
 

 

 

 

 

 

 

 

 

 

 

 

Copyright  

by 

David Barra Birrcher 

2009 

 

 

 

 

 

  



 

 

The Dissertation Committee for David Barra Birrcher certifies that this is the approved 
version of the following dissertation: 

 

 

 

 

 

DESIGN OF REINFORCED CONCRETE DEEP BEAMS FOR STRENGTH AND 

SERVICEABILITY  

 

 

 

 

 

 

 

 

 Committee: 

 

 ____________________________________ 
 Oguzhan Bayrak, Supervisor 
 
 ____________________________________ 
 Sharon L. Wood 
 
 ____________________________________ 
 James O. Jirsa 
 
 ____________________________________ 
 John E. Breen 
 
 ____________________________________ 
 Ofodike A. Ezekoye 
 



 

 

 

 

DESIGN OF REINFORCED CONCRETE DEEP BEAMS FOR STRENGTH AND 

SERVICEABILITY  

 

by 

 

David Barra Birrcher, B.S., M.S. 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of 

The University of Texas at Austin 

in Partial Fulfillment 

of the Requirements 

for the Degree of 

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

May 2009  



iv 

 

Acknowledgements 

I am very grateful for the generous support of the Texas Department of 

Transportation.  Specifically, I would like to thank Dean Van Landuyt (TxDOT Project 

Director) and John Vogel (TxDOT Project Advisor) for their guidance, suggestions, and 

expertise throughout the course of Project 5253.   

To Dr. Bayrak, your passion for structural engineering has been an inspiration to 

me.  I cannot thank you enough for the countless impromptu sit-downs, late-night phone 

conversations, and technical brainstorming sessions over the years.  I am a better 

engineer having been exposed to your technical and practical structural engineering 

expertise.  I would also like to thank the rest of my committee, Dr. Wood, Dr. Jirsa, Dr. 

Breen, and Dr. Ezekoye, for your advice and tutelage throughout my pursuit of a Ph.D. 

I am extremely grateful to my fellow beam buster Robin Tuchscherer.  Your 

efficiency and productive nature allowed us to achieve as much as we did in this project.  

Your personality and character made working with you a delight.  I really appreciate your 

help and friendship.  To Matt Huizinga, thank you your groundbreaking efforts in Project 

5253.  When I refer to you as our “fullback,” I do it with great appreciation and respect.   

The completion of Project 5253 would not have been possible without the 

assistance of numerous individuals in the Ferguson Structural Engineering Laboratory.  

Many thanks go to Mike McCarthy, Gary Lehman, Thomas Stablon, Brian Schnittker, 

Erin O’Malley, Patrick Harkin, James Kleineck, James Plantes, Ryan Kalina, and David 

Wald.  Also, I really appreciate the advice and friendship of InSung Kim, Dean 

Deschenes, and Mike Brown.  Nothing in the lab would get done without the help of 

Blake Stassney, Dennis Fillip, Andrew Valentine, Eric Schell, Mike Wason, Jessica 

Hanten, and Barbara Howard.  Thank you for your unsung contributions. 

To my parents, thank you for your commitment to my education and for making 

me the person that I am today.  I am forever indebted to you both.  To Christine and 

Wesley, thank you for your unconditional support.  And to Heather, Calvin, and Jane, 

your love and encouragement made this possible.      



v 
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Several reinforced concrete bent caps (deep beams) in Texas have developed 

significant diagonal cracks in service.  The cracking in two bent caps was so extensive 

that costly retrofits were implemented to strengthen the structures.  Strut-and-tie 

modeling is currently recommended in most U.S. design specifications for the design of 

reinforced concrete bent caps and deep beams.  Designers have expressed concerns with 

the lack of clarity and serviceability-related considerations in strut-and-tie model design 

provisions.   

Due to concerns with strut-and-tie modeling design provisions and field problems 

of in-service bent caps, TxDOT Project 5253 was funded.  Several tasks conducted 

within Project 5253 are addressed in this dissertation.  The effects of minimum web 

reinforcement and member depth on the strength and serviceability behavior of deep 

beams are presented.  The transition between deep beam shear capacity and sectional 

shear capacity near a shear-span-to-depth (a/d) ratio of 2 is addressed.  A service-load 

shear check to limit diagonal cracking in service is outlined.  Lastly, a simple chart that 

correlates the maximum width of diagonal cracks in a deep beam to its residual capacity 

is developed.   

To accomplish the objectives of Project 5253, thirty-seven tests were conducted 

on reinforced concrete beams with the following cross-sectional dimensions: 21”x23”, 

21”x42”, 21”x44”, 21”x75”, and 36”x48.”  The specimens were loaded with a/d ratios of 
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1.2, 1.85, and 2.5.  The test specimens are among the largest reinforced concrete deep 

beams in the literature.    

To supplement the findings of the experimental program, a database of deep beam 

test results was compiled.  Entries in the database that lacked sufficient information and 

that did not meet established cross-sectional size or web reinforcement criteria were 

filtered from the database.  The use of the database in conjunction with the experimental 

program enabled each objective to be addressed from both broad and specific viewpoints.   

Several recommendations for improving the strength and serviceability design of 

deep beams are presented including a minimum web reinforcement requirement, 

provisions to ease the transition between calculated deep beam and sectional shear 

capacity, and a design check to limit diagonal cracking in service.   
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CHAPTER 1 
Introduction 

 

1.1 OVERVIEW 

A reinforced concrete member in which the total span or shear span is 

exceptionally small in relation to its depth is called a deep beam.  Some examples of deep 

beams include bridge bent caps, transfer girders, and pile caps.  In Texas, several 

reinforced concrete bent caps have developed significant diagonal cracks in service.  The 

cracking was so extensive in two cases that costly retrofits were implemented to 

strengthen the structures (Section 2.2).  The Texas Department of Transportation was 

interested in determining the cause of the cracking, in developing methods to quantify 

distress in reinforced concrete bent caps, and in refining strength and serviceability 

design provisions for reinforced concrete bent caps and other deep beams.   

Historically, reinforced concrete deep beams were designed with empirical 

methods or simple approximations.  Within the last decade, strut-and-tie modeling has 

become the preferred method for designing deep beams in U.S. design specifications, 

such as the Bridge Design Specifications of the American Association of State and 

Highway Transportation Officials (AASHTO LRFD, 2008) and the Building Code 

Requirements for Structural Concrete of the American Concrete Institute (ACI 318-08).  

Designers have expressed concern with the freedom associated with the strut-and-tie 

method, with overly conservative estimates of strength calculated using strut-and-tie 

models (STMs), with the lack of serviceability-related considerations in the strut-and-tie 

method, and with overall inconsistencies between STM provisions in different codes.   

The field problems of bridge bent caps and the concerns associated with using 

strut-and-tie model provisions for bent cap design were the primary reasons that TxDOT 

funded Project 5253.  Eight objectives related to these concerns were addressed within 

this project (Section 1.2).   
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To accomplish the eight objectives of this study, an extensive experimental 

program was conducted.  Thirty-seven (37) tests on reinforced concrete beams were 

performed in the Phil M. Ferguson Structural Engineering Laboratory at the University of 

Texas at Austin.  To meet the objectives of this study and to best improve the design and 

performance of actual bent caps, it was necessary to test specimens that were of 

comparable size to typical bent caps in Texas.  The specimens tested within TxDOT 

Project 5253 are among the largest deep beams ever reported in the literature.   

To supplement the experimental program, a database of deep beam test results 

was compiled from the available literature.  The database was an expansion of a database 

originally compiled by Brown et al. (2006).  The total number of deep beam test results 

(shear-span-to-depth ratio (a/d) ≤ 2.5) in the database is 905 (including 37 tests from the 

Project 5253 experimental program).  Entries in the database that lacked sufficient 

information to perform a strut-and-tie analysis and that did not meet established cross-

sectional size or web reinforcement criteria were filtered from the database (Section 2.4).  

The use of the database in conjunction with the Project 5253 experimental program 

enabled each objective to be addressed from both broad and specific viewpoints.   

1.2 PROJECT OBJECTIVES AND SCOPE 

The eight tasks addressed in TxDOT Project 5253 are: 

(1). Determine the influence of the distribution of stirrups across the width of a 

beam web on the strength and serviceability behavior of a deep beam. 

(2). Determine the influence of singular nodes triaxially confined by concrete 

on the strength and serviceability behavior of a deep beam. 

(3). Determine an appropriate amount of minimum web reinforcement 

(stirrups and longitudinal side face reinforcement) considering the strength 

and serviceability demand of a deep beam. 

(4). Determine the influence of member depth on the strength and 

serviceability behavior of a deep beam. 
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(5). Develop a simple STM design methodology, including node proportioning 

techniques, allowable stresses, and applicable design checks, for the 

design of deep beams. 

(6). Develop a means to reduce the discrepancy between shear strength 

calculated using STM and sectional shear provisions at an a/d ratio of 2. 

(7). Develop a means to mitigate the formation of diagonal cracks under 

service loads. 

(8). Develop a means to relate the maximum diagonal crack width of a deep 

beam to its residual capacity for field assessment of diagonally-cracked 

bent caps. 

In this dissertation, the results of five of the eight tasks are presented in detail.  

Minimum web reinforcement requirements and the influence of member depth on deep 

beams are evaluated (Tasks 3 and 4).  In addition, the tasks of reducing the discrepancy 

between shear strength calculated using STM and sectional shear provisions near an a/d 

ratio of 2, of limiting diagonal cracking under service loads, and of correlating maximum 

diagonal crack width to the residual capacity of a deep beam are addressed as well (Tasks 

6, 7, and 8).  The results of the other tasks (1, 2, and 5) are presented by Tuchscherer 

(2008).  Since the proposed STM design provisions (Task 5) are used to calculate deep 

beam capacity throughout this dissertation, they are presented and compared to those in 

AASHTO LRFD (2008) and ACI 318-08 Appendix A in Section 2.3.4. 

1.3 ORGANIZATION 

Three topics are addressed in Chapter 2.  Details of several bent caps that 

developed diagonal cracks in service and of the filtering of the deep beam database is 

presented.  In addition, background information on strut-and-tie modeling including a 

comparison of the STM design provisions of AASHTO LRFD (2008), ACI 318-08, and 

Project 5253 is provided.  In Chapter 3, the experimental program including the design, 

fabrication, and testing of the specimens is described.  Experimental test results detailing 

the effect of minimum web reinforcement and of member depth on the strength and 
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serviceability of deep beams are discussed with appropriate design recommendations in 

Chapter 4.  In Chapter 5, the results of the remaining three tasks are provided.  Design 

provisions that reduce the difference in shear capacity calculated with STM and sectional 

shear provisions at the transition between deep beam and slender beam behavior (a/d = 2) 

are presented in Section 5.2.  A service load design check is outlined to limit the 

formation of diagonal cracks in service in Section 5.3.  Lastly, a simple means of relating 

the maximum diagonal crack width in a deep beam to its capacity is detailed in Section 

5.4.  The conclusions for each task addressed within this dissertation are summarized in 

Chapter 6.  An example problem prepared by Tuchscherer (2008) is included in 

Appendix A to illustrate several of the deep beam design recommendations proposed 

within Project 5253.  In Appendix B, the beam details of the specimens in the evaluation 

database are listed.  In Appendix C, diagonal crack width data from all of the specimens 

tested within Project 5253 are presented.   
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CHAPTER 2 
Background Information 

 

2.1 OVERVIEW 

In this chapter, three topics are addressed.  First, several cases of diagonally-

cracked bent caps in service are presented.  The costly retrofits of two structures with 

extensive diagonal cracking were one of the major incentives to fund the current project.  

Next, background information on deep beam behavior and strut-and-tie modeling is 

provided.  The purpose of this section is to introduce strut-and-tie modeling concepts and 

design provisions that are used throughout this dissertation.  Lastly, a description of a 

database of deep beam test results is discussed.  This database was used in conjunction 

with the data obtained in the experimental program to address the objectives of TxDOT 

Project 5253.     

2.2 FIELD PROBLEMS 

Diagonal cracks have been observed in several reinforced concrete bent caps in 

service throughout the state of Texas.  While flexural cracking is expected in reinforced 

concrete members, diagonal cracking is less desirable.  It is necessary to limit crack 

widths for aesthetic and durability considerations.  More importantly, extensive diagonal 

cracking may indicate that the member is structurally inadequate.  Providing insight into 

the cause of the cracking, considering both strength and serviceability deficiencies, was 

one of the overall goals of this study.   

The diagonally-cracked bent caps of two structures are presented in Figure 2.1 

and Figure 2.2.  A bent cap supporting a two-lane elevated roadway bridge over the Little 

Brazos River near Hearne, Texas on FM 485 is illustrated in Figure 2.1.  Several of the 

numerous bent caps in this structure had diagonal cracks extending from the exterior 

girder supports to the exterior columns of the bent cap.  In general, the maximum width 
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of the diagonal cracks was small (≤ 0.016 in.).  In Figure 2.2, a bent cap supporting an 

elevated portion of the Dallas Area Rapid Transit (DART) rail line is shown.  Several 

hammerhead bent caps in this structure exhibited parallel, diagonal cracks extending from 

the girder supports towards the bent cap column.  The maximum width of the cracks in 

this structure was also small in general (≤ 0.016 in.).  To the knowledge of the author, no 

retrofits were required for either structure.     

 

 
Figure 2.1: Diagonal cracks in bent cap of bridge over Little Brazos River 

Three Column Bent Cap
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Figure 2.2: Diagonal cracks in bent caps of an elevated roadway for DART 

In two other cases, costly retrofits were implemented to increase the strength of 

bent caps with extensive diagonal cracking.  A large, straddle bent cap supporting I-345 

(extension of US 75) in downtown Dallas, Texas had parallel, diagonal cracks extending 

from the column to the pot bearing of a haunched, steel plate girder (Figure 2.3).  The 

maximum width of the cracks in the 10 ft. deep member was approximately 0.035 in.  

Due to the width of the cracks, the beam was strengthened with external post-tensioning 

as shown in Figure 2.4.  The post-tensioning introduced compression into the member 

and provided an uplift force at the bottom of the member beneath the bearing for the plate 

girder.  The total cost of the retrofit was approximately $200,000. 

Hammerhead 
Bent Cap
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Figure 2.3: Diagonal cracks in I-345 straddle bent in Dallas, Texas 

 

 
Figure 2.4: Post-tensioning retrofit of I-345 bent cap  
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All of the bent caps in a wide overpass of I-45 across Greens Road in Houston, 

Texas experienced extensive diagonal cracking in service.  The overpass contained two- 

and three-column haunched, bent caps supporting steel, trapezoidal box girders.  The 

widespread cracking in one of the three-column bent caps is illustrated in Figure 2.5.  

Due to the large width (approximately 0.035 in.) and extensive nature of the cracking, all 

of the bent caps in the overpass were strengthened.  Reinforced concrete walls were cast 

beneath the bent caps to distribute the loads from the overpass directly to drilled shafts 

beneath the columns without beam action (Figure 2.6).  Care was taken to ensure a 

positive connection between the underside of the bent cap and the newly-cast wall.  The 

diagonal cracks were also injected with epoxy.  The cost of retrofitting all of the bent 

caps in this overpass was approximately $300,000. 

 

 
Figure 2.5: Diagonal cracks in I-45 bent cap in Houston, Texas 
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Figure 2.6: Bearing wall retrofit of I-45 bent cap 

The aforementioned cases of diagonally-cracked bent caps in service were one of 

the reasons for the funding of this project (TxDOT Project 5253).  Insight into the cause 

of cracking – whether it was the result of strength or serviceability deficiencies, or a 

combination of both – was desired by TxDOT engineers.  Furthermore, improved design 

provisions for reinforced concrete bent caps to prevent this problem from reoccurring in 

the future were sought after. 

 

2.3 STRUT-AND-TIE MODELING FOR DEEP BEAMS 

2.3.1 What is a Deep Beam? 

Deep beams are defined by MacGregor (1997) as follows: 

…a beam in which a significant amount of load is carried to the supports by a 

compression thrust joining the load and the reaction.  This occurs if a 

concentrated load acts closer than about 2d to the support, or for uniformly 

loaded beams with a span-to-depth ratio, ln/d, less than about 4 to 5. 

where, 
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d is the depth of the member 

ln is the total span of the member 

a is the distance between a concentrated load and the reaction 

 

Thus, a deep beam is characterized by the ratio of the loading arm (centerline 

distance between the load and the reaction (a)) or total span (ln) to the depth of the 

member (d).  The basis for this definition is that within a distance of ‘d’ from a 

disturbance such as a concentrated load or support, the strain distribution in the member 

is nonlinear (St. Venant’s principle, Schlaich et al., 1987).  Plane sections do not remain 

plane.  Regions of nonlinear strain distribution along the height of the cross-section are 

called D-regions where ‘D’ stands for discontinuity or disturbed.  Regions of linear strain 

distribution are called B-regions where ‘B’ stands for Bernoulli or beam.  The B- and D-

regions of an asymmetrically-loaded beam are shown in Figure 2.7 with the principle 

strain trajectories.  

 
Figure 2.7: Strain distribution in deep and slender portion of a beam 

In Figure 2.7, the portion of the beam to the right of the concentrated load is 

comprised entirely of D-regions and meets the deep beam definition given by MacGregor 

(1997).  Since section-based approaches are not valid where plane sections do not remain 

plane, this region would be designed with empirical models, past experience, nonlinear 

d

d d3d

P

0.71P0.29P

Deep Beam Behavior Slender Beam Behavior

dd
D-regionD-regionD-regionB-regionD-region

principal compressive strain trajectory

principal tensile strain trajectory

a
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analyses, or most recently, by using strut-and-tie models.  The portion of the beam to the 

left of the concentrated load would be categorized by slender beam behavior and would 

be designed with section-based models.  The D-regions to the left of the applied load and 

at the left support could be designed with strut-and-tie models.  However, this portion of 

the member is generally controlled by flexure with low levels of shear.  As a result, only 

stresses at the bearing locations would be checked in conjunction with sectional design.      

As in the definition by MacGregor (1997), a deep beam is often categorized by 

the ratio of the shear span or loading arm for a concentrated load (‘a’ in Figure 2.7) to the 

effective member depth ‘d.’  In AASHTO LRFD 2008 and ACI 318-08, beams or 

components are considered deep when the shear-span-to-depth ratio (a/d ratio) is less 

than or equal to 2.  Some researchers suggest that deep beam behavior can exist to an a/d 

ratio of 2.5 (Kani et al., 1979).  Throughout this dissertation reinforced concrete deep 

beam behavior will be defined by the a/d ratio.  The effect of a/d ratio on the behavior of 

deep beams is addressed specifically in Section 5.2.2.     

Examples of deep beams in practice include bent caps, pile caps, transfer girders, 

and some walls, among others. 

2.3.2 Overview of Strut-and-Tie Modeling 

Strut-and-tie modeling is a design procedure for structural concrete that replaces 

complex states of stress with simple, uniaxial stress paths (Schlaich et al., 1987).  The 

flow of forces through a structure is modeled with a collection of compression elements 

(struts) and tension elements (ties).  The intersection of struts and ties are called nodes.  

The collection of struts, ties, and nodes is considered to be a strut-and-tie model (STM).   

Strut-and-tie modeling is based on the lower bound theory of plasticity.  The 

theory states that if equilibrium and yield conditions are satisfied, a lower bound estimate 

of capacity is obtained (Nielson, 1998).  External equilibrium and equilibrium at each 

node in a STM is satisfied with statics and an acceptable arrangement of struts and ties, 

respectively.  The yield condition of each strut, tie, and face of a node are satisfied with 

the comparison of allowable and applied stresses.  Allowable stresses for each element of 
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a STM (struts, ties, and each face of a node) are obtained from empirical relationships 

presented in design specifications.  The applied stresses on each element are calculated 

from the internal forces in the STM and assumed dimensions of the elements that are 

proportioned using accepted guidelines.  Compatibility constraints are not directly 

considered in strut-and-tie modeling since they are not required in the lower bound theory 

of plasticity and since complicated nonlinear strain distributions generally exist.   

One of the primary advantages of strut-and-tie modeling is its widespread 

applicability.  In theory, any structural concrete member can be represented by a truss 

model of compression and tension elements and designed with strut-and-tie modeling 

principles.  However, in cases where flexural theory and section-based design approaches 

are valid, the use of strut-and-tie modeling is generally too complicated.  It is most useful 

for applications where complicated states of stress exist such as deep beams, corbels, 

dapped-ends, post-tensioned anchorage zones, or other structural components with 

loading or geometric discontinuities.  Some examples of structures with D-regions are 

provided in Figure 2.8. 

 
Figure 2.8: Examples of D-regions in several structures 

(a) Bent Cap (b) Pile Cap (c) Transfer Beam

(e) Dapped-end 

(f) Corbel 
(d) Moment-

opening Corner 
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Another advantage of strut-and-tie modeling is its inherent conservatism.  In 

theory, conservatism is guaranteed through the fulfillment of equilibrium and yield 

constraints according to the lower bound theory of plasticity.  However, there are a few 

additional requirements.  It is assumed that there is enough deformation (or plastic-

redistribution) capacity such that the forces in the actual structure can be distributed 

according to the assumed model.  Wide cracks may develop as a result of the plastic 

redistribution of forces since compatibility constraints are not considered within the 

design procedure.  Potential compatibility problems are avoided with empirical 

guidelines such as limits on angles between struts and ties and minimum reinforcement 

requirements.  In addition, the elements of the STM can be aligned according to the 

elastic stress distribution as recommended by Schlaich et al. (1987).  Detailing 

requirements must also be met for a conservative solution.  Sufficient anchorage for tie 

reinforcement and adequate transverse tensile capacity of compressive struts are required 

to develop the full design strength of these elements.   

Two STMs for the beam depicted in Figure 2.7 are provided in Figure 2.9.  In 

both examples, the portions of the model to the left of the applied load are identical.  As 

noted previously, this portion of the beam would be designed with section-based 

methods.  However, for illustrative purposes, it is interesting to note that the elements of 

the STM in the slender portion of the beam match well with the known stress distribution.  

That is, a compression chord exists along the top of the member and a tension chord 

exists on the bottom.  Vertical ties or stirrups resist the shear in the span.  Two different 

models are shown to the right of the applied load.  The first model is a called a single- or 

one-panel model; the second is called a multiple- or two-panel model.   Either model (or 

a combination of the two) is acceptable provided that equilibrium and yield conditions 

are met.  The choice of the model is left to the designer.  To avoid compatibility problems 

and for efficiency, it is good practice for the STM to agree well with the dominant 

mechanism of force transfer in the structure.  For structural components in which the 

dominant transfer mechanism is unknown, it may be beneficial to perform a linear finite 

element analysis, to research experimental test results, or to provide redundancy by 



 15

overlapping several STMs.  Using overlapping strut-and-tie models is a technique to 

provide redundancy to the structure by enabling multiple force paths for the applied 

loads.  However, it is necessary to check stresses in defined nodal regions from the total 

applied load.  The choice between single- and two-panel models for deep beams is 

addressed specifically in Section 5.2.2 of this dissertation. 

 
Figure 2.9: One- and two-panel STM for deep beam 

It is important to note that the diagonal struts in the deep beam STMs in Figure 

2.9 were not modeled as bottle-shaped struts for simplicity.  Bottle-shaped struts are 

defined and discussed in Section 2.3.3.2 of this chapter.   

Additional background information on strut-and-tie modeling can be found in 

several references (Schlaich et al., 1987, Bergmeister et al., 1993, Collins and Mitchell, 

1997, and fib, 1999).  
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2.3.3 Elements of Strut-and-Tie Modeling 

2.3.3.1 Nodes  

A node is labeled by the number of struts and ties framing into it.  For instance, if 

three compression struts frame into one node, that node is labeled a CCC node (‘C’ for 

compression).  If two compression struts and one tension tie frame into a node, that node 

is labeled a CCT node (‘T’ for tension).  The same is true for CTT and TTT nodes.  If 

more than three elements frame into a node at different angles, similar elements can be 

combined into one, acting at the resultant angle.  Examples of CCC, CCT, and CTT 

nodes are provided in Figure 2.10.  A node generally has three in-plane faces that have 

individual capacities: the bearing face, the vertical back face, and the node-to-strut 

interface.  A CCT node is enlarged in Figure 2.11.   

 

 
Figure 2.10: Most common node types in STM 
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Figure 2.11: Faces of sample CCT node 

Proportioning the dimensions of nodes is an important step in strut-and-tie 

modeling.  Defining the geometry of the nodal regions is required to calculate stresses on 

each nodal face that are later compared to allowable design stresses.  Also, nodal 

geometry must be consistent with the placement of tie reinforcement and is used to 

determine the width of the struts that frame into the node.  There are two techniques for 

proportioning nodes that have been established by previous researchers and code 

committees.  The use of each technique results in hydrostatic or non-hydrostatic nodes.  

In both cases, nodal geometry is an approximation of regions in the strut-and-tie model 

where struts and ties are equilibrated.   

