.63 Location of strain gages and distribution of strain in CFRP and bars, C-BC-U-6G, 2 in. 
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APPENDIX B 

Crack Injection and Installation Procedure of CFRP in 

Reinforced Concrete Columns  

 

B.1 CRACK INJECTION PROCEDURE 

 

 

http://www.us.hilti.com/data/techlib/docs/installation%20instructions/construction%20chemicals/CI060.pdf 
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B.2 CFRP INSTALLATION PROCEDURE 

The installation procedure of CFRP in reinforced concrete columns is as follows. 

 

 1) Drill holes and grind edge of holes for CFRP anchors  

 2) Grind to roughen the concrete surface 

 3) Grind to round the corners 

 4) Clean the holes and surfaces with air compressed 

 5) Prepare epoxy resin 

6) Saturate the concrete surface and holes with the epoxy resin 

7) Saturate CFRP jackets with the epoxy resin and remove excess epoxy 

8) Place the CFRP jackets on the column 

9)  Saturate CFRP anchors with the epoxy resin 

10) Place the CFRP anchors on the column 

11) Cure 

 

 



 

Figure B.2.1 Drill holes for CFRP anchors 

 

 

Figure B.2.2 Grind edge of the holes for CFRP anchors 
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Figure B.2.3 Grind to roughen the concrete surface 

 

 

Figure B.2.4 Grind to round the corners 
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Figure B.2.5 Clean the holes with air compressed 

 

 

Figure B.2.6 Clean the surfaces with air compressed 

 387



 

Figure B.2.7  Prepare epoxy resin 

 

 

Figure B.2.8 Saturate the concrete surface with the epoxy resin  
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Figure B.2.9 Saturate the holes with the epoxy resin 

 

 

Figure B.2.10 Saturate the holes with the epoxy resin 
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Figure B.2.11 Saturate CFRP jackets with the epoxy resin  

 

 

Figure B.2.12 Remove excess epoxy 
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Figure B.2.13 Place the CFRP jackets on the column 

 

 

Figure B.2.14 Place the CFRP jackets on the column 
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Figure B.2.15 Saturate CFRP anchors with the epoxy resin  

 

 

Figure B.2.16 Place the CFRP anchors on the column 
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Figure B.2.17 Place the CFRP anchors on the column 

 

 

Figure B.2.18 Inject epoxy to fill all voids in anchor hole 
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Figure B.2.19 Complete column 

 394
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APPENDIX C 

Additional Experimental Data – Column Tests 

 

In APPENDIX C, additional experimental data of the column test which are not 

shown in CHAPTER 4 is provided.  Data from damaged instruments are removed. 



C.1 1-A-S8-M 

C.1.1 Lateral Displacement VS Lateral Load 
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Figure C.1 Lateral displacement vs lateral load, test as built, 1-A-S8-M 
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Figure C.2 Lateral displacement vs lateral load, test after rehabilitation, 1-A-S8-M 
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C.1.2 Vertical Displacement at 30 in. from Top of the Footing VS Lateral Load 
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Figure C.3 Vertical displacement at 30 in. from top of the footing vs lateral load, 

test as built, 1-A-S8-M 
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Figure C.4 Vertical displacement at 30 in. from top of the footing vs lateral load, 

test after rehabilitation, 1-A-S8-M 
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C.1.3 Steel Reinforcement Strain  

 398

 

Figure C.5 Layout of steel reinforcement strain gages, 1-A-S8-M 
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C.1.3.1 Base Bar Strain 

C.1.3.1.1 Test as Built 
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Figure C.6 Base bar strains, east side, 1-A-S8-M 
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Figure C.7 Base bar strains, west side, 1-A-S8-M 
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C.1.3.1.2 Test after Rehabilitation 
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Figure C.8 Base bar strains, east side, 1-A-S8-M 
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Figure C.9 Base bar stain, west side, 1-A-S8-M 
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C.1.3.2  Column Bar Strain 

C.1.3.2.1 Test as Built 
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Figure C.10 Column bar strains, east side, 1-A-S8-M  
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Figure C.11 Column bar strains, west side, 1-A-S8-M 
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C.1.3.2.2 Test after Rehabilitation 
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Figure C.12 Column bar strains, east side, 1-A-S8-M 
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Figure C.13 Column bar strains, west side, 1-A-S8-M 
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C.1.3.3 Tie Strain 