If a node is proportioned such that equal stresses exist on all in-plane faces of the 

node, then it is considered a hydrostatic node.  The area of each face is directly 

proportional to the magnitude of the applied force on that face.  Shear is not present in the 

node if the principal stresses (σ1 and σ2 in Figure 2.12) are equal.  If a node is 

proportioned such that the principal stresses are not equal, then it is considered a non-

hydrostatic node.  Shear is present in non-hydrostatic nodes due to the difference in 

principal stresses.  The difference in stress conditions between a hydrostatic and non-

hydrostatic node is shown in Figure 2.12.    
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Figure 2.12: Hydrostatic and non-hydrostatic nodes (Thompson, 2002) 

 

A hydrostatic node is proportioned based on the bearing or vertical back face 

dimension of the node (w1 or w2 in Figure 2.12).  With this dimension, the out-of-plane 

width of the node, and the applied force on that face, the stress on the face can be 

calculated.  The other dimensions of the node are proportioned so that the same stress 

exists with their respective applied forces.  It is left to the designer to choose which face 

of the node, bearing or back face, to base the other dimensions on.  Typically, the bearing 

dimension is pre-determined by a standard plate size or fixed column dimension.  As 

such, the bearing dimension is often used to proportion the other nodal dimensions.  In 

hydrostatic nodes, the line connecting the edge of the bearing face to the back face is 

perpendicular to the axis of the compression strut.   
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The absence of shear in the node is the primary advantage of using hydrostatic 

nodes.  The primary disadvantage is the difficulty of satisfying hydrostatic nodal 

principles as the strut angle increases.  The sizes of hydrostatic nodes for a single-panel 

STM with three different a/h ratios and with two different bearing plate sizes are 

provided in Figure 2.13 (‘h’ is the height of the member).  As the angle of a strut with 

respect to a tie decreases (or the a/h ratio increases), the horizontal component of the strut 

becomes much larger than the vertical component.  As such, the vertical back face 

dimension must increase with respect to the bearing face dimension.  For the nodes to be 

hydrostatic, equal stresses must exist on all three faces of the node and the axis of the 

strut must be perpendicular to a line connecting the bearing and back face.  This 

requirement causes hydrostatic nodes to enlarge to impractical sizes with increasing a/h 

ratio.  The corresponding placement of longitudinal reinforcement becomes impractical 

as well.  As the a/h ratio approaches 2, it may be impossible to satisfy hydrostatic nodal 

requirements with a pre-determined bearing plate size as seen in Figure 2.13.  The effect 

of increasing the bearing plate length is seen in Figure 2.13 by moving left to right. 

 
Figure 2.13: Examples of hydrostatic nodes 
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A non-hydrostatic node is proportioned differently.  The dimensions of the 

vertical back face and bearing face are determined independently of each other.  The size 

of the bearing face is often pre-determined by plate size or fixed column size as in the 

case of hydrostatic nodes.  The back face of non-hydrostatic nodes, however, is 

proportioned by considering the origin of the applied stress.  In the case of CCC nodes, 

the back face dimension can be taken as the effective depth of the compression block 

(β1c) as determined by a flexural analysis.  If a flexural analysis is not applicable, another 

reasonable assumption that approximates the stress condition on the back face of the node 

should be made.  In the case of CCT or CTT nodes, the back face dimension can be taken 

as twice the distance from the centroid of the longitudinal reinforcement to the extreme 

tension fiber of the beam.  The purpose of these proportioning techniques is for the 

assumed nodal geometry to more closely match the actual stress concentrations on these 

nodal faces.  There is no requirement for equal stresses on all faces of the node.  Schlaich 

et al. (1987) recommends limiting the ratio of the largest dimension to the smallest 

dimension of the node to 2 to limit shear stresses.  While a limit such as this may be 

necessary, it is hard to justify a number considering the dimensions of nodal faces are 

idealizations of highly stressed regions in the member.  Regardless, entirely preventing 

shear stresses in concrete nodal regions as with hydrostatic nodes seems unnecessary due 

to the ability of concrete to resist shear stresses.    

The STMs in Figure 2.13 can be reproduced using non-hydrostatic nodes, but 

assumptions are required to proportion the nodal regions.  Since the back face dimensions 

of the nodes are based on the specific stress conditions in the member, an array of 

possibilities exist for these general cases.  However, it is possible to imagine that the 

sizes of non-hydrostatic nodes will not increase with increasing a/h ratio to such an extent 

as with hydrostatic nodes unless the stress conditions in the member justify it.  Based on 

the direct correlation between nodal geometry and stress conditions in the member, non-

hydrostatic nodes are preferred in design.   
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Very little guidance is given in AASHTO LRFD (2008) regarding the 

proportioning of the nodal regions.  In the commentary of Section 5.6.3.2, it states the 

following:  

Establishing the geometry of the truss involves trial and error in which 

member sizes are assumed, the truss geometry is established, member forces 

are determined, and the assumed member sizes are verified (AASHTO LRFD 

(2008). 

This statement seems to encourage the use of hydrostatic nodes because the sizes of the 

members (and nodes) are checked with the member forces.  However, it is not very clear.  

A few drawings are included in AASHTO LRFD (2008) with nodal geometry that 

appears to be dimensioned hydrostatically, yet there is no mention of hydrostatic nodes.  

As such, proportioning the nodal regions using the STM provisions of AASHTO LRFD 

(2008) is largely left to the discretion of the designer.  In ACI 318-08 Appendix A, more 

information on nodal regions is provided.  Hydrostatic nodes are defined and illustrated 

well.  Their use is encouraged throughout the STM provisions.  However, non-

hydrostatic nodes are also detailed in several figures of CCT nodes and are referenced 

indirectly.  It appears that the use of hydrostatic nodes is preferred, yet the use of non-

hydrostatic nodes is permitted.  There are no guidelines for proportioning CCC nodes and 

little emphasis is placed on proportioning nodal regions to match stress conditions in the 

member.  Since allowable stresses are applied to the dimensions of nodal faces to 

calculate the capacity of a given face, having consistent proportioning techniques is 

necessary.  In this dissertation, non-hydrostatic nodes are used with the proportioning 

techniques described in Figure 2.14 through Figure 2.16.     

An example of calculated nodal geometry for the CCC node from the single-panel 

STM in Figure 2.9 is provided in Figure 2.14.  The vertical back face dimension was 

calculated using Equation 2.1 as the depth of the effective compression block in flexure.  

The limiting strain in the concrete was set at 0.003, and the strain in the compression steel 

was consistent with the strain profile.  While flexural assumptions are not valid for 

structural components in D-regions, this assumption is conservative and should be 
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reasonably accurate for a deep beam with an a/d ratio approaching 2.  The width of the 

strut-to-node interface (ws) is calculated according to Equation 2.2.  It is based on the 

bearing face dimension, the vertical back face dimension, and the strut angle, θ.  In this 

example, only 71% of the applied load is flowing to the near support, so only 71% of the 

bearing plate is used to determine the dimensions of the CCC node.   

 

 
Figure 2.14: Non-hydrostatic proportions of CCC node 
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 θβθ cossin71.0 1 ⋅+⋅= clw bs  (2.2) 

where, 

lb = length of bearing plate, in. 

θ = angle of strut with respect to horizontal axis, deg. 

β1c = height of vertical back face, effective depth of compression block, in. 

 

The calculated nodal geometry for the CCT node from the single-panel STM in 

Figure 2.9 is provided in Figure 2.15.  The full length of the bearing plate, lb, is used for 

this node.  Equation 2.3 is used to calculate the width of the strut-to-node interface.  It is 

identical to Equation 2.2 with the exception of the 0.71 factor and the dimension of the 

vertical back face, wt.  The dimension of the vertical back face is taken as twice the 

distance from the centroid of the longitudinal reinforcement to the extreme tension fiber. 

 

 θθ cossin ⋅+⋅= tbs wlw  (2.3) 

where, 

lb = length of bearing plate, in. 

θ = angle of strut with respect to horizontal axis, deg. 

wt = height of vertical back face, twice the distance from centroid of 

reinforcement to extreme tension fiber, in. 
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Figure 2.15: Non-hydrostatic proportions of CCT node 

The calculated nodal geometry for the CTT node from the multiple-panel STM in 

Figure 2.9 is provided in Figure 2.16.  It is difficult to determine the length of a CTT 

node (la) because there is not a discrete boundary created by a bearing plate.  It is 

proposed by Wight and Parra-Montesinos (2003) that the length of the CTT node be 

determined by the number of stirrups that are within 25 deg. with respect to the vertical 

of adjacent struts.  Schlaich et al. (1987) refers to these types of nodes as smeared in that 

the forces in the node are “smeared (or spread) over some length.”  Due to the unclear 

boundaries of smeared nodes, Schlaich et al. (1987) states that “a check of concrete 

stresses in smeared nodes is unnecessary.”  Exceptions to this statement may exist for 

CTT nodes near reentrant corners or voids since the available concrete in the node is 

limited (fib, 1999).  In all cases, the capacity and anchorage of the tie should be checked. 
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Figure 2.16: Non-hydrostatic proportions of CTT nodes 

2.3.3.2 Struts 

Struts are generally categorized as prismatic or bottle-shaped.  Prismatic struts 

have a constant width along their entire length.  Typical examples of prismatic struts are a 

compression chord for a beam in bending in which strut spreading is restricted by the 

neutral axis and a prismatic column uniformly loaded across the entire cross-section.  

Bottle-shaped struts are wider at midlength than at their ends.  They form where there is 

additional concrete along the length of the strut for compressive stresses to spread 

laterally.  Bottle-shaped struts are much more common than prismatic struts since defined 

nodal areas are often smaller than the available space near the midheight of a strut.     

Transverse tensile stresses are created due to the spreading of compressive 

stresses in a bottle-shaped strut (Figure 2.17).  To offset the transverse tension, tensile 

strength of concrete or tensile reinforcement is required.  In general, it is not acceptable 

to rely on tensile strength of concrete.  As such, it is important to provide enough 

reinforcement in the strut to resist transverse tensile stresses so that the strut can reach its 
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4.3.1 on minimum web reinforcement.  Alternatively, bottle-shaped struts can be 

modeled to account for transverse tension as shown in Figure 2.17 and proportioned with 

reinforcement accordingly.   

 
Figure 2.17: Longitudinal cracking and STM of bottle-shaped struts 

Struts are proportioned based on the dimensions of the nodal regions at the end of 

the strut.  In the case of a bottle-shaped strut, the compressive stress in the strut is greatest 

at one of the node-to-strut interfaces because the width is smallest there.  In the case of a 

prismatic strut, the stress is uniform along its length.  Thus, the stress conditions in a strut 

are most critical at the node-to-strut interface (provided that enough transverse 

reinforcement exists to avoid strut splitting).    

2.3.3.3 Ties 

Ties are reinforcement that resist tensile forces in a strut-and-tie model.  They are 

proportioned and placed based on the required amount and location of tensile forces in 

the STM, respectively.  Proper bar spacing and cover requirements must be satisfied 

when placing tie reinforcement coincident with the centroid of a tie.  Also, ties must be 

properly anchored through development, heads, anchor plates, or other acceptable forms 

of anchorage.   
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2.3.4 Strut-and-Tie Model Design Provisions 

In this section, the strut-and-tie model design provisions from two U.S. 

specifications – AASHTO LFRD (2008) and ACI 318-08 – are compared with the 

Project 5253 proposed provisions.  As noted in Section 1.2, one of the main objectives of 

TxDOT Project 5253 was to develop new STM provisions for deep beams (Task 5).  The 

development of the Project 5253 provisions is discussed in detail by Tuchscherer (2008) 

and Birrcher et al. (2009).  The provisions were largely based on the STM 

recommendations of the fédération international du béton (fib, 1999; i.e. international 

concrete federation).  Since the Project 5253 STM provisions and those in AASHTO 

LRFD (2008) and ACI 318-08 Appendix A are used in some of the tasks addressed in 

this dissertation, they are presented and compared in this section.   

Strut-and-tie modeling was adopted as the preferred method of deep beam design 

by the AASHTO LRFD Bridge Design Specifications and ACI Building Code (ACI 318) 

Appendix A in 1994 and 2002, respectively.  The STM provisions in each specification 

have not changed much from inception to the current editions: AASHTO LRFD (2008) 

and ACI 318-08 Appendix A.  However, the STM provisions differ greatly between the 

two and in both cases, are considered by many to be unclear.      

2.3.4.1 AASHTO LRFD (2008) STM Provisions 

The strut-and-tie model design specifications in AASHTO LRFD (2008) provide 

allowable stresses for the three elements in STMs: struts, nodes, and ties.  The reduced 

nominal capacity of each element must be compared to the factored forces on that 

element as in Equation 2.4. 

un PP ≥φ  (2.4) 

where, 

φ =  strength reduction factor, 0.70 for compression and 1.0 for tension 

Pn = nominal resistance of strut, node face, or tie, kips 

Pu = factored force in strut, node face, or tie, kips 
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The nominal strength of a strut is calculated as follows (excluding reinforcement 

parallel to the strut): 

cscun AfP =  (2.5) 

with, 

11708.0 ε+
′

= c
cu

f
f  (2.6) 

sss αεεε 2
1 cot)002.0( ++=  (2.7) 

where, 

Acs =  effective cross-sectional area of a strut, in.2 

fc′ = specified compressive strength of concrete, ksi. 

εs = the tensile strain in the concrete in the direction of the tension tie, in./in. 

αs = the smallest angle between the compressive strut and adjoining ties, deg. 

 

In Equation 2.6, the limiting compressive stress in a strut, fcu, is a function of the 

amount of principle tensile strain in cracked concrete, ε1.  ε1 is calculated with Equation 

2.7 which is a function of the tensile strain in the concrete in the direction of the tension 

tie due to factored loads, εs.  As the angle between the strut and the tie decreases, the 

concrete strain at the tension tie (εs) increases and the limiting compressive stress in the 

strut, fcu, decreases.  Thus, the strength of a strut in AASHTO LRFD (2008) decreases as 

the angle between the strut and the tie decreases or as the a/d ratio increases for a single-

panel strut-and-tie model.    

In determining the effective cross-sectional area of a strut (Acs), CTT nodes must 

be considered in addition to CCC and CCT nodes.  Details are given to proportion the 

width of a strut framing into a CTT node.  Thus, the AASHTO LRFD (2008) STM 

provisions require checking of concrete stresses in smeared nodes (CTT).   
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The nominal concrete compressive stress in the node regions of the strut shall not 

exceed the values listed below.  The strength of node regions may be increased by the 

effects of confinement reinforcement if supported by tests and analyses. 

 

Node regions bounded by compressive struts and bearing areas (CCC node): 0.85 fc′ 

Node regions anchoring a one-direction tension tie (CCT node):   0.75 fc′ 

Node regions anchoring tension ties in more than one direction (CTT node): 0.65 fc′ 

 

Reinforcement must be proportioned to resist the tie forces in the strut-and-tie 

model, must be placed to coincide with the location of the ties, and must be appropriately 

anchored.  The nominal resistance of a tension tie shall be taken as:  

( )ypepsstyn ffAAfP ++=  (2.8) 

where, 

fy =  yield strength of mild steel longitudinal reinforcement, ksi. 

Ast = total area of longitudinal mild steel reinforcement in the tie, in.2 

Aps = area of prestressing steel, in.2 

fpe = stress in prestressing steel due to prestress after losses, ksi. 

 

Lastly, the STM provisions in AASHTO LRFD (2008) specify that crack control 

reinforcement must be provided in both orthogonal directions near each face.  The ratio 

of reinforcement area to gross concrete area shall not be less than 0.003, and the 

reinforcement spacing shall not exceed 12 in.    

2.3.4.2 ACI 318-08 Appendix A STM Provisions 

The strut-and-tie model provisions in Appendix A of the ACI 318-08 Building 

Code also provide allowable stresses for struts, nodal zones, and ties in a STM.  As in 

AASHTO LRFD, the reduced nominal capacity must be greater than or equal to the 

factored load on each element as in Equation 2.9: 

un FF ≥φ  (2.9) 
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where, 

φ =  strength reduction factor, 0.75 

Fn = nominal resistance of strut, node face, or tie, lbs. 

Fu = factored force in strut, node face, or tie, lbs. 

 

The nominal strength of a strut is calculated as follows (excluding reinforcement 

parallel to the strut): 

cscens AfF =  (2.10) 

where, 

fce =  smaller of (a) the effective compressive strength of the concrete in the 

strut and (b) the effective compressive strength of the concrete in the 

nodal zone, psi   

Acs = cross-sectional area of end of strut, perpendicular to axis of strut, in.2  

 

The effective compressive strength of the concrete in the strut, fce, shall be taken 

as: 

csce ff ′= β85.0  (2.11) 

where, 

βs =  strut efficiency factor 

 = 1.0 for prismatic struts, 

 = 0.75 for adequately-reinforced struts (Equation 2.12), 

  = 0.60 for inadequately-reinforced struts.   

fc′ = specified compressive strength of concrete, psi. 
 

The efficiency factor for bottle-shaped struts depends on the amount of strut 

reinforcement.  If Equation 2.12 is satisfied, an efficiency factor of 0.75 is used.  If not, 

an efficiency factor of 0.60 is used.  The purpose of strut reinforcement is to resist 

transverse tensile stresses in bottle-shaped struts.  Equation 2.12 encourages the 
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placement of reinforcement perpendicular to the axis of the strut to more efficiently resist 

transverse tension.  The calculation of ρ┴ is explained in Figure 2.18.  Through the use of 

a smaller efficiency factor (0.60), the provisions in ACI 318-08 Appendix A permit the 

use of unreinforced struts.  In these cases, the tensile capacity of the concrete is required 

to resist the transverse tension. 

 ∑ ≥=⊥ 003.0sin i
is

si

sb
A

αρ  (2.12) 

where, 

Asi =  total area of surface reinforcement at spacing si in the i-th layer crossing 

a strut, with reinforcement at an angle αi to the axis of the strut, in.2 strut  

bs = width of strut, in.  

si = spacing of reinforcement in i-th layer, in.  

αi = angle between i-th layer of reinforcement and axis of strut, deg.   

 

 
Figure 2.18: Calculation of ρ┴ in ACI 318-08 Appendix A (ACI 318, 2008) 

The nominal compressive strength of a nodal zone, Fnn, is calculated with 

Equation 2.13.  The effective compressive stress, fce, on a face of a nodal zone may be 

increased due to effects of confining reinforcement as supported by tests and analyses. 
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nzcenn AfF =  (2.13) 

with,  

cnce ff ′= β85.0  (2.14) 

where, 

Anz = the smaller of (a) the area of the nodal face perpendicular to Fu and (b) 

the area of a section through a nodal zone perpendicular to the resultant 

force on the section, in.2  

βn =  node efficiency factor 

 = 1.0 for CCC nodes, 

 = 0.80 for CCT nodes,  

 = 0.60 for CTT and TTT nodes.   

fc′ = specified compressive strength of concrete, psi. 

 

Reinforcement must be proportioned to resist the tie forces in the strut-and-tie 

model, be placed such that the axis of the reinforcement coincides with the axis of the tie, 

and be appropriately anchored. The nominal strength of a tension tie shall be taken as:  

( )psetpytsnt ffAfAF Δ++=  (2.15) 

where, 

Ats = area of nonprestressed reinforcement in a tie, in.2 

fy =  specified yield strength of reinforcement, psi. 

Atp = area of prestressing steel in a tie, in.2 

fse = effective stress in prestressing steel, psi. 

Δfp = increase in stress in prestressing steel due to factored loads, psi. 

2.3.4.3 Project 5253 STM Provisions 

The development of the TxDOT Project 5253 STM provisions is discussed in 

detail by Tuchscherer (2008).  The provisions were based on the analysis of an 
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experimental database of 179 deep beam tests and on STM provisions of the fédération 

international du béton (fib, 1999; i.e. international concrete federation).   

As with other provisions, the reduced nominal capacity must exceed the factored 

force on each element as in Equation 2.9.  The φ factor would be consistent with the 

adopting specification. 

The nominal strength of a nodal zone, Fn, shall be calculated as follows: 

nzcen AfF =  (2.16) 

where,  

fce = effective compressive strength of concrete in nodal zone, psi  

Anz = cross-sectional area of the face of the nodal zone, in.2  

 

The effective compressive strength, fce, on the face of a nodal zone shall be 

calculated as follows:  

cce fmf ′= ν  (2.17) 

where, 

m =  triaxial confinement modification factor, 2
1

2 ≤A
A

 with A2 and A1 

defined in Figure 2.19. 

ν = node efficiency factor  

 = 0.85 for bearing and back face of CCC nodes 

 = 0.70 for bearing and back face of CCT nodes 

 = 65.02085.045.0 ≤⎟
⎠
⎞⎜

⎝
⎛ ′−≤ ksi

f c for CCC and CCT node-to-strut interfaces 

with crack control reinforcement  
 = 0.45 for CCC and CCT node-to-strut interfaces without crack control 

reinforcement. 

fc′ = specified compressive strength of concrete, psi. 
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While the beneficial effects of triaxial confinement by surrounding concrete is 

recognized in bearing calculations in AASHTO LRFD (2008) and ACI 318-08, it is not 

recognized in their respective STM provisions.  The triaxial confinement factor, m, in the 

Project 5253 provisions accounts for confinement of concrete.  It was substantiated with 

experimental tests (Tuchscherer, 2008) and is consistent with the bearing stress check in 

ACI 318-08.  The areas A2 and A1 are illustrated in Figure 2.19. 

 

 
Figure 2.19: Application of frustum to find A2 from loaded area A1 (ACI 318-08) 

The nodal efficiency factor, ν, is similar to that in AASHTO LRFD (2008) and 

ACI 318-08 for the bearing face at CCC and CCT nodes and for the back face of CCC 

nodes.  However, for the back face of CCT nodes, bond stresses from an adequately 

developed tension tie should not be applied to the back face of the node.  Only 

concentrated stresses such as those due to bearing of a plate anchoring an unbonded bar 

or due to an external indeterminacy (Figure 2.20) should be applied to the back face of 

CCT nodes and checked with the 0.70 efficiency factor.  It was determined through 

experimental testing and with an analysis of a database of test results that applying bond 

stresses to the back face of CCT nodes is unnecessary (Tuchscherer, 2008).  It is 

necessary, though, for the tie to be properly anchored.  
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(a) 

 
            (b)       (c) 

Figure 2.20. Stress condition at the back face of a CCT node due to: (a) bond stress; 

(b) bearing of an anchor plate; (c) interior node over a continuous support 

(Tuchscherer, 2008) 

   In the Project 5253 STM provisions, there is not a separate check of the 

compressive stress in a strut.  The stress in the strut is checked at the node-to-strut 

interface since the stress is highest at this location.  The efficiency factor at the node-to-

strut interface varies with the compressive strength of concrete and has a minimum and 

maximum limit of 0.45 and 0.65, respectively.  Premature strut splitting is avoided by 

providing orthogonal grids of web reinforcement or by limiting the efficiency factor at 
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the node-to-strut interface to 0.45.  The required amount of minimum orthogonal web 

reinforcement is a topic of this dissertation.  It is discussed in detail in Section 4.3. 

No concrete stress checks are required in the Project 5253 provisions in CTT or 

other smeared nodes.  As noted by Schlaich et al. (1987), the geometry of smeared nodes 

is not discrete, and therefore, checking stress limits is unnecessary.  Tension 

reinforcement in CTT nodes near reentrant corners or voids should be as well-distributed 

as possible to reduce high stress concentrations in regions where available concrete is 

limited (fib, 1999).  Ties in CTT nodes must be checked and adequately developed or 

anchored.    

No changes were recommended to the nominal strength equations for tension ties 

in AASHTO LRFD (2008) or ACI 318-08 Appendix A.  Tie reinforcement must be 

proportioned to resist the tie forces in the strut-and-tie model, be placed such that the axis 

of the reinforcement coincides with the axis of the tie, and be appropriately developed or 

anchored.   

2.3.4.4 Evaluation of STM Design Provisions with Deep Beam Data 

In the previous three sections, the strut-and-tie model design provisions of 

AASHTO LRFD (2008), ACI 318-08 Appendix A, and TxDOT Research Project 5253 

were listed.  In this section, the implications of using each set of provisions to estimate 

the capacity of a deep beam (a/d < 2) are discussed.  For the discussion, results obtained 

by Tuchscherer (2008) are presented in which the experimental strength of 179 deep 

beam tests was compared to the calculated strength using a single-panel STM with each 

set of design provisions.  A φ factor of 1.0 was used in all calculations since the tests 

were conducted under laboratory conditions. 

The strut-and-tie model shown in Figure 2.21 was used to estimate the capacity of 

179 deep beams compiled into a database within Project 5253.  Details of the database 

are provided in Section 2.4 and Appendix B.  The same STM was used for all of the deep 

beams even though the a/d ratio reached 2.5.  A single-panel model is justified to an a/d 

ratio of 2, whereas, a sectional model is typically required in design specifications at a/d 
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ratios exceeding 2.  However, some researchers have concluded that deep beam behavior 

extends to an a/d ratio of 2.5.  The implications of using a single-panel STM for a/d ratios 

reaching 2.5 are discussed in Section 4.4.2.2 and 5.2.2.2.   

 
Figure 2.21: Single-panel STM and stress checks used to evaluate deep beams 

(Tuchscherer, 2008) 

Non-hydrostatic nodes were used in the STM in Figure 2.21.  The specific 

proportioning techniques were defined previously in Figure 2.14 and Figure 2.15.  The 

specifications in AASHTO LRFD (2008) and ACI 318-08 support the use of non-

hydrostatic nodes, but are generally vague in how nodes should be proportioned.  The 

seven design checks displayed in Figure 2.21 were performed on each specimen in the 

database.  Premature strut splitting was addressed by only including specimens in the 

database with sufficient web reinforcement to reinforce the bottle-shaped strut.  For 

reference, the efficiency factor used according to each set of STM provisions for each 

design check is listed in Table 2.1.  The governing design check determined the 

calculated capacity of the specimen.  The calculated capacity was compared to the 

experimental strength to evaluate each set of design provisions. 
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Table 2.1: Summary of stress checks used to evaluate deep beams (Tuchscherer, 2008) 
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Design Provisions Allowable Stress 
C

C
C
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e 
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g AASHTO LRFD 0.85 fc′ 

ACI 318 0.85 fc′ 
Project 5253 0.85 fc′ 
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ce
 AASHTO LRFD 0.85 fc′ 

ACI 318 0.85 fc′ 
Project 5253 0.85 fc′ 

N
-S
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te
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e AASHTO LRFD 0.85 fc′ 

ACI 318 0.85 (0.75) fc′ = 0.64 fc′ 
Project 5253 [0.45 ≤ (0.85 - fc′/20ksi) ≤ 0.65] fc′ 

C
C

T 
N
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e 
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rin
g AASHTO LRFD 0.75 fc′ 

ACI 318 0.85 (0.80) fc′ = 0.68 fc′ 
Project 5253 0.70 fc′ 

B
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k 
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ce
 AASHTO LRFD 0.75 fc′ 

ACI 318 0.85 (0.80) fc′ = 0.68 fc′ 
Project 5253 N/A 

N
-S

 
In

te
rf

ac
e AASHTO LRFD fc′ / (0.8 + 170ε1) ≤ 0.85 fc′ 

ACI 318 0.85 (0.75) fc′ = 0.64 fc′ 
Project 5253 [0.45 ≤ (0.85 - fc′/20ksi) ≤ 0.65] fc′ 

Tie Tie ALL fy 
 

The results obtained by Tuchscherer (2008) are presented in Figure 2.22.  The 

experimental strength was divided by the calculated capacity and plotted in a histogram.  

A value less than 1.0 implies that the experimental strength was unconservatively 

estimated.  A value greater than 1.0 implies a conservative estimate.  The mean and 

coefficient of variation (COV) of the results using each set of STM provisions are 

presented as well. 
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Figure 2.22: Evaluation of STM provisions with deep beam database (Tuchscherer, 

2008) (N=179) 

The results indicate that all of the STM design provisions provided conservative 

estimates of strength.  However, there was a considerable difference in accuracy.  The 

mean Exp. / Calc. value using the AASHTO LRFD (2008) provisions was 2.21.  The 

COV was 0.69.  These high values were largely the result of an efficiency factor at the 

CCT node-to-strut interface that decreases considerably with decreasing strut angle 

(increasing a/d ratio).   It is likely that this AASHTO LRFD efficiency factor was 

originally derived with hydrostatic nodes that increase in size with decreasing strut angle 

(Figure 2.13), thereby offsetting the decreasing efficiency factor.  However, as noted 

previously, the use of non-hydrostatic nodes is preferred in design and is more practical.  

The use of the ACI 318-08 Appendix A STM provisions provided better results.  The 

mean Exp. / Calc. value was 1.80, and the COV was 0.58.  Two main deficiencies in the 

ACI 318-08 provisions are the checking of bond stresses at the back face of CCT nodes 
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and the lack of accounting for triaxial confinement of surrounding concrete.  The 

deficiencies in the STM provisions in AASHTO LRFD (2008) and ACI 318-08 Appendix 

A are remedied in the Project 5253 STM design recommendations.  The mean Exp. / 

Calc. value was 1.54 and the COV was 0.28.  The improved accuracy was the result of 

addressing the aforementioned deficiencies in AASHTO LRFD (2008) and ACI 318-08 

and also reducing the efficiency of high-strength concrete at the node-to-strut interface.  

It is important to note that the Project 5253 provisions were largely based on those in fib 

(1999).  

In this section, it was shown that the Project 5253 STM provisions are more 

accurate, have less design checks, and yet are as conservative as those in AASHTO 

LRFD (2008) and ACI 318-08 Appendix A.  The Project 5253 STM design 

recommendations are incorporated into the AASHTO LRFD Design Specifications and 

Appendix A of ACI 318 elsewhere (Tuchscherer, 2008).  Deep beam capacity is 

calculated using the Project 5253 STM provisions throughout this dissertation.  

2.4 DEEP BEAM DATABASE 

The third topic addressed in this chapter is the compilation of a deep beam 

database.  In Project 5253, a database of deep beam shear tests (a/d ≤ 2.5) was compiled 

to supplement the findings of the experimental program.  The Project 5253 database is an 

expansion of a database originally compiled by Brown et al. (2006).  All of the specimens 

from the Brown et al. (2006) database with an a/d ratio greater than 2.5 were removed.  

The remaining entries were double-checked, and additional deep beam data were added.  

The total number of deep beam shear tests is 905 (including 37 tests conducted within 

Project 5253).  This database is called the collection database.  The references for the 

data from other research projects in the collection database are given elsewhere (Birrcher 

et al., 2009).    

The collection database was filtered in two stages (Table 2.2).  In the first stage, 

test results were removed, for the most part, due to a lack of sufficient details to perform 

a strut-and-tie analysis.  The resulting database is called the filtered database.   In the 
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second stage of filtering, additional specimens were removed that were considered 

especially unrepresentative of field members.  The resulting database is called the 

evaluation database.  An overview of the number of specimens that were removed from 

the database in each stage is provided in Table 2.2.  Explanations for the removal of these 

test results are provided in the next two sections.   

Table 2.2: Filtering of the deep beam (a/d ≤ 2.5) database 

Collection Database  905 tests 

St
ag

e 
1 

fil
te

rin
g 

- incomplete plate size information - 284 tests 
- subjected to uniform loads - 7 tests  
- stub column failure - 3 tests 
- f ′c < 2,000 psi - 4 tests 

Filtered Database 607 tests 

St
ag

e 
2 

fil
te

rin
g 

- bw < 4.5 in. - 222 tests 
- bwd < 100 in.2 - 73 tests 
- d < 12 in. - 13 tests 
- ∑ρ┴ < 0.001* - 120 tests 

Evaluation Database 179 tests 
*ρ┴ is defined in Equation 2.12 

  

2.4.1 Filtered Database 

A large number of specimens in the collection database (284) did not contain 

verifiable bearing plate dimensions.  This information was required to perform a strut-

and-tie analysis on the specimens.  In some of the 284 cases, bearing plates were 

sketched in figures of the test setup, but were not dimensioned.  It was determined that 

only the specimens with clearly defined bearing plates would be analyzed.  As such, the 

results from these 284 tests were removed.  

Of the remaining tests, specimens that were subjected to uniform loads, that did 

not fail in the anticipated test region, and that contained concrete with a compressive 

strength less than 2,000 psi were filtered from the database.  Only beams loaded with one 
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or two concentrated loads were retained in the database for ease in defining the a/d ratio 

and in defining nodal regions.  Three specimens tested by Foster and Gilbert (1998) 

experienced crushing in the stub columns that were used to load the beams.  At the onset 

of crushing, the tests were abandoned by the researchers.  These data were removed from 

the database as a result.  Lastly, four specimens were fabricated with concrete that had a 

compressive strength at the time of testing of less than 2,000 psi.  In general, concrete is 

not considered structural if the compressive strength is less than 2,000 psi.   

The filtered database contains data from 607 tests. The specimens in the filtered 

database have adequate details necessary to perform strut-and-tie analyses with reliability 

and relative ease. 

2.4.2 Evaluation Database 

A second stage of filtering was performed to remove specimens that were 

considered especially unrepresentative of field members.  A large percentage of the 

specimens in the filtered database had small (< 100 in.2) shear areas (bwd) as seen in 

Figure 2.23.  Also, many of the specimens did not contain any web reinforcement.  

Typical bent caps in Texas have shear areas of 1200 in.2 and contain significant amounts 

of web reinforcement.  With these considerations, additional filtering criteria were 

established.   
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Figure 2.23: Size and web reinforcement ratio of specimens in filtered database 

It was determined that the specimens in the database should have a beam width of 

at least 4.5 in.  This dimension was approximated as the minimum width required to fit a 

2-legged #3 stirrup with ¾-in. cover and a couple of longitudinal bars (#5’s with 1-in. 

clear spacing).  222 of the 607 specimens in the filtered database were removed due to 

this limitation. 

A minimum shear area of 100 in.2 and a minimum effective depth of 12 in. was 

also used to filter the database to remove specimens of less representative size.  These 

criteria filtered out 73 and 13 tests, respectively.  

Lastly, it was determined that deep beams without transverse reinforcement are 

not representative of those in the field.  However, it was preferred to have some beams in 

the database that were lightly reinforced so that the affects of additional transverse 

reinforcement could be evaluated.  A ρ┴ of 0.001 was established as the minimum 

amount of web reinforcement.  120 additional specimens were removed due to this 

requirement.   
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The remaining dataset contains 179 specimens and is called the evaluation 

database.  Of the 179 specimens, 35 were tested within Project 5253 (two specimens 

tested during TxDOT Project 5253 were filtered out due to insufficient web 

reinforcement).  14 of the 179 specimens were isolated-strut panels tested by Brown et al. 

(2006).  The panels were loaded in uniaxial compression (a/d = 0) with the quantity of 

web reinforcement and the size of the bearing plates as the primary variables.  While 

these specimens are not deep beams, their test results were retained in the database to 

provide additional data for specimens with low a/d ratios.  For simplicity, all of the 

entries in the evaluation database will be referred to as deep beams in this dissertation.  

The evaluation database was used in conjunction with the results of the experimental 

program to address the objectives of Project 5253.  Details of the beams in the evaluation 

database are provided in Appendix B.  It is believed that the test results in the evaluation 

database are much more representative of field members than those that were removed.   

It is important to note that specimens that failed in shear and in flexure, as 

reported by the researcher, were both included in the evaluation database.  Since strut-

and-tie modeling is a general procedure that accounts for both shear and flexure through 

the numerous design checks of each nodal face and tension tie, it is appropriate to 

evaluate both failure modes. 

2.5 SUMMARY  

Three different topics were reviewed in this chapter.  First, several cases of 

diagonally-cracked bent caps in service were presented.  In two cases, costly retrofits 

were required to strengthen the bent caps due to extensive diagonal cracking in service.  

Second, background information on deep beam behavior and strut-and-tie modeling was 

provided.  It was shown that deep beam behavior is categorized by nonlinear strain 

distribution that exists in members with small shear-span-to-depth (a/d) ratios or clear-

span-to-depth (ln/d) ratios.  Strut-and-tie modeling is a design tool that replaces the 

complex states of stress in members like deep beams with a collection of uniaxial struts 

and ties interconnected by nodes.  Three sets of strut-and-tie modeling design provisions 
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were presented and compared.  It was shown that the Project 5253 STM provisions were 

more accurate and yet just as conservative as those in AASHTO LRFD (2008) and ACI 

318-08 Appendix A.  In addition, the Project 5253 STM provisions have less design 

checks with additional and much-needed clarification.  Lastly, a database of 179 deep 

beam (a/d < 2.5) tests that was compiled within Project 5253 was discussed.  The 

database is used throughout the dissertation to supplement the findings of the 

experimental program.   
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CHAPTER 3 
Experimental Program 

 

3.1 OVERVIEW 

In this chapter, details of the experimental program are provided.  The design, 

fabrication, and testing of the specimens at the Phil M. Ferguson Structural Engineering 

Laboratory at the University of Texas at Austin are discussed in detail.  Overall, thirty-

seven (37), simply-supported tests were conducted on 19 beams within Project 5253.    

3.2 TESTING PROGRAM 

In Project 5253, eight objectives were addressed (Section 1.2).  The first four 

objectives consisted of evaluating the effect of the following parameters on the strength 

and serviceability performance of reinforced concrete deep beams:   

1. the distribution of stirrups across the width of a beam web (2-legged 

stirrups versus 4-legged stirrups)  

2. the triaxial confinement of singular nodal regions by surrounding concrete  

3. the amount of minimum web reinforcement (stirrups and longitudinal 

side-face reinforcement) 

4. the member depth  

The remaining four objectives included: 

5. Developing a simple STM design methodology for the design of deep 

beams  

6. Reducing the discrepancy between shear strength calculated using STM 

and sectional shear provisions at an a/d ratio of 2 

7. Limiting diagonal cracking under service loads 

8. Developing a means to relate the maximum diagonal crack width of a deep 

beam to its residual capacity 
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To accomplish the objectives of Project 5253, it was necessary to develop an 

extensive testing program.  Data in the literature were generally insufficient to address 

the tasks of the project for two reasons.  First, very little serviceability information, 

primarily diagonal crack width data, exists in the literature.  With the exception of task 6, 

all of the project objectives required the evaluation of the serviceability performance of 

deep beams.  Second, the cross-sectional dimensions of deep beams, particularly the 

beam width, tested in the past are drastically smaller than those of members in service.  

Two of the aforementioned tasks required data from specimens with widths of realistic 

size (tasks 1 and 2).  Task 8 was aimed at the specific performance of in-service bent caps 

and thus, benefitted from data from beams of comparable size.  As a whole, it was 

determined that testing specimens of comparable size to that of members in service 

provided the best means to improve their design and performance.   

The cross-sectional dimensions of several bent caps in Texas are compared to 

those of test specimens in the literature in Figure 3.1.  The cross-sections of two bent caps 

that experienced significant diagonal cracking problems in service are shown at the far 

left.  The cracking problem and required retrofit of the I-345 and I-45 bent caps were 

discussed in Section 2.2.  The cross sections of two standard bent caps used by TxDOT to 

support Type IV and Type C prestressed girders are also shown in Figure 3.1.  The cross-

sections used in several testing programs that provided the basis for much of the current 

deep beam design provisions are illustrated at the far right of Figure 3.1.  It is clear that 

the sizes of bent caps in service are significantly larger than that of the deep-beam 

specimens tested previously.  
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Figure 3.1: Scaled comparison between actual bent caps and beams included in past 

research programs (Tuchscherer, 2008) 

The testing program was divided into five series to isolate the primary objectives 

of the research project.  The purpose of Series I through IV was to address tasks 1 

through 4 of the current project.  Series M consisted of five tests in which multiple 

objectives were evaluated.  The specimens in Series III and IV were tested at three 

different a/d ratios to specifically address task 6.  All of the specimens in the 

experimental program were used to address tasks 5, 7, and 8.  Many of the beam details 

were kept constant across each test series to permit the use of test data for multiple 

project objectives.  For this reason, details of all of the specimens fabricated and tested in 

Project 5253 are presented in this dissertation.  The titles of each series are as follows: 

• Series I: Distribution of Stirrups across the Beam Web (2 legs vs. 4 legs) 

• Series II: Triaxially Confined Nodal Regions 

• Series III: Minimum Web Reinforcement (transverse and longitudinal) 

• Series IV: Depth Effect 

• Series M: Multiple Purpose 
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that led to Code 
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3.2.1 Overall Design of Test Specimens 

The test specimens were designed to fail in shear since the objectives of the 

current study were associated with shear-dominated behavior.  At a given a/d ratio, a 

reasonable upperbound estimate of the normalized shear stress at failure was obtained 

from the evaluation database (Figure 3.2).  With this strength estimate, the longitudinal 

reinforcement was selected such that the moment capacity exceeded the upperbound 

shear capacity.  For the specimens in Series I through IV, a longitudinal tension 

reinforcement ratio of 2.3% was sufficient for the beam to fail in shear.  Compression 

reinforcement (~1.1%) was added to these specimens to increase the moment capacity 

and to make the section tension-controlled in flexure.  The difference between the 

estimated shear capacity and the estimated moment capacity of the Series I through IV 

specimens loaded with an a/d ratio of 1.85 is shown in Figure 3.3.  It is clear in Figure 3.3 

that for a given section depth, the specimens are expected to fail in shear prior to failing 

in flexure.  For the Series M specimens, the longitudinal tension reinforcement ratio was 

2.9% and the compression reinforcement ratio ranged from 0.2% to 0.4%.  Additional 

information regarding the design of the Series M specimens can be found elsewhere 

(Huizinga, 2007).    

In Series I through IV, the sections with the following cross-sectional dimensions 

were designed: 21”x23”, 21”x42”, 21”x44”, and 21”x75”.  The overall length of the 

Series I through IV specimens was 332 in.  In Series M, specimens with a 36”x48” cross-

section were designed with an overall length of 284 in. 



 50

 
Figure 3.2: Shear stress at failure for evaluation database used in specimen design 

  

 
Figure 3.3: Difference between estimated shear and flexural capacity 
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Requirements in ACI 318-08 and AASHTO LRFD (2008) were satisfied in the 

design of the test specimens.  Spacing requirements between adjacent bars and between 

layers of bars were met.  Sufficient anchorage of the longitudinal reinforcement was 

provided with 90-degree hooks.  Cover requirements consistent with precast conditions 

were satisfied since the specimens were fabricated in the laboratory with steel formwork 

and formwork-attached vibrators.   

A brief description of each testing series is provided in Section 3.2.2 to 3.2.6.  The 

pertinent beam details for all of the test specimens are provided in Section 3.2.7.  

3.2.2 Series I: Distribution of Stirrups across Beam Web 

In ACI 318-08 and AASHTO LRFD (2008), provisions exist that recommend the 

distribution of stirrup legs across the width of the beam web.  It is stated in ACI 318-08 

that the reduction of “the transverse spacing of stirrup legs across the section” improves 

shear behavior (ACI 318 § R11.4.7, 2008).  In AASHTO LRFD (2008), the width of a 

strut framing into a CTT node is limited to the distance equal to six longitudinal bar 

diameters from the center of the stirrup (AASHTO Figure 5.6.3.3.2-1 (a)).  To use the full 

section width for the strut width, multiple stirrups legs may be needed, especially for 

reasonably wide members.   

Four tests were conducted on specimens with a 21”x44” cross-section to 

investigate the effect of distributing stirrups across the web of a beam.  All of the 

specimens were loaded at an a/d ratio of 1.85.  The reinforcement for the Series I 

specimens was designed to evaluate the provision in AASHTO LRFD (2008).  

Companion tests were conducted such that the only primary variable between two tests 

was the number of stirrup legs: two or four.  Based on the provision in AASHTO LRFD 

(2008), the design width of the internal strut in the two-legged specimen was 11.3 in.; 

while the design width of the strut in the four-legged specimen was 21 in., the full section 

width.  The cross-sections of two test specimens are provided in Figure 3.4.   
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Figure 3.4: Effective width of strut anchored by reinforcement at the CCT node  

Other geometric, reinforcement, and loading details for the Series I specimens are 

presented in Figure 3.5. The spacing of the #6 longitudinal reinforcement bars was 

controlled with steel chairs.  The transverse reinforcement ratio was identical for 

companion tests but varied between each pair.  One pair of tests had 0.2% web 

reinforcement in each direction; the other pair had 0.3% web reinforcement in each 

direction.  The effect of distributing stirrups across the web of a beam is discussed by 

Tuchscherer (2008). 

 
Figure 3.5: Series I beam details (Tuchscherer, 2008) 
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The naming system presented in Figure 3.6 was used for the Series I specimens.  

The first numeral denotes the series number.  The remaining numerals represent the 

variables within the testing series.  In the case of Series I, the web reinforcement ratio and 

the number of stirrup legs varied.  All other beam details were reasonably constant within 

Series I and are listed in Table 3.1. 

. 

 
Figure 3.6: Series I: description of beam ID naming system (Tuchscherer, 2008) 

Table 3.1: Details of Series I specimens 

Beam I.D. d 
in. ρv 

Size and 
Spacing 
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Size and 
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in. 
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I-02-2 38.5 0.0020 #4 @ 9.5” 0.0020 #4 @ 9.5” 16x21 20x21 
I-02-4 38.5 0.0021 #3 @ 10.0” 0.0020 #4 @ 9.5” 16x21 20x21 

 

3.2.3 Series II: Triaxially Confined Nodal Regions 

In the strut-and-tie model design provisions in AASHTO LRFD (2008) and ACI 

318-08 Appendix A, there are no allowances for the benefit of triaxial confinement from 

surrounding concrete.  Several researchers have illustrated the increase in the 

compressive strength of concrete due to confinement from surrounding concrete 

(Hawkins, 1968; Adebar and Zhou, 1993; and MacGregor and Wight, 2005).  Based on 

this research, confinement from concrete is accounted for in the calculation of bearing 

capacity.  However, the research has not extended to strut-and-tie model applications 
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No. of Stirrup Legs

Reinforcement Ratio (nominal):
03 = 0.3% each way
02 = 0.2% each way

Series
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where the size of bearing plates has a pronounced effect on design capacity.  It should be 

noted that benefits of confining reinforcement is permitted in the STM provisions of ACI 

318-08 Appendix A and AASHTO LRFD (2008) if the design values are supported by 

tests or analyses.   

Based on this deficiency, eight tests were conducted on 21”x42” specimens in 

Project 5253.  All of the specimens were loaded at an a/d ratio of 1.85.  The size of the 

bearing plates at the load (CCC node) and at the support (CCT node) were systematically 

varied between each test.  The width of the triaxially-confined bearing plates was three 

times smaller than the full width of the specimen (7 in. vs. 21 in.).  The different sizes of 

bearing plates used in the Series II testing series are illustrated in Figure 3.7.   

 
Figure 3.7: Plate sizes investigated within Series II (Tuchscherer, 2008) 

Other geometric, reinforcement, and loading details for the Series II specimens 

are presented in Figure 3.8. The web reinforcement also varied in Series II for tests with 

identical bearing plates to evaluate whether the beneficial effects of confinement were 

influenced by the amount of web reinforcement.  The effect of confining nodal regions 

with surrounding concrete is discussed by Tuchscherer (2008). 
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Figure 3.8: Series II beam details (Tuchscherer, 2008) 

The naming system presented in Figure 3.9 was used for the Series II specimens.  

As previously noted, the amount of web reinforcement and the size of the bearing plate at 

the load and support were the variables in this series.  The nodal region (i.e. CCC or 

CCT) that was investigated within each test was identified in the last numeral of the 

specimen ID as well.  All other beam details were constant within Series II and are listed 

in Table 3.2. 

 
Figure 3.9: Series II: Description of beam ID naming system (Tuchscherer, 2008) 
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Node under Investigation (e.g. CCC)
Bearing Plate Size (e.g. 20”x21”)

Reinforcement Ratio (nominal):
03 = 0.3% each way
02 = 0.2% each way

Series
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Table 3.2: Details of Series II specimens 

Beam I.D. d 
in. ρv 

Size and 
Spacing 

(sv)
ρh 

Size and 
Spacing 

(sh) 

Support 
Plate 

in. 

Load 
Plate 

in. 
II-03-CCC2021 38.6 0.0031 #5 @ 9.5” 0.0045 #5 @ 6.6” 10x21 20x21 
II-03-CCC1007 38.6 0.0031 #5 @ 9.5” 0.0045 #5 @ 6.6” 10x21 10x7 
II-03-CCT1021 38.6 0.0031 #5 @ 9.5” 0.0045 #5 @ 6.6” 10x21 36x21 
II-03-CCT0507 38.6 0.0031 #5 @ 9.5” 0.0045 #5 @ 6.6” 5x7 36x21 
II-02-CCT0507 38.6 0.0020 #5 @ 15.0” 0.0019 #4 @ 10” 5x7 36x21 
II-02-CCC1007 38.6 0.0020 #5 @ 15.0” 0.0019 #4 @ 10.1” 10x21 10x7 
II-02-CCC1021 38.6 0.0020 #5 @ 15.0” 0.0019 #4 @ 10.1” 10x21 10x21 
II-02-CCT0521 38.6 0.0020 #5 @ 15.0” 0.0019 #4 @ 10.1” 5x21 20x21 

 

3.2.4 Series III: Minimum Web Reinforcement 

In the strut-and-tie model provisions in several design specifications (AASHTO 

LRFD (2008), ACI 318-08 Appendix A, CHBDC 2006, CSA A23.3-04, and fib 1999), 

different recommendations exist for minimum web reinforcement.  There is little 

consensus regarding whether minimum reinforcement should address both strength and 

serviceability considerations.  The purpose of the Series III testing series is to determine 

the appropriate amount of minimum reinforcement considering both the strength and 

serviceability performance of deep beams.  The test results of the Series III specimens are 

provided in Section 4.3. 

Twelve tests were conducted in Series III on 21”x42” specimens.  The specimens 

were tested at three different a/d ratios: 1.2, 1.85, and 2.5.  At an a/d ratio of 1.85, several 

specimens were tested in which the only variable was the quantity of vertical and 

horizontal web reinforcement. At a/d ratios of 1.2 and 2.5, reinforcement corresponding 

to 0.2% and 0.3% in each orthogonal direction was placed in companion specimens.    