C.1.3.3.1 Test as Built 
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Figure C.14 Top tie strains, north and south face, 1-A-S8-M 
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Figure C.15 Top tie strains, east and west face, 1-A-S8-M 
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Figure C.16 Bottom tie strains, north and south face, 1-A-S8-M 
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Figure C.17 Bottom tie strains, east face, 1-A-S8-M 
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C.1.3.3.2 Test after Rehabilitation 
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Figure C.18 Top tie strains, north and south face, 1-A-S8-M 
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Figure C.19 Top tie strains, east and west face, 1-A-S8-M 
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Figure C.20 Bottom tie strains, north and south face, 1-A-S8-M 
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Figure C.21 Bottom tie strains, east face, 1-A-S8-M 
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C.1.4 CFRP Strain Gage 
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Figure C.22 Layout of CFRP strain gages, 1-A-S8-M
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Figure C.23 CFRP strains at location of splitting cracking, north-east, 1-A-S8-M 
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Figure C.24 CFRP strains at location of splitting cracking, north-west, 1-A-S8-M 

 

 

 408
 



-40

-30

-20

-10

0

10

20

30

40

-0.001 0 0.001 0.002 0.003 0.004 0.005

Strain, in./in.

Load, kip

E-B

E-T

 

Figure C.25 CFRP strains, east face, 1-A-S8-M 
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Figure C.26 CFRP strains, west face, 1-A-S8-M 
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C.2 2-A-S8-M 

C.2.1 Lateral Displacement VS Lateral Load 
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Figure C.27 Lateral displacement vs lateral load, test as built, 2-A-S8-M 
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Figure C.28 Lateral displacement vs lateral load, test after rehabilitation, 2-A-S8-M 
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C.2.2 Vertical Displacement at 30 in. from Top of the Footing VS Lateral Load 
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Figure C.29 Vertical displacement at 30 in. from top of the footing vs lateral load, 

test as built, 2-A-S8-M 
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Figure C.30 Vertical displacement at 30 in. from top of the footing vs lateral load, 

test after rehabilitation, 2-A-S8-M 
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C.2.3 Steel Reinforcement Strain  
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Figure C.31 Layout of steel reinforcement strain gages, 2-A-S8-M 
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C.2.3.1 Base Bar Strain 

C.2.3.1.1 Test as Built 
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Figure C.32 Base bar strains, east side, 2-A-S8-M 
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Figure C.33 Base bar strains, west side, 2-A-S8-M 
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C.2.3.1.2 Test after Rehabilitation 
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Figure C.34 Base bar strains, east side, 2-A-S8-M 
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Figure C.35 Base bar stain, west side, 2-A-S8-M 
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C.2.3.2  Column Bar Strain 

C.2.3.2.1 Test as Built 
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Figure C.36 Column bar strains, east side, 2-A-S8-M  
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Figure C.37 Column bar strains, west side, 2-A-S8-M 
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C.2.3.2.2 Test after Rehabilitation 
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Figure C.38 Column bar strains, east side, 2-A-S8-M 
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Figure C.39 Column bar strains, west side, 2-A-S8-M 
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C.2.3.3 Tie Strain 

C.2.3.3.1 Test as Built 
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Figure C.40 Top tie strains, north and south face, 2-A-S8-M 
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Figure C.41 Top tie strains, east and west face, 2-A-S8-M 
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Figure C.42 Bottom tie strains, north and south face, 2-A-S8-M 
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Figure C.43 Bottom tie strains, east and west face, 2-A-S8-M 
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C.2.3.3.2 Test after Rehabilitation 
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Figure C.44 Top tie strains, north and south face, 2-A-S8-M 
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Figure C.45 Top tie strains, east and west face, 2-A-S8-M 
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Figure C.46 Bottom tie strains, north and south face, 2-A-S8-M 
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Figure C.47 Bottom tie strains, east and west face, 2-A-S8-M 
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C.2.4 CFRP Strain Gage 
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Figure C.48 Layout of CFRP strain gages, 2-A-S8-M
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Figure C.49 CFRP strains at location of splitting cracking, north-east, 2-A-S8-M 
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Figure C.50 CFRP strains at location of splitting cracking, north-west, 2-A-S8-M 
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Figure C.51 CFRP strains, east face, 2-A-S8-M 
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Figure C.52 CFRP strains, west face, 2-A-S8-M 
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C.3 3-B-S10-M 

C.3.1 Lateral Displacement VS Lateral Load 
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Figure C.53 Lateral displacement vs lateral load, test as built, 3-B-S10-M 
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Figure C.54 Lateral displacement vs lateral load, test after rehabilitation, 3-B-S10-M 
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C.3.2 Vertical Displacement at 30 in. from Top of the Footing VS Lateral Load 
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Figure C.55 Vertical displacement at 30 in. from top of the footing vs lateral load, 

test as built, 3-B-S10-M 
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Figure C.56 Vertical displacement at 30 in. from top of the footing vs lateral load, 

test after rehabilitation, 3-B-S10-M 
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C.3.3 Steel Reinforcement Strain  

10 in. Column bar 
gage, 24 in. 