The amount of web reinforcement in the test specimens was categorized by the 

reinforcement ratio definitions given in Figure 3.10.  The vertical and horizontal 

reinforcement was placed evenly throughout the shear span and the strut area, 



 57

respectively.  The height of the strut was estimated by subtracting twice the distance from 

the extreme tension fiber to the centroid of the tension reinforcement and twice the 

distance from the extreme compression fiber to the centroid of the compression 

reinforcement from the total height of the section (Van Landuyt, 2006).  This definition 

differed from the minimum reinforcement provisions in the STM section of AASHTO 

LRFD (2008) which bases the total amount of horizontal reinforcement on the gross 

concrete section (bwh).  Since this reinforcement is intended primarily to reinforce bottle-

shaped struts, it is appropriate to base the amount of reinforcement on the area of the 

bottle-shaped strut. 

 

 
Figure 3.10: Definition for vertical and horizontal web reinforcement ratios 

Other geometric, reinforcement, and loading details for the Series III specimens 

are presented in Figure 3.11. The primary variables for this testing series were the a/d 

ratio and the amount of web reinforcement.  The effects of different spacing of the web 

reinforcement were not directly studied, but some comparisons were made possible 

through the extensive testing program.  The size of the bearing plates was constant in 

Series III. 
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Figure 3.11: Series III beam details 

The naming system presented in Figure 3.12 was used for the Series III 

specimens.  As previously noted, the a/d ratio and the amount of web reinforcement were 

the variables in this series.  All other pertinent beam details were constant within Series II 

and are listed in Table 3.3. 

 

Figure 3.12: Series III: Description of beam ID naming system 
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Table 3.3: Details of Series III specimens 

Beam I.D. d 
in. ρv 

Size and 
Spacing 

(sv)
ρh 

Size and 
Spacing 

(sh) 

Support 
Plate 

in. 

Load 
Plate 

in. 
III-1.85-00 38.6 0 - 0 - 16x21 20x21 
III-2.5-00 38.6 0 - 0 - 16x21 20x21 
III-1.85-02 38.6 0.0020 #5 @ 14.5” 0.0019 #4 @ 10.1” 16x21 20x21 
III-1.85-025 38.6 0.0024 #5 @ 12.0” 0.0014 #3 @ 7.6” 16x21 20x21 
III-1.85-03 38.6 0.0029 #5 @ 10.0” 0.0029 #5 @ 10.1 16x21 20x21 
III-1.85-01 38.6 0.0010 #4 @ 18.0” 0.0014 #3 @ 7.6” 16x21 20x21 
III-1.85-03b 38.6 0.0031 #4 @ 6.0” 0.0029 #5 @ 10.1” 16x21 20x21 
III-1.85-02b 38.6 0.0020 #4 @ 9.5” 0.0019 #4 @ 10.1” 16x21 20x21 
III-1.2-02 38.6 0.0020 #4 @ 9.5” 0.0019 #4 @ 10.1” 16x21 20x21 
III-1.2-03 38.6 0.0031 #5 @ 9.5” 0.0029 #5 @ 10.1” 16x21 20x21 
III-2.5-02 38.6 0.002 #4 @ 9.5” 0.0019 #4 @ 10.1” 16x21 20x21 
III-2.5-03 38.6 0.0029 #5 @ 9.5” 0.0029 #5 @ 10.1” 16x21 20x21 

 

3.2.5 Series IV: Depth Effect 

Most of the bent caps in service in Texas are considerably larger (in width and in 

depth) than those in the literature (Figure 3.1).  It is necessary to understand the effect 

that member depth may have on the performance of deep beams to improve the design of 

actual structures.  The purpose of the Series IV specimens was to investigate the effect of 

member depth on the strength and serviceability performance of reinforced concrete deep 

beams.  Other researchers have concluded that the width of deep beams does not affect 

their performance provided that the beam is laterally stable and can be properly detailed 

(Kani et al., 1979).   

In Series IV, four tests were conducted on beams with a 21”x75” cross-section.  

Four tests were conducted on beams with a 21”x23” cross-section.  At an a/d ratio of 

1.85, a specimen was tested at each depth with 0.2% and 0.3% web reinforcement in each 

direction.  At a/d ratios of 1.2 and 2.5, specimens were tested at each depth with 0.2% 
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web reinforcement.  The specimens were designed such that they could be directly 

compared with the 21”x42” specimens tested in Series III.  The geometric, reinforcement, 

and loading details for the Series IV specimens loaded at an a/d ratio of 1.85 are 

presented in Figure 3.13.   

  

 
Figure 3.13: Series IV beam details 

The size of the nodal regions (CCC and CCT) was kept relatively constant for the 
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made to evaluate the effect of changing the depth of the member without proportionately 
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changing the size of the nodal regions.  In this way, the depth of the member was the only 

variable between each test.  Additional discussion regarding the Series IV specimens and 

their test results is provided in Section 4.4. 

The naming system presented in Figure 3.14 was used for the Series IV 

specimens.  In Series IV, the primary variables were the member depth, the a/d ratio, and 

the quantity of web reinforcement.  All other pertinent beam details were constant within 

Series IV and are listed in Table 3.4. 

 
Figure 3.14: Series IV: Description of beam ID naming system 

Table 3.4: Details of Series IV specimens 

Beam I.D. d 
in. ρv 

Size and 
Spacing 

(sv)
ρh 

Size and 
Spacing 

(sh) 

Support 
Plate 

in. 

Load 
Plate 

in. 
IV-2175-1.85-02 68.9 0.0021 #4 @ 9.5” 0.0019 #4 @ 10.1” 16x21 29x21 
IV-2175-1.85-03 68.9 0.0031 #5 @ 9.5” 0.0029 #5 @ 10.1” 16x21 29x21 
IV-2175-2.5-02 68.9 0.0021 #5 @ 14.25” 0.0021 #5 @ 14.25” 16x21 24x21 
IV-2175-1.2-02 68.9 0.0021 #5 @ 14.25” 0.0021 #5 @ 14.25” 16x21 24x21 
IV-2123-1.85-03 19.5 0.0030 #4 @ 6.25” 0.0030 #4 @ 6.25” 16x21 16.5x21
IV-2123-1.85-02 19.5 0.0020 #3 @ 5.25” 0.0017 #3 @ 6.25” 16x21 16.5x21
IV-2123-2.5-02 19.5 0.0020 #3 @ 5.25” 0.0017 #3 @ 6.25” 16x21 15.5x21
IV-2123-1.2-02 19.5 0.0020 #3 @ 5.25” 0.0017 #3 @ 6.25” 16x21 18x21 
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Series
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3.2.6 Series M: Multiple Purpose 

The Series M specimens were the first specimens fabricated and tested in Project 

5253.  All of the Series M specimens had a 36” x 48” cross-section.  The primary 

variables in Series M were the amount of web reinforcement, the distribution of stirrups 

across the web, and the size of the load plate.  Five tests were conducted.  The results of 

these tests were used to design the rest of the experimental program (Series I through IV) 

and are included with the results of the other Series that addressed a similar objective.  

The results from the Series M specimens were exceptionally valuable due to the size of 

the cross-section.   Geometric, reinforcement, and loading details for the Series M 

specimens are provided in Figure 3.15. 

 
Figure 3.15: Series M beam details (Huizinga, 2007) 

There were some differences between the Series M specimens and those in the 

other series such as the beam width, the ratio of the longitudinal compression 

reinforcement to the effective area (0.44%), the ratio of the longitudinal tension 

reinforcement to the effective area (2.9%), and the concrete cover.  A larger cover (2” all 

sides) was used in the Series M specimens as compared to those in Series I through IV 

since these members were cast with wood formwork and without the benefit  of form 

vibrators (Section 3.3.3).  Additional information regarding the design, fabrication, and 

testing of the Series M specimens is discussed by Huizinga (2007).  

The naming system presented in Figure 3.16 was used for the Series M 

specimens.  In Series M, the primary variables were the quantity of web reinforcement, 
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the number of stirrup legs, and the size of the bearing plate at the load point.  All other 

beam details were constant within Series M and are listed in Table 3.5. 

 
Figure 3.16: Series M - description of beam ID naming system 

Table 3.5: Details of Series M Specimens  

Beam I.D. d 
in. ρv 

Size and 
Spacing 

(sv)
ρh 

Size and 
Spacing 

(sh) 

Support 
Plate 

in. 

Load 
Plate 

in. 
M-03-4-CCC2436 40 0.0031 #5 @ 11” 0.0027 #5 @ 6.5” 16x36 24x26
M-03-4-CCC0812 40 0.0031 #5 @ 11” 0.0027 #5 @ 6.5” 16x36 8x12 
M-09-4-CCC2436 40 0.0086 #5 @ 4” 0.0027 #5 @ 6.5” 16x36 24x36
M-02-4-CCC2436 40 0.0022 #4 @ 10” 0.0022 #5 @ 8” 16x36 24x36
M-03-2-CCC2436 40 0.0031 #7 @ 11” 0.0027 #5 @ 6.5” 16x36 24x36

 

3.2.7 Summary of Test Specimen Details 

Thirty-seven tests were conducted in the current experimental program.  The deep 

beams tested represent some of the largest deep beam shear tests available in the 

literature as seen in Figure 3.17.  The specimens from the current study populate the 

upper bound of the deep beam data in the literature as measured by the shear area of the 

beam (bwd).  A comparison between bent caps used in the State of Texas, the beams in 

the current study, and beams from previous research projects is provided in Figure 3.18.   
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02 = 0.2% each way
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Bearing Plate Size (e.g. 24”x36”)



 64

 
Figure 3.17: Comparison of beams sizes between current and past studies 

 

 
Figure 3.18: Scaled comparison of actual bent caps and beams included in current and 

past research programs. (Tuchscherer, 2008) 

A summary of details for the 37 tests in the experimental program is presented in 
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bw  = beam width, in. 

h  = beam height, in. 

d  = distance form extreme compression fiber to centroid of tensile 

reinforcement, in. 

ρl  = ratio of longitudinal tensile reinforcement to effective area (As / bwd) 

ρl′  = ratio of longitudinal compression reinforcement to effective area (A′s / 

bwd) 

ρv  = ratio of vertical web reinforcement to effective area (Av / bwsv) 

sv  = spacing of vertical web reinforcement, in. 

ρh  = ratio of horizontal web reinforcement to effective area (Ah / bwsh) 

sh  = spacing of horizontal web reinforcement, in. 

a = centerline distance between load and support plates 

Load Plate  = dimensions of the load bearing plate measured in the 

longitudinal and transverse direction of the beam (l x w), in. 

Support Plate  = dimensions of the support bearing plate measured in the 

longitudinal and transverse direction of the beam (l x w), in. 

a/d ratio  = shear span-to-depth ratio 
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Table 3.6: Summary of all beam details 

Beam I.D. bw 
in. 

h 
in. 

d 
in. ρl ρl′ ρv 

Size and 
Spacing 

(sv)
ρh 

Size and 
Spacing 

(sh) 

Support 
Plate 

in. 

Load 
Plate 

in. 

a/d 
ratio

I-03-2 21 44 38.5 0.0229 0.0116 0.0029 #4 @ 6.5” 0.0033 #4 @ 5.75” 16x21 20x21 1.84 
I-03-4 21 44 38.5 0.0229 0.0116 0.0030 #3 @ 7.0” 0.0033 #4 @ 5.75” 16x21 20x21 1.84 
I-02-2 21 44 38.5 0.0229 0.0116 0.0020 #4 @ 9.5” 0.0020 #4 @ 9.5” 16x21 20x21 1.84 
I-02-4 21 44 38.5 0.0229 0.0116 0.0021 #3 @ 10.0” 0.0020 #4 @ 9.5” 16x21 20x21 1.84 
II-03-CCC2021 21 42 38.6 0.0231 0.0115 0.0031 #5 @ 9.5” 0.0045 #5 @ 6.6” 10x21 20x21 1.84 
II-03-CCC1007 21 42 38.6 0.0231 0.0115 0.0031 #5 @ 9.5” 0.0045 #5 @ 6.6” 10x21 10x7 1.84 
II-03-CCT1021 21 42 38.6 0.0231 0.0115 0.0031 #5 @ 9.5” 0.0045 #5 @ 6.6” 10x21 36x21 1.84 
II-03-CCT0507 21 42 38.6 0.0231 0.0115 0.0031 #5 @ 9.5” 0.0045 #5 @ 6.6” 5x7 36x21 1.84 
II-02-CCT0507 21 42 38.6 0.0231 0.0115 0.0020 #5 @ 15.0” 0.0019 #4 @ 10” 5x7 36x21 1.84 
II-02-CCC1007 21 42 38.6 0.0231 0.0115 0.0020 #5 @ 15.0” 0.0019 #4 @ 10.1” 10x21 10x7 1.84 
II-02-CCC1021 21 42 38.6 0.0231 0.0115 0.0020 #5 @ 15.0” 0.0019 #4 @ 10.1” 10x21 10x21 1.84 
II-02-CCT0521 21 42 38.6 0.0231 0.0115 0.0020 #5 @ 15.0” 0.0019 #4 @ 10.1” 5x21 20x21 1.84 
III-1.85-00 21 42 38.6 0.0231 0.0115 0.000 - 0 - 16x21 20x21 1.84 
III-2.5-00 21 42 38.6 0.0231 0.0115 0.000 - 0 - 16x21 20x21 2.47 
III-1.85-02 21 42 38.6 0.0231 0.0115 0.0020 #5 @ 14.5” 0.0019 #4 @ 10.1” 16x21 20x21 1.84 
III-1.85-025 21 42 38.6 0.0231 0.0115 0.0024 #5 @ 12.0” 0.0014 #3 @ 7.6” 16x21 20x21 1.84 
III-1.85-03 21 42 38.6 0.0231 0.0115 0.0029 #5 @ 10.0” 0.0029 #5 @ 10.1 16x21 20x21 1.84 
III-1.85-01 21 42 38.6 0.0231 0.0115 0.0010 #4 @ 18.0” 0.0014 #3 @ 7.6” 16x21 20x21 1.84 
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Table 3.6 (cont.’d): Summary of all beam details 

Beam I.D. bw 
in. 

h 
in. 

d 
in. ρl ρl′ ρv 

Size and 
Spacing (sv) 

ρh Size and 
Spacing (sh) 

Support 
Plate 

in. 

Load 
Plate 

in. 

a/d 
ratio 

III-1.85-03b 21 42 38.6 0.0231 0.0115 0.0031 #4 @ 6.0” 0.0029 #5 @ 10.1” 16x21 20x21 1.84 
III-1.85-02b 21 42 38.6 0.0231 0.0115 0.002 #4 @ 9.5” 0.0019 #4 @ 10.1” 16x21 20x21 1.84 
III-1.2-02 21 42 38.6 0.0231 0.0115 0.002 #4 @ 9.5” 0.0019 #4 @ 10.1” 16x21 20x21 1.20 
III-1.2-03 21 42 38.6 0.0231 0.0115 0.0031 #5 @ 9.5” 0.0029 #5 @ 10.1” 16x21 20x21 1.20 
III-2.5-02 21 42 38.6 0.0231 0.0115 0.002 #4 @ 9.5” 0.0019 #4 @ 10.1” 16x21 20x21 2.49 
III-2.5-03 21 42 38.6 0.0231 0.0115 0.0031 #5 @ 9.5” 0.0029 #5 @ 10.1” 16x21 20x21 2.49 
IV-2175-1.85-02 21 75 68.9 0.0237 0.0129 0.0021 #4 @ 9.5” 0.0019 #4 @ 10.1” 16x21 29x21 1.85 
IV-2175-1.85-03 21 75 68.9 0.0237 0.0129 0.0031 #5 @ 9.5” 0.0029 #5 @ 10.1” 16x21 29x21 1.85 
IV-2175-2.5-02 21 75 68.9 0.0237 0.0129 0.0021 #5 @ 14.25” 0.0021 #5 @ 14.25” 16x21 24x21 2.50 
IV-2175-1.2-02 21 75 68.9 0.0237 0.0129 0.0021 #5 @ 14.25” 0.0021 #5 @ 14.25” 16x21 24x21 1.20 
IV-2123-1.85-03 21 23 19.5 0.0232 0.0116 0.0030 #4 @ 6.25” 0.0030 #4 @ 6.25” 16x21 16.5x21 1.85 
IV-2123-1.85-02 21 23 19.5 0.0232 0.0116 0.0020 #3 @ 5.25” 0.0017 #3 @ 6.25” 16x21 16.5x21 1.85 
IV-2123-2.5-02 21 23 19.5 0.0232 0.0116 0.0020 #3 @ 5.25” 0.0017 #3 @ 6.25” 16x21 15.5x21 2.50 
IV-2123-1.2-02 21 23 19.5 0.0232 0.0116 0.0020 #3 @ 5.25” 0.0017 #3 @ 6.25” 16x21 18x21 1.20 
M-03-4-CCC2436 36 48 40 0.0293 0.0043 0.0031 #5 @ 11” 0.0027 #5 @ 6.5” 16x36 24x36 1.85 
M-03-4-CCC0812 36 48 40 0.0293 0.0043 0.0031 #5 @ 11” 0.0027 #5 @ 6.5” 16x36 8x12 1.85 
M-09-4-CCC2436 36 48 40 0.0293 0.0043 0.0086 #5 @ 4” 0.0027 #5 @ 6.5” 16x36 24x36 1.85 
M-02-4-CCC2436 36 48 40 0.0293 0.0043 0.0022 #4 @ 10” 0.0022 #5 @ 8” 16x36 24x36 1.85 
M-03-2-CCC2436 36 48 40 0.0293 0.0022 0.0031 #7 @ 11” 0.0027 #5 @ 6.5” 16x36 24x36 1.85 
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3.3 FABRICATION OF SPECIMENS 

All of the test specimens were fabricated in the Ferguson Structural Engineering 

Laboratory at the University of Texas at Austin.  Each beam took approximately two 

weeks to fabricate.    

3.3.1 Steel Reinforcement 

Grade 60, deformed reinforcement satisfying the requirements of ASTM A615 

was used in the test specimens.  Three or four tensile coupons were ordered for each bar 

size in every batch of rebar shipped from the manufacturer.  The tensile strength of the 

coupons was measured in accordance with ASTM A370 with a universal testing machine.  

The tensile strength of the longitudinal and web reinforcement for all test specimens, as 

measured from the coupon tests, is provided in Section 4.2.   

3.3.2 Concrete Mixture Design 

Ready-mix concrete designed for 4,000 psi strength at 28 days was used in the 

test specimens.  The mixture design included Type I cement and ¾-inch river rock coarse 

aggregate.  The concrete mixture design is presented in Table 3.7.  The compressive 

strength of concrete was measured in accordance with ASTM C39 for standard 4”x8” 

cylinders.  The measured compressive strength of concrete for each specimen is provided 

with the summary of experimental results in Section 4.2.   
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Table 3.7: Concrete mixture design 

Material Quantity 
Type I Portland Cement 300 to 317 lb/cy 
Fly Ash 79 to 83 lb/cy 
CA: ¾” River Rock 1800 to 1850 lb/cy 
FA: Sand 1370 to 1515 lb/cy 
Water 29 to 31 gallons/cy 
HRWR* Admixture 15 to 20 oz/cy 
Set Retardant Admixture 6 oz/cy 
Water/Cement Ratio 0.62 to 0.68 
Slump 4 to 8 inches 

*HRWR: High Range Water Reducing (i.e. Superplasticizer) 

3.3.3 Construction of Specimens 

The reinforcing steel was delivered in the specified lengths and with the 

appropriate bends from a local supplier.  The reinforcement cages were assembled in the 

laboratory and upon completion, were moved to the casting area.  The specimens were 

cast in the same orientation that they were tested.  Since the specimens were loaded with 

a point load at the bottom of the beam, the primary longitudinal (tension) reinforcement 

was placed at the top of the section.  Likewise, compression reinforcement was placed at 

the bottom of the section.   

The concrete used to fabricate the test specimens was provided by a local ready-

mix supplier.  A slump test was performed according to ASTM C143 upon the arrival of 

the mixing truck to the laboratory.  The targeted slump was between 4 in. and 8 in.  In 

some cases, water was added to meet the targeted slump range.  However, the additional 

water did not exceed the recommended limit on the batch ticket.   

A minimum of twelve 4”x8” cylinders were made with each beam.  The cylinders 

were cast at the same time as the test specimen in accordance with ASTM C31 and were 

cured under the same ambient conditions.  A plastic tarp was placed on top of the 

cylinders to limit the loss of water due to shrinkage.   
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The Series I through IV specimens were cast with steel formwork.  The concrete 

was placed in the formwork via a 1-yard overhead hopper in approximately 3 lifts.  Upon 

placement of each hopper of concrete, external vibrators attached to a sliding track on the 

steel formwork helped consolidate the concrete.  Internal rod vibrators, or stingers, were 

used to help consolidate the concrete near the top of the section.  The specimens cured 

under the ambient temperature in the laboratory with a plastic tarp positioned across the 

top of the beam. 

An illustration of the fabrication procedure for a 21”x42” specimen is presented in 

Figure 3.19. 
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(a)      (b) 

  
(c)      (d) 

  
(e)      (f) 

Figure 3.19: Fabrication of a typical beam: (a) assembly of reinforcement cage (b) 

placement of cage in formwork (c) forms in place prior to concrete placement (d) 

placement of concrete (e) beam curing (f) test specimen after the removal of forms 

(Tuchscherer, 2008) 
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The fabrication of the 21”x23” and the 21”x75” specimens was carried out in a 

similar fashion to that of the 21”x42” specimens.  For the 23-inch deep specimens, 

smaller 24-inch tall steel side forms were used to cast the beams.  For the 75-inch 

specimens, the 24-inch side forms were bolted to the top of the original 52-inch tall side 

forms with 33 – 5/8-inch diameter bolts.  A couple of pictures illustrating the fabrication 

of a 21”x75” specimen are provided in Figure 3.20.   

 

(a) (b) 

Figure 3.20: Fabrication of a 21”x75” beam: (a) movement of reinforcement cage into 

formwork (b) placement of concrete into steel formwork 

The Series M specimens (36”x48”) were cast with wooden formwork.  Numerous 

crossties and wooden kickers were used to provide lateral stability to the formwork.  

Internal rod vibrators were used to aid in the consolidation of the concrete.  Since steel 

formwork and formwork-attached vibrators were not used, a clear cover of 2 in. was 

provided for these specimens.  Also, two steel ducts were placed at the ends of each beam 

to allow 3-inch diameter rods to pass through the member during testing.  The fabrication 

of a 36”x48” specimen is illustrated in Figure 3.21.   
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(a) (b) 

Figure 3.21: Fabrication of a 36”x48” beam: (a) tied reinforcement cage with steel 

ducts (b) placement of concrete into wooden formwork (Huizinga, 2007) 

For the 21”x75” and the 36”x48” specimens, two ready-mix trucks were required 

to supply enough concrete to cast each individual specimen.  Both trucks were filled with 

the same mixture design from the same batch plant.  In every case, the second truck 

arrived approximately 30 minutes after the first truck.  This schedule kept the idling time 

for the second truck at a minimum and eliminated the presence of a cold joint.  Standard 

4”x8” cylinders were prepared from the concrete in each truck.  The measured concrete 

strength from one truck was generally within 20% of the strength of the other.  The 

compressive strength values reported for these large specimens were the weighted 

average of the results of three cylinders from each truck on the day of the test.   

After casting, all of the specimens were moved into the test setup with an 

overhead crane.  Two- or three-inch diameter steel bars were inserted into PVC sleeves 

that were cast in the specimen.  The PVC sleeves were placed directly below the primary 

tension reinforcement outside of the test region, where possible.  Large steel cables were 

looped around the steel bars immediately adjacent to the side of the specimen to limit 

bending of the bars.  The specimen was then lifted and placed in the test setup with an 

overhead, 25-ton capacity crane. 
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3.4 TESTING FRAME 

To load the specimens to failure, a test setup was designed in the Phil M. 

Ferguson Structural Engineering Laboratory (FSEL).  The setup was designed around a 

96,000-pound steel platen that was used as a strong floor.  Previously, the steel platen 

was the lower reaction floor of a six-million pound capacity testing frame that was 

decommissioned by the U.S. Navy and donated to FSEL.  The construction of the test 

setup is illustrated in Figure 3.22.  Details of the test setup with a 21”x42” specimen in 

position are depicted in Figure 3.23 and Figure 3.24.  For additional information 

regarding the construction of the test frame refer to Huizinga (2007).     
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(a)      (b) 

  
(c)       (d) 

 
(e) 

Figure 3.22: Installation of strong floor: (a) steel platen (b) floor excavation (c) 

fabrication of platen support (d) lowering of platen into position, and (e) test setup 

(Tuchscherer, 2008) 
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Figure 3.23: Elevation view of test setup (Huizinga, 2007) 
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Figure 3.24: Section view of test setup 

The test setup was designed for an upside-down simply-supported beam test.  The 

load was applied via a 6 million pound capacity, double-acting hydraulic ram.  At each 

support, 6 – 3-inch diameter, threaded rods resisted the applied load.  The setup is self-

equilibrating in that the applied loads are resisted within the test frame, not by the 

surrounding concrete floor.  In the current configuration, the test setup can resist a shear 

force of approximately 1.5 million pounds or an applied load at midspan of 

approximately 3 million pounds.  