C-2-WC-2-E 
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Figure C.57 Layout of steel reinforcement strain gages, 3-B-S10-M 
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C.3.3.1 Base Bar Strain 

C.3.3.1.1 Test as Built 
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Figure C.58 Base bar strains, east side, 3-B-S10-M 
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Figure C.59 Base bar strains, west side, 3-B-S10-M 
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C.3.3.1.2 Test after Rehabilitation 
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Figure C.60 Base bar strains, east side, 3-B-S10-M 
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Figure C.61 Base bar stain, west side, 3-B-S10-M 
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C.3.3.2  Column Bar Strain 

C.3.3.2.1 Test as Built 
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Figure C.62 Column bar strains, east side, 3-B-S10-M  
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Figure C.63 Column bar strains, west side, 3-B-S10-M 
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C.3.3.2.2 Test after Rehabilitation 
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Figure C.64 Column bar strains, east side, 3-B-S10-M 
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Figure C.65 Column bar strains, west side, 3-B-S10-M 
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C.3.3.3 Tie Strain 

C.3.3.3.1 Test as Built 
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Figure C.66 Top tie strains, east, 3-B-S10-M 
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Figure C.67 Top tie strains, west, 3-B-S10-M 
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Figure C.68 Bottom tie strains, east, 3-B-S10-M 
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Figure C.69 Bottom tie strains, west, 3-B-S10-M 
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C.3.3.3.2 Test after Rehabilitation 
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Figure C.70 Top tie strains, east, 3-B-S10-M 
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Figure C.71 Top tie strains, west, 3-B-S10-M 
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Figure C.72 Bottom tie strains, east, 3-B-S10-M 
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Figure C.73 Bottom tie strains, west, 3-B-S10-M 
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C.3.4 CFRP Strain Gage 
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Figure C.74 Layout of CFRP strain gages, 3-B-S10-M
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Figure C.75 CFRP strains at location of splitting cracking, north-east, 3-B-S10-M 

 

-50

-40

-30

-20

-10

0

10

20

30

40

50

-0.001 0 0.001 0.002 0.003 0.004 0.005 0.006

Strain, in./in.

Load, kip

NW-B

NW-M

NW-T

 

Figure C.76 CFRP strains at location of splitting cracking, north-west, 3-B-S10-M 
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Figure C.77 CFRP strains, east face, 3-B-S10-M 
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Figure C.78 CFRP strains, west face, 3-B-S10-M 
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C.4 4-C-R20-M 

C.4.1 Lateral Displacement VS Lateral Load 
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Figure C.79 Lateral displacement vs lateral load, test as built, 4-C-R20-M 
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Figure C.80 Lateral displacement vs lateral load, test after rehabilitation, 4-C-R20-M 
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C.4.2 Vertical Displacement at 30 in. from Top of the Footing VS Lateral Load 
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Figure C.81 Vertical displacement at 30 in. from top of the footing vs lateral load, 

test as built, 4-C-R20-M 
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Figure C.82 Vertical displacement at 30 in. from top of the footing vs lateral load, 

test after rehabilitation, 4-C-R20-M 
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C.4.3 Steel Reinforcement Strain  
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Figure C.83 Layout of steel reinforcement strain gages, 4-C-R20-M 
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C.4.3.1 Base Bar Strain 

C.4.3.1.1 Test as Built 
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Figure C.84 Base bar strains, east side, 4-C-R20-M 
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Figure C.85 Base bar strains, west side, 4-C-R20-M 
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C.4.3.1.2 Test after Rehabilitation 
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Figure C.86 Base bar strains, east side, 4-C-R20-M 
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Figure C.87 Base bar stain, west side, 4-C-R20-M 
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C.4.3.2  Column Bar Strain 

C.4.3.2.1 Test as Built 
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Figure C.88 Column bar strains, east side, 4-C-R20-M  

 

-100

-80

-60

-40

-20

0

20

40

60

80

100

-0.006 -0.004 -0.002 0 0.002 0.004 0.006 0.008 0.01 0.012

Strain, in./in.

Load, kip

C-1-W

C-2-W

 

Figure C.89 Column bar strains, west side, 4-C-R20-M 
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C.4.3.2.2 Test after Rehabilitation 
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Figure C.90 Column bar strains, east side, 4-C-R20-M 
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Figure C.91 Column bar strains, west side, 4-C-R20-M 
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C.4.3.3 Tie Strain 

C.4.3.3.1 Test as Built 
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Figure C.92 Top tie strains, east, 4-C-R20-M 
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Figure C.93 Top tie strains, west, 4-C-R20-M 
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Figure C.94 Bottom tie strains, east, 4-C-R20-M 
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Figure C.95 Bottom tie strains, west, 4-C-R20-M 
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C.4.3.3.2 Test after Rehabilitation 
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Figure C.96 Top tie strains, east, 4-C-R20-M 
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Figure C.97 Top tie strains, west, 4-C-R20-M 
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Figure C.98 Bottom tie strains, east, 4-C-R20-M 
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Figure C.99 Bottom tie strains, west, 4-C-R20-M 
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C.5 5-C-R20-C 

C.5.1 Lateral Displacement VS Lateral Load 
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Figure C.100 Lateral displacement vs lateral load, 5-C-R20-C 

C.5.2 Vertical Displacement at 30 in. from Top of the Footing VS Lateral Load 
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Figure C.101 Vertical displacement at 30 in. from top of the footing vs lateral load, 5-

C-R20-C 
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C.5.3 Steel Reinforcement Strain  
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Figure C.102 Layout of steel reinforcement strain gages, 5-C-R20-C 
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C.5.3.1 Base Bar Strain 
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Figure C.103 Base bar strains, east side, 5-C-R20-C 
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Figure C.104 Base bar strains, west side, 5-C-R20-C 
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C.5.3.2  Column Bar Strain 
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Figure C.105 Column bar strains, east side, 5-C-R20-C  
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Figure C.106 Column bar strains, west side, 5-C-R20-C 

 452



C.5.3.3 Tie Strain 
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Figure C.107 Top tie strains, east, 5-C-R20-C 
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Figure C.108 Top tie strains, west, 5-C-R20-C 
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Figure C.109 Bottom tie strains, east, 5-C-R20-C 
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Figure C.110 Bottom tie strains, west, 5-C-R20-C 
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C.5.4 CFRP Strain Gage 
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Figure C.111 Layout of CFRP strain gages, 5-C-R20-C
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Figure C.112 CFRP strains at location of splitting cracking, north-east, 5-C-R20-C 
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Figure C.113 CFRP strains at location of splitting cracking, north-west, 5-C-R20-C 
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Figure C.114 CFRP strains, east face, 5-C-R20-C 
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Figure C.115 CFRP strains, west face, 5-C-R20-C 
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C.6 6-C-R20-C 

C.6.1 Lateral Displacement VS Lateral Load 
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Figure C.116 Lateral displacement vs lateral load, 6-C-R20-C 

C.6.2 Vertical Displacement at 30 in. from Top of the Footing VS Lateral Load 
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Figure C.117 Vertical displacement at 30 in. from top of the footing vs lateral load, 6-

C-R20-C 
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C.6.3 Steel Reinforcement Strain  
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Figure C.118 Layout of steel reinforcement strain gages, 6-C-R20-C 
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C.6.3.1 Base Bar Strain 
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Figure C.119 Base bar strains, east side, 6-C-R20-C 
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Figure C.120 Base bar strains, west side, 6-C-R20-C 
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C.6.3.2  Column Bar Strain 
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Figure C.121 Column bar strains, east side, 6-C-R20-C  
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C.6.3.3 Tie Strain 
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Figure C.122 Top tie strains, east, 6-C-R20-C 
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Figure C.123 Top tie strains, west, 6-C-R20-C 
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Figure C.124 Bottom tie strains, east, 6-C-R20-C 
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Figure C.125 Bottom tie strains, west, 6-C-R20-C 
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C.6.4 CFRP Strain Gage 
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Figure C.126 Layout of CFRP strain gages, 6-C-R20-C, 6-C-R20-C 
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Figure C.127 CFRP strains, east face, 6-C-R20-C 
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Figure C.128 CFRP strains, west face, 6-C-R20-C 
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APPENDIX D 

Construction of Specimens 

 

D.1 BEAM TEST 
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D.2 COLUMN TEST 
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