At each support, pin connections were created with two 2-inch steel plates 

sandwiching a two-inch diameter steel bar.  The bar was welded to the bottom plate to 
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simulate a pinned connection.  Horizontal movement was permitted by the flexibility of 

the 6 threaded rods at each support.  A thin layer of hydrostone was applied to the top 

surface of the test specimens at the location of the support plates to provide a planar 

reaction surface.  At the applied load, rotation was permitted with a 3-inch diameter steel 

bar.  The bar was allowed to roll freely between two four-inch thick steel plates.  A 

smaller ½-inch thick steel plate was placed on top of the upper 4-inch plate to obtain the 

desired size of the load plate.  Hydrostone was also placed between this plate and the 

bottom surface of the test specimen to obtain a planar bearing surface.   

The two internal reaction rods of the setup are positioned to accommodate a 21”-

wide specimen between them.  This was the reason for the selection of the 21” dimension 

in the majority of the test specimens.  For the 36”x48” specimens, the two internal 

reaction rods passed through the ends of the beam via the steel ducts that were placed in 

the specimen prior to casting.   

Also, it is important to note that the test setup was slightly adjusted to 

accommodate the smaller sized 21”x23” specimens.  A 2 million pound capacity ram was 

used to load the specimens, a 12-inch thick steel plate was used as a spacer beneath the 

ram, and back-to-back channel assemblies were used as spacers between the roller 

supports and the transfer beam.  A picture of a 21”x23” specimen in the test setup is 

provided in Figure 3.25.    

 

 
Figure 3.25: 21”x23” specimen in test setup 
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3.5 INSTRUMENTATION  

Several different instruments were used to obtain data during the tests in the 

experimental program.  The instruments included electrical strain gauges, linear 

potentiometers, load cells, and crack comparator cards.  Details regarding each of these 

devices are provided in this section.   

3.5.1 Strain Measurements using Reinforcing Bars 

Strain gauges were affixed to the transverse and longitudinal reinforcement in 

order to measure the change in strain. The gauge type was FLA-3-11-5LT manufactured 

by Tokyo Sokki Kenkyujo Co. These gauges are intended for general purpose mild steel 

applications. The width and length of the gauges were 1.5- and 3-mm, respectively, with 

a resistance of 120 ohms (± 0.5) (Figure 3.26).  The surface of the reinforcement was 

lightly sanded and polished to provide a relatively smooth surface for the application of 

the strain gauges.  Care was taken not to significantly reduce the cross section of the 

reinforcement.  The gauges were glued to the reinforcement, sealed with acrylic, 

protected with a neoprene pad, and taped to further isolate them from the water in the 

concrete.  

 

   
Figure 3.26: Installation of strain gauge on mild reinforcement (Tuchscherer, 2008) 

Typical locations of internal strain gauges for the Series III and IV specimens are 

illustrated in Figure 3.27.  The location of internal gauges in the specimens in other series 

can be found elsewhere (Birrcher et al., 2009).  They were not included herein because 

the strain gauge data for these specimens was not used in the tasks discussed in this 

dissertation. 
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Figure 3.27: Typical internal strain gauge locations for Series III and IV 

Strain gauges were attached to both legs of stirrups along the assumed centerline 

of the inclined strut.  They were also attached to the horizontal bars on each face at the 

intersection with the assumed diagonal strut.  The purpose of locating a gauge along the 

strut centerline was to measure steel strains at or close to the primary diagonal splitting 

crack.   

The strain in the primary tension reinforcement was also monitored in each 

specimen.  At the location of the applied load, the longitudinal strain was measured in at 

least three of the bars in the outermost layer of reinforcement (Figure 3.27).  The purpose 

of providing gauges at this location was to monitor the maximum strain in the 

reinforcement as the beam was loaded to failure.  Additional strain gauges were attached 

to the longitudinal reinforcement along the test region (Figure 3.27).  The purpose of 

these gauges was to monitor the strain in the primary tension tie throughout the shear 

span.  Other researchers have monitored strain in a similar fashion to compare the 

behavior of the test specimen to an assumed strut-and-tie model (Moody et al., 1954; 

Watstein and Mathey, 1958; Rogowsky et al., 1986; Quintero-Febres et al., 2006; and 

Tan et al., 2007).  In a single-panel strut-and-tie model, the force in the primary tension 

tie is constant throughout the shear span.  Therefore, the strain gauge data from the 

Gauges on Stirrups and Horizontal Bars

Gauges at Load Point and along 
Shear Span (extreme layer)
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longitudinal reinforcement were used to assess the applicability of a single-panel STM 

for several a/d ratios and specimen sizes.   

3.5.2 Load and Displacement Measurements 

The reaction at each support was measured by 500-kip capacity load cells.  They 

were placed between the transfer beam and the nuts on each of the 12 threaded rods, 6 at 

each support.  The load cells at one support are illustrated in Figure 3.28.  The load cells 

were individually calibrated in a universal testing machine.  Also, readings from the load 

cells at the supports were confirmed with the use of a pressure transducer in the feed line 

of the hydraulic ram.   

 
Figure 3.28: Load cells placed on each reaction rod 

The displacement of the beam during testing was measured with 6-inch linear 

potentiometers located at the supports, the applied load, and the midspan of the beam.  

The position of the linear potentiometers is depicted in Figure 3.29.   

Specimen

Roller 
Support

Transfer 
Beam

Load Cells

Threaded Rods
Reaction Nuts



 82

 
Figure 3.29: Location and picture of linear potentiometers  

At the beginning of a test, rigid body motion due to the beam being lifted off of 

the supports by the asymmetrically-applied load was recorded.  During the test, additional 

rigid body motion due to the small elongation of the threaded rods and deformation of the 

beam due to the effects of the applied load were measured.  An illustration of the rigid 

body motion and beam deformation early in the test is presented in Figure 3.30.  An 

illustration of the rigid body motion (sans differential elongation of the threaded rods) 

and beam deformation after both transfer girders engaged the reaction nuts is presented in 

Figure 3.31.  It is important to note that the shear in the test region was accurately 

measured throughout this loading history due to the location of the load cells on each 

support rod.  The beam displacement at the location of the load throughout the test, 

ΔBEAM, was determined according to Equation 3-1. 

 



 83

 
Figure 3.30: Diagram of beam displacements due to rigid body motion and flexural 

and shear deformations early in the test (Tuchscherer, 2008) 

 
Figure 3.31: Diagram of beam displacements due to rigid body motion and flexural 

and shear deformations after all reaction nuts are engaged 

( ) ( )FARNEARFARRBM 1 ΔΔαΔΔ −⋅−+=  (3.1) 

RBMLOADBEAM Δ−Δ=Δ  

where  ΔRBM = Displacement due to rigid body motion 

ΔNEAR = Recorded displacement at near reaction point 

ΔFAR = Recorded displacement at far reaction point 

ΔLOAD = Recorded displacement at load point 

ΔBEAM = Displacement due to flexural and shear deformations 
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3.5.3 Crack Width Measurements 

Diagonal crack width measurements were collected for the test specimens as part 

of the experimental program. At each load increment, the maximum width of any 

diagonal crack was recorded on each face of the shear span under investigation.  The 

measurements were obtained by graduate students with the use of a crack comparator 

card (Figure 3.32).  The measurements from the two students were averaged producing 

diagonal crack width data at each load increment for each face of the test specimen.  No 

distinction was made between flexure-shear cracks or web-shear cracks.  As long as the 

crack formed a significant angle with respect to the vertical, it was considered a diagonal 

crack.  A picture illustrating the crack width measurement for a 21”x75” test specimen is 

shown in Figure 3.32.   Due to the size of these specimens, scaffolding was needed to 

access it. 

 

 
Figure 3.32: Example of crack width measurement technique 

3.6 TEST PROCEDURE 

Beams were loaded monotonically in 50- to 150-kip increments depending on the 

conditions of the test.  Generally, the amount of load in each increment was taken as 10% 

of the expected capacity.  Cracks were marked and the width of the widest diagonal shear 

crack on each face of the specimen was recorded at each load break.  In addition, 

IV-2175-1.85-03
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photographs were taken from a tripod at each load break to illustrate the crack growth 

throughout the test.  The behavior of the specimen throughout the test and at failure was 

recorded with a video camera.   

Two tests were conducted on each beam.  First, the beam was loaded near one 

support corresponding to the appropriate a/d ratio.  The behavior of the specimen was 

monitored until failure was reached in the test region.  Then, external post-tensioned 

clamps were installed to strengthen the previously sheared portion of the beam.  The 

hydraulic ram was moved to the opposite end of the beam and positioned based on the 

appropriate a/d ratio.  The beam was loaded again, and the behavior of the second test 

region was monitored.  Overall, thirty-seven tests were conducted on 19 beams fabricated 

in Project 5253.  Pictures illustrating the appearance of a 42-inch beam prior to the first 

and second test conducted on it are presented in Figure 3.33. 
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Figure 3.33: Each end of a beam is loaded to failure resulting in two tests: (a) shear 

failure in Test Region A (b) and shear failure in Test Region B with external post-

tensioned clamps in Test Region A (Tuchscherer, 2008) 

During the first test of each 42- or 48-inch specimen, the low-shear span was 

subjected to shear up to 40% of its capacity.  Under this amount of load and 

corresponding moment, the specimen generally cracked.  Therefore, the second test of 

each 42- or 48-inch beam was conducted on a pre-cracked shear span.  As a result, the 

load at first diagonal cracking was only obtained for the first test of each 42- or 48-inch 

Test Region A

Test Region B

Failure Crack

Failure Crack

External Clamps

(a)

(b)
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specimen.  For the 23-inch specimens, the region for the second test remained uncracked 

during the first test due to the low level of shear and moment in the region of the second 

test.  For the two 75-inch specimens, the size of the specimen was chosen such that the 

resulting a/d ratios on each side of the beam matched the appropriate a/d ratios of the 

experimental program.  Therefore, two tests were conducted simultaneously for these two 

beams.  Both sides of the beam were monitored during the start of the test.  After one side 

of the beam failed, the applied load was removed and external post-tensioned clamps 

were attached to the failed shear span as before.  Then, the load was reapplied at the same 

location until the other side of the beam failed.  In both cases, the external clamps 

provided enough additional shear strength to obtain a shear failure in the opposite span.  

Pictures illustrating the two tests IV-2175-2.5-02 and IV-2175-1.2-02 are provided in 

Figure 3.34.   
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Figure 3.34: Hydraulic ram was not moved for 75-inch specimens: (a) shear failure in 

Test Region A (b) shear failure in Test Region B with external post-tensioned clamps 

in Test Region A 

Nineteen beams were tested in the aforementioned manners, i.e. two tests on each 

beam.  One test on a 36”x48” specimen was a pilot test in which the size of the load plate 

was changed twice prior to reaching failure in the specimen.  The results of this test are 

not included in this report since the bearing plate dimensions were not constant in the 

test.  As such, 37 valid tests were conducted in the experimental program.    

The photographs of the test regions in this dissertation are generally rotated so 

that the shear region is viewed like a typical simply-supported beam test, i.e. with the 

load applied from the top.  A picture of a 42-inch beam loaded at an a/d ratio of 1.2 in the 
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test setup is presented in Figure 3.35 (a).  A rotated picture of the test region consistent 

with the failure photographs presented throughout this dissertation is provided in Figure 

3.35 (b). 

  

 
Figure 3.35: a). Location of test region pictures. b). Picture of failure of test region 

rotated to orient cracks like that of conventional simple beam test 

3.7 SUMMARY 

In this chapter, details of the experimental program were provided.  Test 

specimens of comparable size to field members were designed and tested to address the 

project objectives.  Overall, thirty-seven tests were conducted on 19 beams with the 

following cross-sections: 21”x23”, 21”x42”, 21”x44”, 21”x75”, and 36”x48”.  The sizes 

Test region picture location

a)

b)



 90

of the test specimens were shown to be among the largest deep beams available in the 

literature. 

Two static tests were conducted on each beam, with the exception of one beam in 

which only one test was conducted.  During each test, several instruments were 

monitored.  They included 500-kip capacity load cells on each support rod, electrical 

strain gauges on the rebar, and linear potentiometers measuring the deflection of the 

beam.  Also, the maximum width of diagonal cracks was recorded during each load 

increment on both sides of the test region.  
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CHAPTER 4 
Experimental Results 

 

4.1 OVERVIEW 

In this chapter, the experimental results of the testing program are presented.  A 

summary of the results of the 37 tests conducted in TxDOT Project 5253 and basic 

information regarding the evaluation of the test results are presented in Section 4.2.  The 

effect of the amount of minimum web reinforcement and of the member depth on the 

strength and serviceability of reinforced concrete deep beams is discussed in detail in 

Sections 4.3 and 4.4, respectively.   

4.2 SUMMARY OF EXPERIMENTAL RESULTS 

The experimental results for the 37 tests conducted in the experimental program 

are presented in Table 4.1.  Other important details of the test specimens were provided 

previously in Table 3.6.  The variables used in Table 4.1 are defined as follows: 

bw  = beam width, in. 

d  = distance form extreme compression fiber to centroid of tensile 

reinforcement, in. 

f′c  = compressive strength of concrete at the time of testing measured in 

accordance with ASTM C39, psi. 

fyl  = yield strength of longitudinal reinforcement measured in accordance 

with ASTM A370, ksi. 

fyv  = yield strength of vertical web reinforcement measured in 

accordance with ASTM A370, ksi. 

fyh  = yield strength of horizontal web reinforcement measured in 

accordance with ASTM A370, ksi. 
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a/d ratio = shear span-to-depth ratio 

Vcrack  = shear carried in the test region when the first diagonal crack formed, 

kips 

  Specific details regarding the determination of the diagonal 

cracking load are presented in Section 4.2.2 

Vtest  = maximum shear carried in test region, including the estimated self 

weight of the specimen and transfer girders, kips 

  Specific details regarding the determination of the applied shear 

force are presented in Section 4.2.1 

 



 93

Table 4.1: Summary of experimental results. 

Beam I.D. bw 

in. 

d 

in. 
f′c 

psi 

fyl 

ksi 

fyv 

ksi 

fyh 

ksi 

a/d 

ratio 

Vcrack 

kip db'f

V

wc

crack

⋅
 Vcrack 

/ Vtest 

Vtest  

kip db'f
V

wc

test
⋅

 
db'f

V

wc

test
⋅

I-03-2 21 38.5 5240 73 67 67 1.84 144 2.5 0.25 569 0.13 9.7 
I-03-4 21 38.5 5330 73 73 67 1.84 - - - 657 0.15 11.1 
I-02-2 21 38.5 3950 73 67 67 1.84 121 2.4 0.27 454 0.14 8.9 
I-02-4 21 38.5 4160 73 73 67 1.84 - - - 528 0.16 10.1 

II-03-CCC2021 21 38.6 3290 64 65 65 1.84 139 3.0 0.28 500 0.19 10.7 
II-03-CCC1007 21 38.6 3480 64 65 65 1.84 - - - 477 0.17 10.0 
II-03-CCT1021 21 38.6 4210 66 71 71 1.84 - - - 635 0.19 12.1 
II-03-CCT0507 21 38.6 4410 66 71 71 1.84 146 2.7 0.24 597 0.17 11.1 
II-02-CCT0507 21 38.6 3120 69 64 63 1.84 94 2.1 0.23 401 0.16 8.9 
II-02-CCC1007 21 38.6 3140 69 64 63 1.84 - - - 335 0.13 7.4 
II-02-CCC1021 21 38.6 4620 69 67 62 1.84 132 2.4 0.40 329 0.09 6.0 
II-02-CCT0521 21 38.6 4740 69 67 62 1.84 - - - 567 0.15 10.2 

III-1.85-00 21 38.6 3170 66 - - 1.84 98 2.1 0.27 365 0.14 8.0 
III-2.5-00 21 38.6 3200 66 - - 2.47 - - - 82 0.03 1.8 
III-1.85-02 21 38.6 4100 69 64 62 1.84 112 2.2 0.23 488 0.15 9.4 
III-1.85-025 21 38.6 4100 69 64 73 1.84 - - - 516 0.16 9.9 
III-1.85-03 21 38.6 4990 69 64 63 1.84 137 2.4 0.33 412 0.10 7.2 
III-1.85-01 21 38.6 5010 69 63 73 1.84 - - - 273 0.07 4.8 



 94

Table 4.1 (cont.’d): Summary of experimental results. 

Beam I.D. bw 

in. 

d 

in. 

f′c 

psi 

fyl 

ksi 

fyv 

ksi 

fyh 

ksi 

a/d 

ratio 

Vcrack 

kip 
 

Vcrack / 

Vtest 

Vtest  

kip 
 

 

III-1.85-03b 21 38.6 3300 69 62 67 1.84 114 2.4 0.24 471 0.18 10.1 
III-1.85-02b 21 38.6 3300 69 62 62 1.84 - - - 468 0.17 10.1 
III-1.2-02 21 38.6 4100 66 60 60 1.20 165 3.2 0.20 846 0.25 16.3 
III-1.2-03 21 38.6 4220 66 68 68 1.20 - - - 829 0.24 15.7 
III-2.5-02 21 38.6 4630 66 62 62 2.49 105 1.9 0.35 298 0.08 5.4 
III-2.5-03 21 38.6 5030 66 65 65 2.49 - - - 516 0.13 9.0 
IV-2175-1.85-02 21 68.9 4930 68 66 66 1.85 216 2.1 0.28 763 0.11 7.5 
IV-2175-1.85-03 21 68.9 4930 68 66 66 1.85 218 2.1 0.26 842 0.12 8.3 
IV-2175-2.5-02 21 68.9 5010 68 64 64 2.50 144 1.4 0.28 510 0.07 5.0 
IV-2175-1.2-02 21 68.9 5010 68 64 64 1.20 262 2.6 0.21 1223 0.17 11.9 
IV-2123-1.85-03 21 19.5 4160 66 66 66 1.85 60 2.3 0.18 329 0.19 12.5 
IV-2123-1.85-02 21 19.5 4220 66 81 81 1.85 65 2.4 0.19 347 0.20 13.0 
IV-2123-2.5-02 21 19.5 4570 65 58 64 2.50 51 1.8 0.32 161 0.09 5.8 
IV-2123-1.2-02 21 19.5 4630 65 58 64 1.20 124 4.5 0.21 592(f) 0.31 21.2 
M-03-4-CCC2436 36 40 4100 67 61 61 1.85 354 3.8 0.31 1128 0.19 12.2 
M-03-4-CCC0812 36 40 3000 65 63 63 1.85 - - - 930 0.22 11.8 
M-09-4-CCC2436 36 40 4100 67 61 61 1.85 - - - 1415(f) 0.24 15.3 
M-02-4-CCC2436 36 40 2800 65 63 63 1.85 256 3.4 0.23 1102 0.27 14.5 
M-03-2-CCC2436 36 40 4900 68 62 62 1.85 - - - 1096(i) 0.16 10.9 
(f) Maximum shear carried at flexural failure – yielding of tensile reinforcement and concrete crushing at the compression face 
(i) Maximum shear carried upon initiation of yielding of tensile reinforcement and crushing of concrete at compression face  

db'f

V

wc

crack

⋅ db'f
V

wc

test
⋅ db'f

V

wc

test
⋅
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4.2.1 Evaluation of Strength Data 

The shear strength of the test specimens, Vtest in Table 4.1, was the shear at the 

critical section at the maximum applied load.  The critical section was defined as the 

point halfway between the support and the applied load in the test region.  At this 

location, a portion of the beam weight and the weight of one transfer girder was added to 

the load cell readings from the near support to obtain the appropriate shear.  The equation 

for calculating Vtest is provided in Figure 4.1.  In Figure 4.1, RA and RB denote the 

reactions measured by the load cells.  PTR represents the weight of each blue transfer 

girder (7.8 kips), and PD represents the weight of the test specimen.  For the 23-in. 

specimens, a spacer was provided between the transfer girder and the roller support that 

effectively increased PTR from 7.8 kips to 8 kips.   
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Figure 4.1: Free-body and shear force diagram for typical test (Tuchscherer, 2008)  

It should be noted that three specimens in the experimental program failed in 

flexure.  These specimens are denoted with an (f) or an (i) in Table 4.1.  The values of 

Vtest in Table 4.1 for these specimens are the shear in the test region at flexural failure.  

The test results were considered valid since a strut-and-tie analysis inherently considers 

both shear and flexural failures.  Furthermore, beams are often designed such that flexure 

governs.  As a result, it was determined that the results of these specimens should be 

included in all of the analyses.  Where appropriate, a flexural failure note was attached to 

the data from these specimens.  In general, the rest of the specimens in the experimental 

program failed in shear.  For the beams loaded with an a/d ratio < 2, the failure was 

consistent with a direct-strut transfer mechanism.  That is, failure ensued after crushing 

along a direct strut between the load and the support or at the nodal regions.  For the 

ωDL

a L - a

L

PL + PD + 2PTR

RA RB

PTR PTR

a/2

LH LH

Vtest = ωDL·(LH + a/2) + RA + PTR

PL = RA + RB

PD = ωDL·(2LH + L)

L = 255.25”

LH = 38.375”

PTR = 7.8 kip

WHERE,

ω36x48 = 1.80 kip/ftω21x42 = 0.92 kip/ft

ω21x44 = 0.96 kip/ft

ω21x23 = 0.49 kip/ft ω21x75 = 1.63 kip/ft
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beams loaded with an a/d ratio > 2, the failure was consistent with a sectional shear 

failure.  The specific failure modes of many of the specimens are discussed individually 

in Chapters 4 and 5.   

Traditionally, the shear capacity of test specimens is normalized by the cross-

sectional dimensions and the strength of concrete to account for variations in section size 

and concrete strength.  For experimental loads that are associated with the tensile strength 

of concrete, such as the diagonal cracking load or the sectional shear (diagonal tension) 

strength of a member, it is appropriate to normalize the value by 'f c .  For experimental 

loads that are associated with the compressive strength of concrete, such as the capacity 

of a deep beam, it is appropriate to normalize the value by fc′.  In Table 4.1, the diagonal 

cracking loads of the test specimens are normalized by 'f c bwd, and the capacity of the 

test specimens are normalized by both fc′bwd and 'f c bwd.  Regarding the capacity, both 

normalization techniques were utilized since different modes of failures were observed in 

the test specimens.  At low a/d ratios (< 2.0), the mode of failure was generally consistent 

with the crushing of a direct strut between the load and the support.  Normalizing the 

capacity by fc′bwd was appropriate for these specimens.  At higher a/d ratios (> 2.0), the 

mode of failure was often consistent with a sectional shear (or diagonal tension) failure.  

Normalizing the capacity by 'f c bwd was appropriate for these specimens.  It should be 

noted that the only difference between the normalization techniques is the manner with 

which the strength of concrete is taken into account.      

One exception to the aforementioned normalization techniques is for deep beams 

of significantly different depths.  Normalizing the shear capacity of a deep beam by fc′bwd 

suggests that the capacity of the member is a function of the section size.  A strut-and-tie 

model analysis would suggest that the strength of a deep beam is a function of the nodes, 

struts, and ties, not the depth explicitly.  As such, when comparing the strength of deep 

beams with significantly different depths, normalizing the capacity by fc′bwd can impose 

unwanted errors.  This issue is addressed specifically in Section 4.4.  When comparing 
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the strength of deep beams with similar depths however, normalizing the capacity by 

fc′bwd is appropriate and is therefore used throughout this report. 

4.2.2 Evaluation of Serviceability Data 

In the experimental program, the diagonal cracking loads and the maximum width 

of all diagonal cracks at each load increment were obtained to measure serviceability 

performance.   

The first diagonal cracking load was determined by a sudden increase in strain 

measured by gauges affixed to the web reinforcement and was confirmed by visual 

observation.  The magnitude of shear at which the stirrup strains increased abruptly was 

considered to be the first diagonal cracking load (Figure 4.2).  This load was confirmed 

with the diagonal cracking load obtained by visual inspection during each test.  In 

general, the first diagonal crack formed at a 45-degree angle with respect to the load 

plate.  It usually extended from a pre-existing flexural crack or formed simultaneously 

with a flexural crack.  In all cases, the first diagonal crack extended beyond the mid-

depth of the member and formed a considerable angle with respect to the vertical.  An 

example of the determination of the first cracking load is presented in Figure 4.2.  The 

‘E’ and ‘W’ symbols in the figure represent the east and west side of the beam, 

respectively. 
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Figure 4.2: Visual and experimental determination of diagonal cracking load 

(Tuchscherer, 2008) 

As noted in Section 3.6, the diagonal cracking loads were only obtained for the 

first test of each 42-, 44-, and 48-in. specimen.  The region for the second test of each 42-

, 44-, and 48-in. specimen was cracked during the first test.  Diagonal cracking loads 

were obtained for both tests on the 23- and 75-in. specimens.  

The maximum width of the diagonal cracks in each specimen was also monitored 

throughout the test to evaluate the serviceability performance of deep beams.  In general, 

the maximum width of a diagonal crack was near the midheight of the member.  As noted 

in Section 3.5.3, these measurements were recorded using crack comparator cards.  

Measurements were obtained on each face of the test region by two students.  The 

measurements between the students were averaged such that, at a given load level, two 

crack width values were recorded that represent the maximum crack width on each face 

of the test specimen as an average of two independent measurements.  If two data points 

do not exist at a given load level, then the width of the diagonal cracks were identical on 

both sides of the test region.  An example of the presentation of crack width data is given 

in Figure 4.3.  An approximate service load level and a benchmark crack width are 
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presented with the crack width data.  Explanations for these values are given later in this 

section. 

 

 
Figure 4.3: Sample crack width data for all series 

In this dissertation, the crack width data are plotted versus the percent of the 

maximum applied load.  This method was chosen to be consistent with the correlation of 

crack width to capacity objective of the research project (Section 5.4).  Also, it was 

evident from the trends in the data that the width of diagonal cracks was proportional to 

the percent of maximum applied load.     
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specifying distinct limits for crack widths was impractical.  Similar limits were found in 

ACI 224R-01: Control of Cracking in Concrete Structures.  A tolerable crack width of 

0.012 in. was suggested for moist conditions; a tolerable crack width of 0.016 in. was 

suggested for dry conditions.  In the concrete design recommendations developed by the 

fédération international du béton (fib; i.e. international concrete federation), the same 

tolerable crack widths that existed in ACI 224R-01 were provided.  Again, they were a 

function of the exposure condition of the member.  Even though these limits were 

intended for flexural crack widths, they provide the only available guidance for tolerable 

crack widths in reinforced concrete structures.  The tolerable crack widths are shown in 

Table 4.2. 

Table 4.2: Tolerable widths of flexural cracks 

Exposure Condition ACI 224R-01 (in.) fib (1999) (in.) 
Dry air, protective membrane, indoors 0.016 0.016 
Humidity, moist air, soil, cyclic wet and dry 0.012 0.012 

    

It is likely that the tolerable crack width limits in Table 4.2 are intended to 

represent average crack widths to be used with design.  The following quote is present in 

ACI 224R-01 in reference to these limits: 

It should be expected that a portion of the cracks in the structure will 
exceed these values…These are general guidelines for design to be 
used in conjunction with sound engineering judgment. 

(ACI 224R-01, 2001) 

In view of the above quote (similar statements exist in fib (1999)), it may not be 

appropriate to directly compare the crack width limits in Table 4.2 to the maximum 

diagonal crack width data obtained in this study.   

In an internal discussion amongst the members of the project team, it was 

determined that a crack width of 0.016 in. is the typical crack width at which attention is 

triggered in TxDOT (Vogel, 2008).  Based on this discussion, a maximum crack width of 

0.016 in. was used as a benchmark of performance in the current study.  It is important to 

note that 0.016 in. is not endorsed as a tolerable crack width.  The value of 0.016 in. can 
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be viewed as a liberal limit with which to gauge performance.  A stricter limit is more 

appropriate for aggressive climates.  

In conjunction with a crack width benchmark, an approximate service load as a 

function of the capacity of the test specimen was used to evaluate the crack width data.  

In a study by Tan and Lu (1999), the serviceability load was taken as the load at which 

the width of a diagonal crack reached a tolerable crack width limit.  However, in the 

current project, it was determined that a service load independent of crack widths should 

be used.  In a study by Grob and Thürlimann (1976), the service load was assumed to be 

equal to the theoretical capacity of the specimen divided by a global safety factor of 1.8.  

A similar approach to estimate the service load was used in the current study as detailed 

in Figure 4.4. 

 
Figure 4.4: Estimate of service load as a function of experimental capacity 

As shown in Figure 4.4, the LRFD strength equation can be re-written such that 

the ratio of the strength reduction factor (φ) to the load factor (η) is approximately equal 

to the ratio of the service load to the nominal capacity.  The φ factor for compression 
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elements in a strut-and-tie model is 0.70 in AASHTO LRFD (2008).  The η factor is a 

function of the load case and the distribution of the loads for that particular case.  If the 

following two assumptions are made, then η equals approximately 1.4: 

• Strength I in AASHTO LRFD governs design, 1.25DL + 1.75LL. 

• 75% of the service load is DL; 25% of the service load is LL. 

Lastly, the experimental capacity is taken as 1½ times the nominal capacity based 

on the strut-and-tie analysis of the evaluation database using the Project 5253 STM 

provisions discussed in Section 2.3.4.4.  On average, inherent conservatism in the strut-

and-tie modeling procedure resulted in experimental capacity being 1½ times the 

calculated capacity.  Since this calculation of the service load is used to evaluate the 

serviceability performance of the member, the use of an average ratio of experimental to 

calculated capacity is appropriate.  With the aforementioned methodology, the service 

load is calculated as 1/3 of the experimental capacity.  It is clear that several assumptions 

are needed to estimate the service load as a function of the capacity of deep beams.  Error 

in any of these assumptions can shift the estimated service load up or down accordingly.  

As such, it is important to treat this value (0.33) as a general representation of the service 

load on a deep beam.   

In the following two sections, the experimental strength and serviceability results 

related to minimum web reinforcement and member depth are discussed in detail. 

4.3 MINIMUM WEB REINFORCEMENT 

In this task, the effect of web reinforcement on the strength and serviceability 

behavior of reinforced concrete deep beams was evaluated.  The purpose of the task was 

to recommend minimum horizontal and vertical reinforcement that ensures adequate 

strength and serviceability performance of deep beams. 

4.3.1 Background 

Minimum reinforcement provisions that pertain to deep beam design or strut-and-

tie model design are compared for several different design specifications.  For reference, 
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two other provisions in AASHTO LRFD that specify web reinforcement are discussed as 

well.   

4.3.1.1 AASHTO LRFD 2008 and CHBDC 2006  

There are two different minimum horizontal and vertical reinforcement 

requirements for deep beam design in AASHTO LRFD 2008.  The first requirement is in 

the strut-and-tie model section (5.6.3.6) of the specification.  An orthogonal grid of 

reinforcement is required at each face such that the ratio of the total reinforcement to the 

gross concrete area is equal to 0.003 (0.3%).  The spacing of the reinforcement is limited 

to 12 in.  In the commentary, the following excerpt is found: 

This reinforcement is intended to control the width of cracks and to 
ensure a minimum ductility for the member so that, if required, 
significant redistribution of internal stresses is possible.  

(AASHTO C5.6.3.6, 2008) 

From this note in the commentary, it is evident that strength and serviceability 

were considered in this provision.  The same minimum reinforcement is required in the 

Canadian Highway Bridge Design Code (CHBDC, 2006). 

In Section 5.13.2.3 of AASHTO LRFD (2008), another minimum reinforcement 

provision for deep beams exists.  Equation 5.13.2.3-2 in AASHTO LRFD is rewritten as 

Equation 4.1 in this dissertation in terms of the reinforcement ratio.   

yv

s

fsb
A

φ
12.0

≥
 (4.1)  

 

with As = area of steel within a distance s (in.2) 

 bv = width of web (in.) 

 s = spacing of reinforcement (in.) 

 φ = resistance factor, 1.0 for tension members in STM 

 fy = yield strength of reinforcing steel (ksi.) 
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When fy is equal to 60 ksi and φ is equal to 1.0 (Section 5.5.4.2), a minimum 

reinforcement ratio of 0.002 is required.  Both vertical and horizontal reinforcement must 

meet Equation 4.1 and must be well distributed.  Maximum spacing for the vertical 

reinforcement is d/4 or 12 in.; maximum spacing for horizontal reinforcement is d/3 or 12 

in., where d is the effective depth of the section.  There is no indication in AASHTO 

LRFD (2008) as to whether this provision was based on strength or serviceability 

requirements. 

4.3.1.2 CSA A23.3-04 and fib (CEB-FIP) 1999 

The same minimum reinforcement requirements for deep beams are listed in the 

Canadian Building code and the fib recommendations.  An orthogonal grid of 

reinforcement is required at each face such that the ratio of the total reinforcement to the 

gross concrete area is equal to 0.002 (0.2%) (CSA A23.3-04 11.4.5, 2004 and fib 7.3.2, 

1999).  There is no indication in either document as to the specific purpose of the 

reinforcement, i.e. for strength or serviceability, or both.  Maximum spacing is restricted 

to 12 in. 

4.3.1.3 ACI 318-08 

There are two minimum reinforcement provisions that pertain to deep beam 

design in ACI 318-08.  If the deep beam design provisions in section 11.8 are used, then 

reinforcement ratios of 0.0025 and 0.0015 are required in the vertical and the horizontal 

directions, respectively.  Maximum spacing of the reinforcement in both cases shall not 

exceed d/5 or 12 in.  It is interesting to note that 0.25% reinforcement was required in the 

horizontal direction and 0.15% reinforcement was required in the vertical direction for 

this provision in ACI 318-71 through ACI 318-95.  Data obtained from research 

conducted by Rogowosky et al. (1986) indicated that vertical reinforcement was more 

effective than horizontal reinforcement in terms of the shear strength of deep beams.  As 

such, the provision was changed.  No indication of serviceability performance was 

reported in the paper by Rogowsky et al. (1986).  In the commentary, however, it is stated 

that the maximum spacing was reduced to 12 in. from 18 in. because “the steel is 
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provided to restrain the width of the cracks” (ACI 318-08 R11.8.4, 2008).  Therefore, 

while this provision may not be based on serviceability considerations, ACI 318 

acknowledges that the minimum reinforcement requirement should address 

serviceability. 

If the strut-and-tie requirements of Appendix A are used in deep beam design, 

then the minimum reinforcement provisions for concrete struts apply.  If a concrete strut 

efficiency factor, βs, of 0.75 is used, then reinforcement satisfying Equation 4.2 must be 

provided.  This reinforcement is “related to the tension force in the concrete due to the 

spreading of the strut” and is depicted in Figure 4.5 (ACI 318-08 RA.3.3).  Due to the 

(sin αi) term, this requirement favors the placement of reinforcement perpendicular to the 

axis of the strut, or the assumed inclination of the diagonal cracks.  However, there is no 

requirement for a minimum amount of reinforcement in either the horizontal or vertical 

directions.  If the same amount of reinforcement is desired in both directions, then 

Equation 4.2 requires a reinforcement ratio of approximately 0.0022 in each direction for 

the range of applicable values of theta, i.e. between 25 and 65 degrees.  If a more 

efficient placement of reinforcement is desired with a minimum of 0.0015 in each 

direction, the required reinforcement ratio in the horizontal and vertical directions are 

those depicted in Figure 4.6 and Figure 4.7, respectively.   

 

 
Figure 4.5: Deep beam showing nomenclature for Equation 4.2 
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 (4.2)  
 

with As = area of reinforcement in the i-th later crossing strut (in.2) 

 bs = width of strut perpendicular to the plane of reinforcement (in.) 

 si = spacing of reinforcement in i-th layer adjacent to member surface (in.) 

 αi = angle between axis of strut and i-th layer of reinforcement 

 

If a lower concrete strut efficiency factor, βs, of 0.60 is used with the strut-and-tie 

method of ACI Appendix A, no minimum reinforcement is required.  It is assumed that 

the tensile strength of the concrete can resist the transverse tension in the bottle-shaped 

struts depicted in Figure 4.5.  Relying on the tensile strength of concrete is not 

recommended due to its inconsistency.  The author believes this provision should be 

removed from ACI 318-08.   

4.3.1.4 TxDOT 4371 Minimum Reinforcement Recommendations 

In TxDOT Project 4371, an equation for minimum reinforcement was developed 

based on strength.  The reinforcement required to resist the transverse tension forces 

associated with spreading compressive stresses in a bottle-shaped strut is calculated with 

Equation 4.3 (Figure 4.5).  The equation is a function of the force in the strut and the 

slope of the angle of dispersion of the compressive stresses in the strut, m.  It was 

recommended that this slope be calculated with a variable angle of dispersion model 

developed by Schlaich and Weischede (1982).  When applied to the database, an 

equivalent reinforcement ratio perpendicular to the strut axis (ρ┴) of 0.0015 (0.15%) is 

required by Equation 4.3 on average.  Therefore, in general, half as much reinforcement 

is required according to Equation 4.3 compared to Equation 4.2.  This difference is 

primarily attributed to the variable angle of dispersion used in the 4371 approach as 

opposed to ACI which assumes that the slope of the angle of dispersion, m, is 2.  In the 

project 4371 report, it was stated that the amount of reinforcement according to Equation 

4.3 was intended for strength only; additional research was recommended to determine 
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the serviceability demand.  More detailed information of the 4371 minimum 

reinforcement recommendation and the variable angle of dispersion model can be found 

elsewhere (Brown et al., 2006).    
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ρ
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 (4.3)  
with νR = efficiency factor for reinforced struts developed in Project 4371 

 f 'c = compressive strength of the concrete (psi) 

 Ac = minimum cross-sectional area of the strut (in.2) 

 θ = angle of strut with respect to the horizontal 

 fy = yield strength of web reinforcement (psi) 

 b = width of strut (in.) 

 d = effective depth of the strut (in.) 

 m = slope of the angle of dispersion 

4.3.1.5 Other minimum reinforcement provisions in AASHTO LRFD 2008 

In addition to the aforementioned provisions for deep beams, there are other 

minimum web reinforcement requirements for reinforced concrete members.  Two 

relevant provisions include minimum transverse reinforcement required for members 

analyzed with a sectional shear model (i.e. Vc + Vs) and minimum skin reinforcement 

required for the webs of members with large depths.  For simplicity, only the AASHTO 

versions of these provisions are presented.   

In the sectional shear design provisions of AASHTO LRFD 2008, Equation 4.4 is 

listed.  With this equation, it is ensured that enough steel is present in the member to 

resist half of the concrete contribution to shear strength when performing a sectional 

analysis.  When the compressive strength of the concrete is 4 ksi and the yield strength of 

the steel is 60 ksi, a reinforcement ratio of 0.001 (0.1%) is specified with Equation 4.4.  

This provision is solely based on strength considerations. 

 



 109

y

v
v f

sb0.0316A cf'≥
 (4.4) 

 
with Av = area of transverse reinforcement within a distance s (in.2) 

 f 'c = compressive strength of the concrete (ksi) 

 bv = width of web (in.) 

 s = spacing of transverse reinforcement (in.) 

 fy = yield strength of the reinforcement (ksi) 

 

In Section 5.7.3.4 of AASHTO LRFD, another requirement for web 

reinforcement exists (2008).  This equation is reproduced as Equation 4.5.  This provision 

applies to members with depths greater than 36 in.  The reinforcement must be 

distributed within the distance de/2 from the tension face of the member at a spacing of 

de/6 or 12 in., where de is the effective member depth.  The purpose of this provision is to 

restrain flexural cracks throughout the tension region of members of large depth.  As 

such, it is based on serviceability considerations.  It is important to note that the area of 

reinforcement calculated in Equation 4.5 is the amount per face and per foot of section 

height.   

4
)300.012(dA esk

pss AA +
≤−≥

 (4.5) 
 

with Ask = area of skin reinforcement on each side face in in.2 / ft. of height 

 de = effective member depth (in.) 

 As = area of tension reinforcement (in.2) 

 Aps = area of prestressed reinforcement (in.2) 

 

Equation 4.5 can be rewritten in terms of the reinforcement ratio based off the full 

width of the section and the tension region of the member (de/2).  In this way, it can be 

directly compared to the aforementioned minimum reinforcement requirements.  The 

rewritten equation is presented as Equation 4.6.  Values computed with Equation 4.6 are 
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plotted with assumed values of bw with respect to the effective depth of the member in 

Figure 4.6.   

 

wb
)300.002(de

g_sk
−

≥ρ
 (4.6) 

 
with ρg_sk = reinforcement ratio calculated from total web reinforcement according 

to Equation 4.5 and distributed within half the member depth 

 bw = width of web (in.) 

 

4.3.1.6 Comparison of minimum reinforcement provisions 

The aforementioned provisions for minimum reinforcement in the horizontal and 

vertical directions are compared in Figure 4.6 and Figure 4.7, respectively.  The 

minimum reinforcement requirement of Project 4371 was omitted from the following 

plots due to the large number of variables that are required to plot it.  For some of the 

other provisions, minor assumptions were necessary to plot the equations in each graph.  

These assumptions are listed in Table 4.3. 
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Figure 4.6: Min. horizontal reinforcement for deep beams in several specifications 

 
Figure 4.7: Minimum vertical reinforcement for deep beams in several specifications 
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Table 4.3: Assumptions made to plot minimum web reinforcement provisions 

Use  Provision ρh (%) ρv (%) Assumption for plotting 

D
ee

p 
B

ea
m

s 

AASHTO & CHBDC STM 0.3 0.3 N/A 

AASHTO Deep Beam 0.2 0.2 fy = 60 ksi 

CSA / fib 0.2 0.2 N/A 

ACI Deep Beams 0.15 0.25 N/A 

ACI STM function of θ Minimum ρh & ρv = 0.0015 

O
th

er
 AASHTO sectional N/A 0.1 f 'c = 4 ksi & fy = 60 ksi 

AASHTO skin function 

of de

N/A bw = de & bw = de/2 

 

In Figure 4.6 and Figure 4.7, it is evident that the minimum reinforcement 

provisions in several building and bridge design specifications differ for deep beams.  

The required minimum reinforcement in AASHTO LRFD 2008 and CHBDC 2006 

corresponding to 0.003 in each direction is the most stringent requirement.  In the 

commentary of AASHTO LRFD, it is stated that 0.003 in both directions is for both 

strength and serviceability considerations.  The other minimum reinforcement 

requirements for deep beams plotted in Figures 4.2 and 4.3 range from 17% to 50% 

lower.  The minimum reinforcement provision in the ACI STM specification (Equation 

4.2 and blue line in above figures) is a function of the axis of the diagonal strut, or the a/d 

ratio for single-panel models.  When the angle of the strut with respect to the horizontal 

approaches the lower limit (a/d ≈ 2), the ACI STM reinforcement is very similar to those 

in the ACI deep beam section (ρv = 0.0025, ρh = 0.0015).  At a/d ratios close to 1 (θ = 45-

degrees), the ACI STM reinforcement approaches the minimum reinforcement provisions 

in the Canadian Building Code and fib (0.2% in each direction).  Thus, these minimum 

reinforcement requirements do not differ greatly; they are similar to 0.2% in each 
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direction.  It is not clear in the commentary of these specifications if 0.2% is intended to 

address strength and serviceability requirements.   

 In Figure 4.6 and Figure 4.7, two other minimum reinforcement provisions that 

do not explicitly address deep beam behavior are plotted for reference. The AASHTO 

sectional shear requirement for minimum reinforcement (Equation 4.4) is considerably 

lower than those for deep beams (Figure 4.7).  The reason for this discrepancy is that 

deep beams are strongly influenced by shear behavior whereas Bernoulli beams are often 

governed by flexure.  The AASHTO skin reinforcement provision (Equation 4.6) is also 

compared to minimum reinforcement requirements for deep beams (Figure 4.6).  It is 

clear that the quantity of required skin reinforcement increases with increasing depth of 

the member.  For most applications, the reinforcement according to this provision will be 

less than or equal to a ρh of 0.002.  It is important to note that this provision is intended to 

restrain the width of flexural cracks which are oriented perpendicular to the 

reinforcement.  

In the current task, the strength and serviceability performance of deep beams 

with reinforcement corresponding to 0.2% in each direction, 0.3% in each direction, and 

several other distributions were compared. 

4.3.2 Strength Results 

The effect of web reinforcement on the strength of deep reinforced concrete 

members was determined with the evaluation database and through the current 

experimental program. 

4.3.2.1 Strength Results from the Evaluation Database  

The experimental strength of the 179 beams in the evaluation database was 

plotted versus the horizontal and vertical reinforcement ratio of the member in Figures 

4.4 and 4.5, respectively.  The data were sorted into 5 groups by a/d ratio.  All of the 

beams in the evaluation database have at least a vector summation of web reinforcement 

equal to or greater than 0.1%.  This amount of reinforcement was considered to be the 

minimum required to satisfy equilibrium in the bottle-shaped strut.  As such, the 
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following plots were used to assess the effect of additional web reinforcement on the 

strength of deep beams. 

 

 
Figure 4.8: Effect of horiz. reinforcement on strength of beams in evaluation database 

 

 
Figure 4.9: Effect of vert. reinforcement on strength of beams in evaluation database 
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In Figure 4.8, it is clear that horizontal reinforcement has little effect on the shear 

strength of deep beams.  A similar conclusion was reached by many previous researchers.  

Smith and Vantsiotis (1982), Rogowsky et al. (1986), Oh and Shin (2001), Tan et al. 

(1997), and Brown et al. (2006) concluded that horizontal reinforcement did not have an 

appreciable effect on the shear strength of deep beams, especially for a/d ratios exceeding 

1.0.  Kong et al. noted that horizontal reinforcement was only effective at low a/d ratios 

(0.35) and if it was spaced near the tension reinforcement (1970).  With this arrangement, 

the horizontal reinforcement improves the distribution of the stresses in the primary 

tension tie, but does not reinforce the bottle-shaped strut. 

In Figure 4.9, the effect of vertical reinforcement on the shear strength of deep 

beams is illustrated.  For a/d ratios less than or equal to 1.5, no increase in shear strength 

is seen for increasing amounts of vertical reinforcement.  The same observation was 

made by De Paiva and Siess (1965), Rogowsky et al. (1986), and Brown et al. (2006).  

For a/d ratios approaching and exceeding 2.0, a slight increase in shear strength is seen 

for increasing amounts of vertical reinforcement (Figure 4.9).  This conclusion was 

reached by several researchers as well (Kong et al., 1970, Smith and Vantsiotis, 1982, Oh 

and Shin, 2001, and Tan et al., 1997).  In short, the effect of vertical web reinforcement 

on the shear strength of deep beams can be classified as minimal and is most evident at 

higher a/d ratios (a/d > 1.5). 

It is clear that web reinforcement does not play the same role in deep beam 

behavior as it does in slender beam behavior.  The purpose of web reinforcement, in 

terms of a single-panel strut-and-tie analysis, is to resist the transverse tensile forces 

developed in a bottle-shaped strut.  Increasing the amount of web reinforcement above 

the amount required to resist these transverse stresses does not significantly improve the 

shear strength of the member.  As the a/d ratio increases and the behavior of the beam 

transitions from a deep beam to a slender (Bernoulli) beam, the effectiveness of vertical 

reinforcement increases. 

The effect of web reinforcement on the diagonal cracking load as a percentage of 

the ultimate strength was also assessed with the evaluation database.  Normalizing the 
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diagonal cracking load with the ultimate strength of the member quantifies the strength 

after first diagonal cracking.  The results are plotted in Figure 4.10 and Figure 4.11 versus 

the quantity of web reinforcement in each orthogonal direction.  In Figure 4.10, a slight 

trend with ρv exists on average.  While there is minimal data at high values of ρv, the 

diagonal cracking load as a function of the ultimate strength decreases with increasing ρv 

on average.  This slight trend indicates that vertical reinforcement in addition to that 

required for equilibrium may affect the strength of deep beams by providing reserve 

strength after first cracking.  Additional vertical reinforcement improves the distribution 

of stress in the deep beam leading to a more robust member.  In Figure 4.11, a trend with 

the amount of horizontal reinforcement is not apparent for the data as a whole.  However, 

the trend of the data from the current project suggests a similar, but reduced benefit with 

respect to ρh as to ρv.  In both cases, it appears that additional reinforcement provides 

additional redistribution capacity in the member.  For a handful of specimens with less 

than 0.2% crack control reinforcement in each orthogonal direction, the reserve strength 

after first cracking was exceptionally small. 

 

 
Figure 4.10: Effect of vertical web reinforcement on strength after first cracking 
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Figure 4.11: Effect of horizontal web reinforcement on strength after first cracking 
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horizontal and vertical spacing of the reinforcement was not a primary variable in the 

testing program.    
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Table 4.4: Summary of strength results for specimens in minimum reinforcement task 

Beam I.D. bw 
in. 

d 
in. ρv 

Bar 
size 

sv 
in. ρh 

Bar 
size 

sh 
in. 

a/d 
ratio 

Vtest 
kip db'f

V

wc

test
⋅

 
db'f

V

wc

test
⋅

I-03-2 21 38.5 0.0029 #4 6.5 0.0033 #4 5.75 1.84 569 0.13 9.7 
I-03-4 21 38.5 0.0030 #3 7.0 0.0033 #4 5.75 1.84 657 0.15 11.1 
I-02-2 21 38.5 0.0020 #4 9.5 0.0020 #4 9.5 1.84 454 0.14 8.9 
I-02-4 21 38.5 0.0021 #3 10 0.0020 #4 9.5 1.84 528 0.16 10.1 
II-03-CCC2021 21 38.6 0.0031 #5 9.5 0.0045 #5 6.6 1.84 500 0.19 10.7 
III-1.85-00 21 38.6 0 - - 0 - - 1.84 365 0.14 8.0 
III-2.5-00 21 38.6 0 - - 0 - - 2.47 82 0.03 1.8 
III-1.85-02 21 38.6 0.0020 #5 14.5 0.0019 #4 10.1 1.84 488 0.15 9.4 
III-1.85-025 21 38.6 0.0024 #5 12 0.0014 #3 7.6 1.84 516 0.16 9.9 
III-1.85-03 21 38.6 0.0029 #5 10 0.0029 #5 10.1 1.84 412 0.10 7.2 
III-1.85-01 21 38.6 0.0011 #4 18 0.0014 #3 7.6 1.84 273 0.07 4.8 
III-1.85-03b 21 38.6 0.0032 #4 6 0.0029 #5 10.1 1.84 471 0.18 10.1 
III-1.85-02b 21 38.6 0.0020 #4 9.5 0.0019 #4 10.1 1.84 468 0.17 10.1 
III-1.2-02 21 38.6 0.0020 #4 9.5 0.0019 #4 10.1 1.20 846 0.25 16.3 
III-1.2-03 21 38.6 0.0031 #5 9.5 0.0029 #5 10.1 1.20 829 0.24 15.7 
III-2.5-02 21 38.6 0.0020 #4 9.5 0.0019 #4 10.1 2.49 298 0.08 5.4 
III-2.5-03 21 38.6 0.0031 #5 9.5 0.0029 #5 10.1 2.49 516 0.13 9.0 
IV-2175-1.85-02 21 68.9 0.0020 #4 9.5 0.0019 #4 10.1 1.85 763 0.11 7.5 
IV-2175-1.85-03 21 68.9 0.0031 #5 9.5 0.0029 #5 10.1 1.85 842 0.12 8.3 
IV-2175-2.5-02 21 68.8 0.0021 #5 14.25 0.0021 #5 14.25 2.5 510 0.07 5.0 
IV-2175-1.2-02 21 68.9 0.0021 #5 14.25 0.0021 #5 14.25 1.2 1223 0.17 11.9 
IV-2123-1.85-03 21 19.5 0.0030 #4 6.25 0.0030 #4 6.25 1.85 329 0.19 12.5 
IV-2123-1.85-02 21 19.5 0.0020 #3 5.25 0.0017 #3 6.25 1.85 347 0.20 13.0 
M-03-4-CCC2436 36 40 0.0031 #5 11 0.0027 #5 6.5 1.85 1128 0.19 12.2 
M-09-4-CCC2436 36 40 0.0086 #5 4 0.0027 #5 6.5 1.85 1415(f) 0.24 15.3 
M-02-4-CCC2436 36 40 0.0022 #4 10 0.0022 #5 8 1.85 1102 0.27 14.5 
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4.3.2.3 Specimens tested at a/d ratio of 1.85  

To evaluate the behavior and strength of a beam without web reinforcement, test 

III-1.85-0 was conducted.  Pictures from the test are shown in Figure 4.12.  For the 

duration of the test, a single, diagonal (flexure-shear) crack that extended from the load to 

the support dominated the behavior of the specimen.  The crack increased in length and 

width with increasing applied load.  At the maximum applied load, a parallel shear crack 

formed accompanied with a loud popping sound (Figure 4.12 (d)).  The formation of this 

crack represented the splitting of the compression strut due to transverse tensile stresses.  

Since there was not any web reinforcement to transfer stresses across this crack, the beam 

could not resist any additional load after the parallel crack formed.  Failure occurred at an 

applied shear of 365 kips or 0.14f ′cbwd.   

 

(a). V = 0.27Vmax (b). V = 0.51Vmax 

(c). V = 0.71Vmax (d). V = Vmax 

Figure 4.12: Crack development in specimen without web reinforcement, III-1.85-0 
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The behavior observed in test III-1.85-0 was consistent with a single-panel strut-

and-tie model.  The failure of the specimen was a result of the diagonal splitting of the 

compression strut.  As such, the results of this test illustrated the primary role of web 

reinforcement in deep beams in regards to strength: to resist the transverse tensile stresses 

created in bottle-shaped struts.  The shear strength of III-1.85-0 is compared to the shear 

strength of the other Series III beams in Figure 4.14.   

In Figure 4.13, pictures of specimen III-1.85-03b are shown to illustrate the crack 

propagation in a typical test for a specimen with web reinforcement.  At approximately 

25% of the maximum applied load, the first diagonal shear crack formed in the test 

region.  It extended from the tip of a flexural crack.  With additional applied load, parallel 

shear cracks developed and grew in length and width.  The presence of web 

reinforcement in the member (ρv = ρh = 0.003) allowed for these parallel cracks to form.  

At the maximum applied load, extensive diagonal cracking was present in the deep beam 

region of the member.  Crushing of the concrete occurred in several places along the strut 

and in the nodal regions.  The effect of web reinforcement on the crack distribution and 

overall appearance of the member throughout its loading history is evident with the 

comparison of Figure 4.12 and Figure 4.13.  Crack width information is discussed in 

detail in Section 4.5.3.   
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(a). V = 0.25Vmax (b). V = 0.49Vmax 

(c). V = 0.73Vmax (d). V = Vmax 

Figure 4.13: Crack development in specimen with 0.3% in each direction, III-1.85-03b 

 

Several reinforcement arrangements were evaluated in the minimum web 

reinforcement task.  Simplified versions of the minimum reinforcement provisions 

discussed in Section 4.3.1 were used specifically in the test specimens (Table 4.5).  Note 

the two different horizontal reinforcement ratios according to the STM provisions of 

AASHTO LRFD (2008) and CHBDC (2006).  These two ratios were the result of the 

literal interpretation of each provision and the revised interpretation discussed in Section 

3.2.4.  The literal interpretation consisted of a total amount of horizontal reinforcement 

equal to 0.003 times the gross concrete section.  Distributing this amount of 

reinforcement within the effective strut area of the specimen produced a reinforcement 

ratio of 0.0045.  The revised interpretation consisted of a total amount of horizontal 

reinforcement equal to 0.003 times the effective strut area.  As such, both of these 
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arrangements were evaluated in the current task.  As noted in Table 4.4, a few other 

reinforcement distributions in addition to those listed in Table 4.5 were evaluated in this 

task as well. 

 

Table 4.5: Amount of web reinforcement from several provisions used in current task   

Minimum Reinforcement Provisions ρv ρh 

TxDOT 4371 0.001 0.001 
CSA, fib, AASHTO Deep Beam 0.002 0.002 

ACI Deep Beam 0.0025 0.0015 

AASHTO, CHBDC STM (Section 3.2.3) 0.003 0.003 

AASHTO, CHBDC STM 0.003 0.0045 
 

The measured strength of several specimens with varying amounts of web 

reinforcement are provided in Figure 4.14.  These tests were conducted in Series III and 

IV at an a/d ratio of 1.85.  Specimens of the same size with different amounts of 

reinforcement failed at similar normalized shear stresses.  Specifically, companion 

specimens of three different sizes (21”x23”, 21”x42”, and 21”x75”) with reinforcement 

ratios corresponding to 0.2% or 0.3% in each direction failed at nearly identical levels of 

applied stress.  In addition, the 21”x42” specimen with 0.25% reinforcement in the 

vertical direction and 0.15% reinforcement in the horizontal direction failed at a 

comparable shear stress as its companion specimen with 0.2% reinforcement in each 

direction.  Since the mode of failure was generally the crushing of the direct strut 

between the load and the support, increasing the quantity of web reinforcement did not 

play an appreciable role in the capacity of the members.  In general, the test results 

depicted in Figure 4.14 (at an a/d ratio of 1.85) agree favorably with those obtained from 

the database. 
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Figure 4.14: Strength results of Series III and IV specimens at a/d ratio of 1.85 

The unreinforced specimen (III-1.85-0) failed at only a slightly smaller 

normalized shear stress than the reinforced beams.  For this specimen, the tensile strength 

of the concrete was sufficient to resist the transverse tensile stresses in the bottle-shaped 

strut until an applied load comparable with that of the reinforced beams was placed on 

the member.  However, relying on the tensile strength of concrete to consistently resist 

these tensile stresses is not advised.   

The strength results from one beam consisting of tests III-1.85-01 and III-1.85-03 

are provided in Figure 4.15.  These results are discussed separately from those displayed 

in Figure 4.14 due to the unusually low experimental strength values for each test, 

particularly those of III-1.85-03.  III-1.85-03 failed at a shear of 0.10f ′cbwd, while a 

nominally identical specimen, III-1.85-03b, failed at a shear of 0.18f ′cbwd.  The reason 

for this discrepancy is unclear since a similar mixture design, grade of steel, fabrication 

technique, and testing procedure was used in all tests.  At the same time, there is no 

reason to discount the validity of this test.  At a minimum, the range of potential scatter in 

shear strength is illustrated by test III-1.85-03. 

0

0.05

0.1

0.15

0.2

0.25

E
xp

er
im

en
ta

l S
tr

en
gt

h,
 V

te
st

/ f
 ' c

b w
d

21” x 23” 21” x 42” 21” x 75”

0
0

Section
Size

IV
-2

12
3-

1.
85

-0
2

IV
-2

12
3-

1.
85

-0
3

III
-1

.8
5-

0
III

-1
.8

5-
25

III
-1

.8
5-

02
b

III
-1

.8
5-

02
III

-1
.8

5-
03

b
II-

03
-C

C
C

20
21

IV
-2

17
5-

1.
85

-0
2

IV
-2

17
5-

1.
85

-0
3

0.25
0.15

0.2
0.2

0.3
0.3

0.3
0.45

ρv  (%)
ρh  (%)



 125

Comparing the measured strength to the calculated strength of test III-1.85-03 

shows that the strength was conservatively calculated using the Project 5253 STM 

provisions discussed in Section 2.3.4.4 (Figure 4.15).  This was not true for test III-1.85-

01.  Since the calculated strength of each specimen was identical, the difference in 

conservatism between the two was the result of the low experimental strength of test III-

1.85-01.  The lower amount of web reinforcement was the primary reason for the 

reduction in shear strength.  Unlike the previously-discussed tests, the amount of web 

reinforcement in III-1.85-01 (ρv = ρh ≈ 0.001) significantly affected the experimental 

strength.  The appearance of the beam at ultimate further supports this claim.  As shown 

in the test pictures in Figure 4.15, the failure mode of III-1.85-03 was consistent with the 

crushing of a direct strut between the load and the support; whereas, the failure mode of 

III-1.85-01 had a sectional-shear appearance to it.  There was not enough reinforcement 

to distribute the diagonal cracks within the test region.  In general, a strut-crushing failure 

will occur at a higher applied stress than the stress corresponding to a sectional-shear 

failure.   

 

 
Figure 4.15: Strength results comparison of III-1.85-01 and III-1.85-03 
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In short, the results of tests III-1.85-01 and III-1.85-03 demonstrated two 

important points.  First, significant scatter (50%) can exist for the experimental shear 

strength of deep beams.  Second, while the amount of reinforcement does not generally 

affect the shear strength of deep beams, there may be cases where it can.  If the quantity 

of web reinforcement is low (ρv ≈ ρh ≈ 0.001) and the transverse spacing is relatively high 

(sv = 18 in. ≈ d/2), then the concrete strut may not be able to develop its full design 

strength.   In the case of III-1.85-01, the strength was unconservatively estimated.   

In Series M, three 36”x48” specimens were tested with different quantities of web 

reinforcement (Table 4.4).  The results of these tests (Figure 4.16) were similar to those 

from Series III and IV plotted in Figure 4.14.  The amount of web reinforcement did not 

play an appreciable role in the strength of the specimens.  In fact, the specimen with 0.2% 

in each direction (M-02-4-CCC2436) failed at a higher normalized shear stress than the 

specimen with 0.3% in each direction (M-03-4-CCC2436).  However, it should be noted 

that these tests were conducted on different beams where the compressive strength of the 

concrete, f 'c, was 2,800 psi and 4,100 psi, respectively.  The shear force at ultimate was 

similar for the two tests: 1,102 kips for the beam with 0.2% steel, and 1,128 kips for the 

beam with 0.3% steel.  Therefore, no discernible difference in strength was observed for 

the beams in Series M with either 0.2% or 0.3% web reinforcement in each direction.   

M-03-4-CCC2436 and M-09-4-CCC2436 were companion tests conducted on the 

same beam.  The only difference between the two tests was ρv equaled 0.003 and 0.009, 

in M-03-4-CCC2436 and M-09-4-CCC2436, respectively.  Increasing the amount of web 

reinforcement by 300% altered the failure mode from shear to flexure, but only increased 

the capacity of the member by approximately 25%.   
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Figure 4.16: Strength results with web reinforcement as variable from Series M 
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Figure 4.17: Strength results with web reinforcement as variable from Series I 

4.3.2.4 Specimens tested at other a/d ratios: 1.2 and 2.5 
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Figure 4.18: Strength results from specimens tested at a/d ratio of 1.2 
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and ACI 318-08 limit the treatment of deep beams to an a/d ratio ≤ 2.0.  It should be 

noted that deep beam behavior has been reported in experiments up to an a/d ratio of 2.5 

(Section 5.2).   

 

(a). V = 0 (pre-cracked) (b). V = Vmax 

Figure 4.19: Crack development in III-2.5-0 

The other two specimens tested at an a/d ratio of 2.5 had 0.2% (III-2.5-02) and 

0.3% (III-2.5-03) crack control reinforcement in each orthogonal direction.  The strength 

results and failure pictures for these two tests are presented in Figure 4.20.  From this 

figure, it is evident that an increase in strength and a change in behavior existed as the 

amount of web reinforcement increased from 0.2% to 0.3% in each direction.  The 

cracking pattern and failure picture for III-2.5-02 was very consistent with the sectional 

shear, or diagonal tension, failure seen in III-2.5-0.  A single diagonal shear crack 

dominated the test region up until failure.  Very little parallel diagonal cracking was 

observed.  On the contrary, III-2.5-03 behaved more like a deep beam.  Extensive 

redistribution of diagonal cracks occurred with increasing applied load, presumably due 

to the additional amount of web reinforcement.  Near ultimate, a parallel shear crack 

formed along the axis of the assumed compression strut between the load and the support 

as observed in tests at smaller a/d ratios.  An increase in load-carrying capacity of 

approximately 60% accompanied the change in failure mode.   
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Figure 4.20: Strength results from specimens tested at an a/d ratio of 2.5 

The comparison of III-2.5-02 to III-2.5-03 revealed that the quantity of web 

reinforcement becomes relevant at higher a/d ratios (a/d > 2).  The behavior of the test 

region is transitioning from strut-and-tie action to sectional shear behavior.  Vertical 

reinforcement improves the sectional shear strength of reinforced concrete beams.  In test 

III-2.5-03, the vertical reinforcement enabled significant redistribution to occur 

increasing the load-carrying capacity of the member.  The final failure mode of this 

specimen was consistent with a combination of sectional shear and strut-and-tie behavior.  

It should be noted that the beneficial effect of web reinforcement on the strength of 

beams tested at a/d ratios in excess of 2 was also observed through the analysis of the 

database as shown in Figure 4.9.  Additional information regarding the transition of deep 

beam behavior to sectional shear behavior is provided in Section 5.2.   

4.3.3 Serviceability Results 

The effect of web reinforcement on the serviceability of deep reinforced concrete 

beams was also investigated within this task.  As previously discussed, the diagonal 

cracking loads and the width of diagonal cracks were used to assess the serviceability 

performance of deep beams.   
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4.3.3.1 Serviceability Results from the Evaluation Database 

Very little crack width data were available in the literature.  However, the load at 

first diagonal cracking was recorded for 59 specimens in the evaluation database.  The 

diagonal cracking loads were normalized by 'f c bwd and were plotted versus the 

reinforcement ratio in each direction in Figure 4.21 and Figure 4.22.  The results in these 

figures did not reveal any effect of the quantity of reinforcement on the normalized 

diagonal cracking loads.  This finding was plausible since reinforced concrete members 

behave elastically prior to cracking.  The strain in the concrete at first cracking is very 

small preventing any effect of the reinforcement to be observed until cracks develop.  

 
Figure 4.21: Effect of vertical reinforcement on the diagonal cracking load 
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Figure 4.22: Effect of horizontal reinforcement on the diagonal cracking load  

4.3.3.2 Serviceability Results from the Experimental Program 

The diagonal cracking loads for each specimen relevant to the current task are 

provided in Table 4.6.  The strength data for the same specimens in Table 4.6 were 

provided in Table 4.4.  As noted in Section 3.6, it was only possible to obtain the 
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Table 4.6: Summary of diagonal cracking loads for specimens in minimum reinforcement task 

Beam I.D. bw 
in. 

d 
in. ρv 

Bar 
size 

sv 
in. ρh 

Bar 
size  

sh 
in. 

a/d 
ratio 

Vcrack  
kip db'f

V

wc

crack

⋅

I-03-2 21 38.5 0.0029 #4 6.5 0.0033 #4 5.75 1.84 144 2.5 
I-03-4 21 38.5 0.0030 #3 7.0 0.0033 #4 5.75 1.84 - - 
I-02-2 21 38.5 0.0020 #4 9.5 0.0020 #4 9.5 1.84 121 2.4 
I-02-4 21 38.5 0.0021 #3 10 0.0020 #4 9.5 1.84 - - 
II-03-CCC2021 21 38.6 0.0031 #5 9.5 0.0045 #5 6.6 1.84 139 3.0 
III-1.85-00 21 38.6 0 - - 0 - - 1.84 98 2.1 
III-2.5-00 21 38.6 0 - - 0 - - 2.47 - - 
III-1.85-02 21 38.6 0.0020 #5 14.5 0.0019 #4 10.1 1.84 112 2.2 
III-1.85-025 21 38.6 0.0024 #5 12 0.0014 #3 7.6 1.84 - - 
III-1.85-03 21 38.6 0.0029 #5 10 0.0029 #5 10.1 1.84 137 2.4 
III-1.85-01 21 38.6 0.0011 #4 18 0.0014 #3 7.6 1.84 - - 
III-1.85-03b 21 38.6 0.0032 #4 6 0.0029 #5 10.1 1.84 114 2.4 
III-1.85-02b 21 38.6 0.0020 #4 9.5 0.0019 #4 10.1 1.84 - - 
III-1.2-02 21 38.6 0.0020 #4 9.5 0.0019 #4 10.1 1.20 165 3.2 
III-1.2-03 21 38.6 0.0031 #5 9.5 0.0029 #5 10.1 1.20 - - 
III-2.5-02 21 38.6 0.0020 #4 9.5 0.0019 #4 10.1 2.49 105 1.9 
III-2.5-03 21 38.6 0.0031 #5 9.5 0.0029 #5 10.1 2.49 - - 
IV-2175-1.85-02 21 68.9 0.0020 #4 9.5 0.0019 #4 10.1 1.85 216 2.1 
IV-2175-1.85-03 21 68.9 0.0031 #5 9.5 0.0029 #5 10.1 1.85 218 2.1 
IV-2175-2.5-02 21 68.9 0.0021 #5 14.25 0.0021 #5 14.25 2.5 144 1.4 
IV-2175-1.2-02 21 68.9 0.0021 #5 14.25 0.0021 #5 14.25 1.2 262 2.6 
IV-2123-1.85-03 21 19.5 0.0030 #4 6.25 0.0030 #4 6.25 1.85 60 2.3 
IV-2123-1.85-02 21 19.5 0.0020 #3 5.25 0.0017 #3 6.25 1.85 65 2.4 
M-03-4-CCC2436 36 40 0.0031 #5 11 0.0027 #5 6.5 1.85 354 3.8 
M-09-4-CCC2436 36 40 0.0086 #5 4 0.0027 #5 6.5 1.85 - - 
M-02-4-CCC2436 36 40 0.0022 #4 10 0.0022 #5 8 1.85 256 3.4 
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As shown in Table 4.6, the diagonal cracking loads of several specimens with 

different amounts of web reinforcement were measured.  Information regarding the 

measurement of the diagonal cracking loads was provided in Section 4.2.2.  The load at 

first diagonal cracking normalized by the 'f c bwd for each of these specimens is plotted 

in Figure 4.23.  The results indicate that the quantity of web reinforcement has no effect 

on the diagonal cracking load.  This finding is in agreement with the results from the 

evaluation database.  As previously mentioned, the amount of reinforcement does not 

affect the behavior of reinforcement concrete members until after the beam has cracked.  

It is interesting to note that the normalized diagonal cracking loads of the 36”x48” 

specimens were considerably greater than those of the 21”x23”, 21”x42”, 21”x44”, and 

21”x75” specimens.  It is likely that the higher longitudinal reinforcement ratio in the 

36”x48” specimens (2.9% vs. 2.3%) contributed to the higher normalized diagonal 

cracking loads.  Additional longitudinal reinforcement increases the transformed moment 

of inertia which would increase the cracking load.  Also, since the first diagonal crack 

was generally a flexure-shear crack, the amount of reinforcement at the tip of the flexural 

crack affects the diagonal cracking load.  Additional information regarding the factors 

affecting the load at first diagonal cracking is provided in Section 5.3.   

   



 136

 
Figure 4.23: Diagonal cracking loads of specimens in current task 

The serviceability performance of the test specimens was also evaluated with the 

maximum width of the diagonal cracks.  The maximum diagonal crack widths were 

recorded for each side of the test specimen and were plotted versus the percent of the 

maximum applied load.  Plotting the data in this manner was appropriate to permit 

specimens of different sizes and with different concrete strengths to be placed on the 

same plot.  Also, this approach was consistent with another objective of the current 

research study: to correlate the maximum diagonal crack width with the residual capacity 

of the member (Section 5.4).  The diagonal crack width data from the test specimens are 

tabulated in Appendix C. 
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and 0.45% reinforcement in the horizontal direction (II-03-CCC2021) had the narrowest 

diagonal cracks throughout its loading history.  The effectiveness of horizontal 

reinforcement was evaluated with this test as well.  Comparing the crack widths of 

specimens II-03-CCC2021 and III-1.85-03b demonstrated that additional horizontal 

reinforcement effectively restrained diagonal crack widths at high a/d ratios (a/d = 1.85).  

While it was emphasized in the literature and through the use of the database (Figure 4.8) 

that additional horizontal reinforcement had a negligible impact on the strength of deep 

beams, these crack width data suggested that horizontal reinforcement may be important 

for serviceability.  Comparing the crack widths of specimens III-1.85-02 and III-1.85-025 

did not reveal significant differences.  This observation was not unexpected due to 

minimal differences in the spacing of the reinforcement required to target the 

reinforcement ratio in each specimen.  The spacing of the #5 stirrups for these two 

specimens only differed by 2.5 in.  As a result of these findings and of the format of 

several existing minimum reinforcement provisions, equal reinforcement in each 

orthogonal direction was targeted as the most effective and most practical solution for 

minimum web reinforcement in deep beams. 
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Figure 4.24: Maximum diagonal crack width for 6 - 21”x42” specimens tested at a/d of 

1.85 

The crack width data in Figure 4.24 can be compared to the liberal benchmark 

crack width of 0.016 in. (Section 4.2.2).  At first diagonal cracking, the maximum crack 

width for III-1.85-02 and III-1.85-02b exceeded 0.016 in.  On the contrary, at the first 
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minimal increase in applied load.  The data in Figure 4.24 can also be evaluated with 
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without any reinforcement or with 0.2% reinforcement had maximum crack widths of 

0.038 in. and 0.028 in. respectively.  It should be noted that the crack width limit of 0.016 

in. and the estimated service load (33% of ultimate) should be not be treated as definite 

limits.  They should be used as general benchmarks.  Nevertheless, the data in Figure 

4.24 clearly indicated that the specimens with at least 0.3% in each direction performed 

much better than those with less reinforcement.     

The crack patterns at approximately 90% of the maximum applied load for four of 

the aforementioned tests are provided in Figure 4.25.  In a general sense, the crack 

patterns of each test specimen agree favorably with the maximum diagonal crack width 

data presented in Figure 4.24.  At a given load stage, as the distribution of diagonal 

cracking, i.e. the number of parallel diagonal cracks, increased, the maximum diagonal 

crack width decreased.  Comparing the crack patterns of test III-1.85-03b and II-03-

CCC2021 further illustrated the benefit of horizontal reinforcement.  While horizontal 

reinforcement was shown in the literature and through the use of the database (Figure 

4.8) to be less effective than vertical reinforcement in terms of strength, the data from 

these tests suggested that it is important for limiting diagonal crack widths.  This finding 

supported keeping the quantity of minimum web reinforcement the same in each 

orthogonal direction.   
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(a). III-1.85-0 (b). III-1.85-02b 

(c). III-1.85-03b (d). II-03-CCC2021 

Figure 4.25: Crack patterns of four specimens at approximately 90% of capacity 

 

The crack width data from tests III-1.85-01 and III-1.85-03 are presented in 

Figure 4.26 with the data from Figure 4.24.  The maximum diagonal crack width data 

from III-1.85-03 agreed favorably with the data from the other specimen with the same 

web reinforcement (III-1.85-03b) even though they failed at considerably different 

normalized shear stresses.  On the other hand, the crack width data from III-1.85-01 did 

not match the trend with reinforcement quantity that was otherwise represented in Figure 

4.26.  The reason for this discrepancy was the difference in failure modes between 

III1.85-01 and the rest of the tests.  As shown previously (Figure 4.15), the failure mode 

of III-1.85-01 more closely resembled a sectional shear failure than a deep beam failure, 

primarily due to insufficient web reinforcement.    
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Figure 4.26: Maximum diagonal crack width for 8 – 21”x42” specimens tested at a/d 

of 1.85 

Consistent load transfer mechanisms were required to compare diagonal crack 

width data when normalizing the applied load by the maximum applied load.  If the crack 
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obtained.  This trend illustrates that regardless of the load transfer mechanism, maximum 

diagonal crack widths are a function of the applied shear and the quantity of web 

reinforcement.  However, as previously discussed, plotting crack width data versus the 

percent of maximum applied load was more useful for the current project.     
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Figure 4.27: Maximum diagonal crack widths of 8 – 21”x42” specimens versus applied 

shear 
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specimens with 0.2% reinforcement were generally greater than 0.016 in. at the estimated 

service load.     

 
Figure 4.28: Max. crack widths for 21”x75” specimens with 0.2% and 0.3% reinf. 

 
Figure 4.29: Max. crack widths for 36”x48” specimens with 0.2% and 0.3% reinf.  
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Figure 4.30: Max. crack widths for 21”x44” specimens with 0.2% or 0.3% 2-legged 

reinf. 

 
Figure 4.31: Max. crack widths for 21”x44” specimens with 0.2% or 0.3% 4-legged 

reinf. 
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Due to the variable nature of crack width data, it is important to base overall 

conclusions on as much data as possible.  The maximum crack width data for the 

specimens in the current task (Table 4.6) that were tested at an a/d ratio of 1.85 was 

plotted in Figure 4.32 with the exception of III-1.85-01.  The data from this test were 

excluded because the load transfer mechanism was not consistent with a deep beam as 

noted previously.  In short, the data from 16 tests were included in Figure 4.32.  Among 

the tests were beams of several different sizes, with 2- and 4-legged stirrups, and with 

several different distributions of web reinforcement.   

  

 
Figure 4.32: Maximum diagonal crack width data for all comparable specimens at a/d 

of 1.85 
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benchmark of 0.016 in.  0.2% reinforcement was often not sufficient to restrict the width 

of diagonal cracks to this liberal limit even at first cracking.  At the estimated service 

load level, the maximum crack widths of all of the specimens with 0.2% reinforcement 

far exceeded 0.016 in.  Based on these data, it was determined that 0.2% web 

reinforcement was insufficient to ensure adequate serviceability performance of deep 

beams.  The specimens with 0.3% in each orthogonal direction, on the other hand, had 

crack widths narrower than 0.016 in. at first diagonal cracking.  In almost all cases, the 

maximum crack width was less than or equal to 0.016 in. at the estimated service load of 

33% of ultimate.  The performance of the specimens with 0.3% web reinforcement was 

considered acceptable, especially if this amount of reinforcement is treated as the 

minimum required for deep beams.  In cases where the structure is exposed to aggressive 

climates or where crack widths need to be restricted further, it may be necessary to 

provide additional reinforcement (i.e. 0.016 in. is not endorsed as a tolerable crack width 

herein).  The data in Figure 4.32 show that providing web reinforcement in excess of 

0.3% in each direction did a better job than 0.3% at restraining diagonal crack widths, but 

the benefit may be greater at higher levels of applied load.  Near first cracking and at the 

expected service load, there was only a moderate reduction in the maximum diagonal 

crack widths.  The two specimens representing the blue data points in Figure 4.32 had the 

following amount of web reinforcement: 

• II-03-CCC2021: ρv = 0.31% ρh = 0.45% 

• M-09-4-CCC2436: ρv = 0.86% ρh = 0.27% 

Even with a large increase in the amount of vertical reinforcement in test M-09-4-

CCC2436, the maximum diagonal crack widths were only slightly narrower than those in 

specimens with 0.3% reinforcement.  This observation suggested that near service loads, 

there are diminishing returns regarding the effect of web reinforcement on maximum 

diagonal crack widths. 

In addition to an a/d ratio of 1.85, a few tests were conducted at a/d ratios of 1.2 

and 2.5.  Crack width data for the three specimens tested at an a/d ratio of 1.2 and the 



 147

three specimens tested at an a/d ratio of 2.5 are presented in Figure 4.33 and Figure 4.34, 

respectively. 

 
Figure 4.33: Maximum diagonal crack widths of specimens tested at an a/d ratio of 1.2 

 
Figure 4.34: Maximum diagonal crack widths of specimens tested at an a/d ratio of 2.5 
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The results presented in Figure 4.33 (a/d = 1.2) are consistent with the crack 

widths of beams tested at an a/d ratio of 1.85 (Figure 4.32).  Web reinforcement in both 

directions corresponding to 0.3% better restrained the width of diagonal cracks than 0.2% 

in each direction.  At the expected service load, the maximum width of the diagonal 

cracks in the specimen with 0.3% reinforcement is well below the benchmark of 0.016 in.  

On the other hand, the maximum crack width of the specimens with 0.2% reinforcement 

is approximately 0.02 in., exceeding the benchmark crack width slightly.   

The results presented in Figure 4.34 are not in agreement with the data from the 

tests conducted at an a/d ratio less than 2.  The reason for this discrepancy was that for 

the beams in Figure 4.34 with 0.2% reinforcement, the failure mode was consistent with a 

sectional shear or diagonal tension failure.  The specimen with 0.3% reinforcement in 

each direction (III-2.5-03) failed in a manner consistent with a combination of deep beam 

and sectional shear behavior.  The extra web reinforcement in specimen III-2.5-03 

provided additional redistribution capacity that increased the strength of the beam.  

Specimen III-2.5-03 failed at a load approximately 60% higher than specimen II-2.5-02.  

While additional stirrups increased the sectional shear strength (a/d = 2.5), the results in 

Figure 4.34 indicate a negative effect of supplementing sectional shear strength with 

additional stirrups (Vs) on diagonal crack widths.  At a given percentage of maximum 

applied load, diagonal crack widths will increase as the contribution of the stirrups to 

sectional shear strength increases (Vs/Vc ratio increases).  It may be necessary to limit the 

ratio of Vs to Vc in sectional shear for the purpose of limiting diagonal crack widths.      

The required spacing of minimum web reinforcement was not explicitly evaluated 

in the experimental program.  However, a couple of valid comparisons were possible.  

Two pairs of tests were conducted at an a/d ratio of 1.85.  In both cases, the difference 

between each test in the pair was the spacing of the stirrups (sv).  The spacing of the 

horizontal reinforcement was the same in all four tests (10 in.).  The crack width data for 

the two specimens with 0.2% reinforcement (III-1.85-02 and III-1.85-02b) are plotted in 

Figure 4.35.  The crack width data for the two specimens with 0.3% reinforcement (III-

1.85-03 and III-1.85-03b) are plotted in Figure 4.36. 
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Figure 4.35: Effect of stirrup spacing on crack width for specimens with 0.2% reinf. 

 
Figure 4.36: Effect of stirrup spacing on crack width for specimens with 0.3% reinf. 

In Figure 4.35, the crack width data indicate that larger stirrup spacing may result 

in wider cracks.  For specimen III-1.85-02, the stirrups were spaced at 14.5 in. or 
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approximately d/2.5.  This spacing is larger than that required by many of the minimum 

reinforcement provisions reviewed in Section 4.3.1.  In general, spacing of minimum 

reinforcement is limited to d/4, d/5, or 12 in.  While the effect shown in Figure 4.35 is 

minimal, it does show the benefits of restricting the spacing of crack control 

reinforcement.  In Figure 4.36, the crack width data for the specimens with 0.3% 

reinforcement indicate that stirrup spacing smaller than 10 in. or approximately d/4 did 

not further reduce maximum diagonal crack widths.  Thus, there is no apparent benefit 

from recommending a spacing limit less than d/4.  Based on the results in Figure 4.35 and 

Figure 4.36 and to be consistent with previous recommendations for the spacing of 

minimum web reinforcement, it is proposed that the spacing be limited to the smaller of 

d/4 or 12 in.  This limit is the same that is recommended in Article 5.13.2.3 of AASHTO 

LRFD (2008). 

4.3.4 Design Recommendations  

Based on the strength and serviceability results discussed in Section 4.3.1 through 

4.3.3, minimum reinforcement of 0.3% in each orthogonal direction is recommended for 

use in deep beams.  This amount of reinforcement ensured satisfactory strength 

performance.  Also, 0.3% reinforcement adequately restrained the width of diagonal 

cracks at first cracking and up to an approximate service load level of 33% of ultimate.  

In aggressive climates or where the maximum width of diagonal cracks needs to be 

restricted further, additional web reinforcement or post-tensioning should be provided.  

Reinforcement of 0.2% ensured satisfactory strength performance but did not adequately 

restrain the width of diagonal cracks.  In many specimens with 0.2% reinforcement, the 

maximum crack width exceeded the liberal benchmark of 0.016 in. at first diagonal 

cracking.  It is possible that for applications in which the restraint of diagonal crack 

widths is not needed, then minimum web reinforcement of 0.2% in each direction would 

be satisfactory. 

In regards to the minimum reinforcement provisions in current design 

specifications, 0.3% in each orthogonal direction is similar to that required in AASHTO 

LRFD (2008) and CHBDC (2006).  The only difference is that in AASHTO LRFD and in 
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CHBDC the total horizontal reinforcement is based on the gross concrete section whereas 

the reinforcement recommended herein is based on the effective strut area.  The 

difference in required horizontal reinforcement from these two definitions is shown in 

Figure 4.37.  The effective strut area is calculated as the total depth minus twice the 

distance from the extreme fibers to the centroids of the compression and tension 

reinforcement.  The proposed clarification reduces the total quantity of horizontal web 

reinforcement required by AASHTO LRFD (2008) by about 25% for this particular 

example ((2.6-1.9)/2.6*100 ≈ 25%).   

 
Figure 4.37: Comparison of AASHTO LRFD (2008) and proposed minimum 

reinforcement 

It was observed that limiting the spacing of the web reinforcement was important 

for reaching the full design strength of the strut and for distributing the diagonal cracks.  

Currently, in AASHTO LRFD (2008), the spacing of crack control reinforcement is 

restricted to 12 in.  It is proposed that this limit be supplemented with a restriction of d/4.  

Thus, the spacing of the web reinforcement in each direction shall not exceed d/4 or 12 

in.  This limit is consistent with the spacing limits of the other minimum reinforcement 

provisions reviewed in Section 4.3.1.   

The proposed minimum reinforcement in the vertical and horizontal direction to 

be adopted by AASHTO LRFD in the STM provisions is as follows, including Figure 

4.38 in the commentary: 

#5 Bar
21”

42”

∑Ah_AASHTO = (0.003)·(21in) ·(42in) = 2.6 in2

2.3”

3.4”

30.6”

Required #5 bars = 2.6 in2 / 0.31 ≈ 8 bars

∑Ah_5253 = (0.003)·(21in) ·(30.6in) = 1.9 in2

Required #4 bars = 1.9 in2 / 0.20 ≈ 10 bars

7 ¾”
→ #5’s @ 7.75” < d/4 or 12”

→ #4’s @ 6” < d/4 or 12”

6”



 152

003.0≥
vw

v

sb
A

 (4.7) 

003.0≥
hw

h

sb
A

   (4.8) 

where, 

Av, Ah  =  total area of vertical and horizontal crack control reinforcement within 

spacing sv and sh, respectively (in.2) 

bw  =  width of member web (in.) 

sv, sh =  spacing of vertical and horizontal crack control reinforcement, 

respectively (in.), shall not exceed d/4 or 12 in. 

 

To calculate the required web reinforcement, it may be most convenient to select a 

bar size and calculate the required spacing according to Equations 4.7 and 4.8.  That 

spacing should satisfy the d/4 or 12 in. criteria.  The required web reinforcement should 

be distributed evenly near the side faces of the effective strut area. Where necessary, 

interior layers of crack control reinforcement may be used.    
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Figure 4.38: Proposed minimum web reinforcement requirements in AASHTO LRFD 

For TxDOT reinforced concrete bent caps, the quantity of web reinforcement is 

seldom a pay item.  The cost of the bent cap is often based on the total cubic yards of the 

member.  If not, it is likely that the cost of web reinforcement is a very small percentage 

of the total cost of the bent cap.  As such, from a cost perspective, providing additional 

web reinforcement may be advantageous to the owner.     

4.3.5 Summary 

In Section 4.3, the effect of web reinforcement on the strength and serviceability 

performance of deep beams was addressed.  The results indicated that minimum 

orthogonal reinforcement pertaining to 0.3% of the strut area should be provided in deep 

beams (a/d < 2).  This conclusion was based on the test results of beams of various size 

(21”x23”, 21”x42”, 21”x44”, 36”x48”, and 21”x75”), of beams tested at a/d ratios of 1.2 

and 1.85, and of beams with either 2- or 4-legged stirrups. 
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In general, the failure mode and overall performance of the deep beam specimens 

was consistent with a single-panel strut-and-tie model in which the load was transferred 

through the member via a direct, diagonal strut.  As such, the purpose of the 

reinforcement in terms of strength was to resist the transverse tensile stress in the bottle-

shaped strut.  For this reason, companion specimens with different amounts of 

reinforcement in each direction had similar shear strength provided that at least 0.2% 

reinforcement was provided.  However, a difference in performance was observed in 

regards to the width of diagonal cracks.  The results indicated that the width of the cracks 

were proportional to the amount of web reinforcement with diminishing returns near 

service load levels as the reinforcement greatly exceeded 0.3% in each direction.  

Specifically, the data suggested that 0.2% reinforcement in each orthogonal direction was 

insufficient to restrain the width of the cracks to a liberal limit of 0.016 in. at service 

loads and often at first cracking.  Specimens with 0.3% reinforcement in each direction 

performed significantly better with crack widths less than 0.016 in. at first cracking and at 

service loads.   

For the few members tested at an a/d ratio of 2.5, the amount of web 

reinforcement did affect the shear strength.  The specimen with 0.3% reinforcement in 

each direction failed at a load 60% higher than the companion specimen with 0.2% in 

each direction.  The failure mode of test III-2.5-02 was consistent with a sectional shear 

failure with minimal parallel diagonal cracking.  The failure mode of test III-2.5-03 was 

consistent with the combination of a deep beam and sectional shear failure due to 

presence of the additional reinforcement.  While additional stirrups increase shear 

strength, it may be necessary to limit the ratio of Vs to Vc in sectional shear for the 

purpose of limiting diagonal crack widths. 

 

4.4 MEMBER DEPTH 

The purpose of this task was to evaluate the effect of member depth on the 

strength and serviceability performance of reinforced concrete deep beams.  A brief 

review of the literature associated with the effect of depth on deep beams is provided.  
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After that, the strength and serviceability results obtained through the experimental 

program are presented.  

4.4.1 Background  

Numerous research studies have been conducted on the effect of depth on the 

shear strength of reinforced concrete beams.  Most of the work has focused on slender 

beams in which the a/d ratio is greater than 2.  However, several studies conducted within 

the last fifteen years have addressed the effect of depth on the behavior of deep beams as 

well (a/d < 2).  In both cases, most of these investigations have concluded that a size 

effect exists.  Here, size effect refers to a reduction in ultimate shear strength, typically 

measured by a normalized shear stress at failure (V / fc′bwd or V / 'f c bwd), as the depth 

of the member increases.  There are numerous theories in the literature that attempt to 

explain size effect, but there is little consensus.  Three of the most common size effect 

theories for shear are based upon material strength variations, diagonal crack widths, and 

fracture mechanics.   

The oldest size effect theory, that of statistical strength variations, was based on 

the work of Weibull in 1939.  Applied to reinforced concrete, the theory justifies the 

reduction in strength that exists with an increase in member size to the randomness of 

material strength.  A reinforced concrete structure is compared to a series of chain links 

in which the failure of one link causes the entire chain to fail.  As the depth of a beam 

gets larger, the number of links increases and the probability of a lower stress at failure 

increases due to the variability in the material strength of concrete.   

Size effect has also been explained in terms of the width of diagonal cracks.  

According to modified compression field theory, as the depth of a beam increases, the 

spacing of diagonal cracks increase and thus, the width of diagonal cracks increase 

(Collins and Kuchma, 1999 and Macgregor and Wight, 2005).  The increase in crack 

width reduces the ability to transmit shear across the diagonal crack by aggregate 

interlock.  Thus, size effect is explained by the reduced effectiveness of the interface 

shear transfer mechanism.  
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Other researchers explain size effect for shear in reinforced concrete beams with 

fracture mechanics (Reinhardt, 1981 and Bazant and Kazemi, 1991).  It is theorized that 

there are differences in the rate at which stored energy is released during crack 

propagation for beams of different sizes.  Specifically, cracks propagate faster in larger 

beams than in smaller beams.  Several research studies have shown that the cracking 

pattern of a larger beam is more extensive than an otherwise identical smaller beam at the 

same shear stress (Walraven and Lehwalter, 1994 and Tan and Lu, 1999). 

In general, these theories were originally derived for slender beams (a/d > 2).  

While they can be applied to the study of deep beams (a/d < 2) to some degree, another 

approach may be more appropriate.  After strength results from the literature and from 

the experimental program are presented, it will be apparent that the effect of depth on the 

strength of deep beams can be better understood in terms of a strut-and-tie model 

analysis.   

 

4.4.2 Strength Results  

4.4.2.1 Strength Results from the Literature 

Numerous experimental studies have been conducted on the size effect of deep 

beam shear.  Four studies will be reviewed in this section in detail.  In 1994, thirteen (13) 

reinforced concrete deep beams were tested at an a/d ratio of 1.0 by Walraven and 

Lehwalter.  All of the beams were approximately 9.8-inches wide.  The effective depth 

ranged from 6.3 in. to 36.6 in.  The length (ll) of the load plate and support plate varied 

with the effective depth (d) such that the ratio between the them (ll / d) equaled 0.25.  

Each beam was simply supported and was loaded with a single concentrated load at 

midspan.  The test specimens were divided into three groups.  The first group did not 

have any web reinforcement.  The second and third groups had vertical reinforcement 

corresponding to a ρv of approximately 0.0015 and 0.003, respectively.  The experimental 

shear strength normalized by the shear area and the compressive strength of concrete are 

plotted versus the effective depth in Figure 4.39.  From the test results, a size effect is 
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apparent.  As the depth of the member increases, the normalized shear stress at failure 

decreases.  The loss in shear strength was attributed to the difference in the rate of crack 

propagation for the beams of different depths.  Specifically, the ability to transmit tensile 

stress across diagonal cracks was reduced for the larger beams due to larger crack widths 

when compared to smaller beams at similar stress levels. 

 

 
Figure 4.39: Size effect strength results from Walraven and Lehwalter (1994) 

In 1999, twelve reinforced concrete deep beams were tested by Tan and Lu.  Size 

effect in deep beam shear was studied at three different a/d ratios: 0.56, 0.84, and 1.13.  

All of the beams had a width of 5.8 in.  The effective depths ranged from 17.5 in. to 61.4 

in.  The length of the bearing plates at the load and the support were kept constant at 9.8 

in. for all of the specimens (Tan and Cheng, 2006).  Each beam was simply supported 

and was loaded with two point loads at the third points.  The test specimens were divided 

into three groups by the a/d ratio.  The smallest beam in each group (d=17.5 in.) did not 

have any web reinforcement.  The other three beams in each group had equal 

reinforcement in the horizontal and vertical directions satisfying a reinforcement ratio of 

0.0012.  The test results are plotted in Figure 4.40.  These test results agree well with 
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those in Figure 4.39.  The normalized shear stress at failure decreases with the increasing 

depth of the member.  The authors attributed the decline in strength to the difference in 

the rate of energy release due to crack propagation for the beams of different sizes.  

Specifically, they noted that the larger beams had more developed cracks than the smaller 

beams at a given shear stress.  In addition, the authors noted that size effect was greatest 

when the effective depth increased from 17.5 in. to 34.8 in.  At depths larger than 34.8 

in., the reduction in shear stress at failure was not as high. 

 

 
Figure 4.40: Size effect strength results from Tan and Lu (1999) 

In 2001, nine reinforced concrete deep beams were tested at an a/d ratio of 1.0 by 

Matsuo et al.  All of the beams were 5.9 in. in width.  The effective depths ranged from 

7.9 in. to 23.6 in.  Similar to the study by Walraven and Lehwalter, the length of the load 

and support plates were varied with the effective depth of the beam such that the ratio 

between the two was 0.25 for all of the specimens.  Also, the beams were simply-

supported and were tested with a single concentrated load at midspan.  Three beams did 

not have any web reinforcement; three beams had vertical reinforcement corresponding 

to a ρv of 0.0042; three beams had vertical reinforcement corresponding to a ρv of 0.0084.  
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No horizontal web reinforcement was present in the test specimens.  The test results are 

plotted in Figure 4.41.  All of the beams failed according to a shear-compression mode 

with a considerable amount of crushing around the loading point.  For the specimens 

without web reinforcement, the normalized shear stress at failure decreased with 

increasing depth, indicating size effect.  While the shear strength of the specimens with 

web reinforcement generally decreased with increasing depth as well, the reduction was 

not as consistent.  It is possible that web reinforcement acted to alleviate size effect to 

some degree.  According to the authors, the size effect was attributed to a reduction in 

“the ratio of the region of compression failure to total region of the specimen” (Matsuo et 

al., 2001).    

 
Figure 4.41: Size effect strength results from Matsuo et al. (2001) 

In 2007, twelve reinforced concrete deep beams were tested at an a/d ratio of 1.1 

by Zhang and Tan.  The test specimens were divided into three groups of four.  Within 

each group, the effective depth of the beam varied from 12.3 in. to 35.6 in.  In the first 

group, the beam width was constant at 3.2 in., and there was no web reinforcement.  In 

the second group, there was also no web reinforcement; but the beam width varied from 

3.2 in. to 9.8 in.  In the third group, the beam width varied as in group 2; and web 
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reinforcement corresponding to a ρv of approximately 0.004 was provided (ρh = 0).  For 

all of the specimens, the length (ll) of the load and support plates varied with the effective 

depth (d) such that the ratio between them (ll / d) was approximately 0.17.  The beams in 

this study were loaded with two concentrated loads at the third points.  The test results 

are plotted in Figure 4.42.  Unlike the data plotted in Figure 4.39 through Figure 4.41, no 

size effect is apparent for the tests conducted by Zhang and Tan.  The authors attributed 

the lack of size effect to the appropriate proportioning of the length of the load and 

support plates to the depth of the beams. “Thus, [controlling] strut geometry plays a 

dominant role in mitigating the size effect in ultimate shear strength of deep beams” 

(Zhang and Tan, 2007).  From a strut-and-tie model perspective, where the strength of a 

deep beam is often governed by dimensions of the struts and nodes, these results seem 

reasonable.   

 
Figure 4.42: Size effect strength results from Zhang and Tan (2007) 

The experimental results in Figure 4.42 were further explained with finite element 

models (FEM) by Zhang and Tan (2007).  Two sets of analyses were conducted. In the 

first set, each of the twelve test specimens were analyzed with the same loading 

conditions as the actual tests.  The FEM results agreed well with the test results.  In the 
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second set, the lengths of the support and load plates were not varied with the depth of 

the specimens as they were in the actual tests.  Instead, a constant length of 2.1 in. was 

used for the length of all bearing plates in all of the beams.  This length equaled the 

length of the plates for the smallest test specimen (d = 12.3 in.).  The results of the 

analyses are illustrated in Figure 4.43 and Figure 4.44.  When the bearing plates were 

varied with the depth of the member, no apparent size effect existed.  Whereas, when the 

bearing plate sizes were kept constant as the depth of the member increased, size effect 

was present.  These results indicate that the geometry of the strut where it intersects the 

node (node-to-strut interface) dominates the ultimate shear strength of deep beams, and 

controlling this geometry can effectively mitigate size effect. 

 

 
Figure 4.43: FEM results in which bearing plate sizes increased with increasing 

member depth (Zhang and Tan, 2007)  
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Figure 4.44: FEM results in which bearing plate sizes were constant with increasing 

member depth (Zhang and Tan, 2007)  

There is some disagreement between the findings of Zhang and Tan (2007) and 

the test results of Walraven and Lehwalter (1994) and Matsuo et al. (2001).  By 

proportioning the length of the load and support plates according to the depth of the 

beam, Zhang and Tan were able to mitigate size effect.  However, when both Walraven 

and Lehwalter and Matsuo et al. proportioned their bearing plates in the same manner, 

size effect was not mitigated.  Zhang and Tan attributed the discrepancy between their 

findings and those of Walraven and Lehwalter to the “uneven distribution of shear 

reinforcement” for the different beam sizes of the latter.  The spacing of the transverse 

reinforcement in specimens of Walraven and Lehwalter was approximately d/4 for each 

beam regardless of the size.  However, the same numerical spacing of approximately 5.9 

in. was used for all of the beams of Zhang and Tan.  While the distribution of 

reinforcement for the larger beams may have contributed to the discrepancy between the 

results of these two studies, it was not solely responsible.  In the study by Matsuo et al., 

the bearing plates were varied according to the depth of the beam and the distribution of 
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reinforcement was consistent between each of the beams.  Size effect was still apparent in 

these tests, albeit not as pronounced.     

It is plausible that the other contributing factor to the discrepancy between the 

aforementioned studies is the loading configuration.  Walraven and Lehwalter and 

Matsuo et al. tested their specimens with a single concentrated load at midspan.  They 

proportioned the length of the load and the support plates according to the depth of the 

beam.  However, since a single load is applied at midpsan, the bearing stresses at the load 

are twice as high as those at the supports.  Conversely, Zhang and Tan tested their 

specimens with two concentrated loads applied at the third points.  Due to this 

arrangement, the bearing stresses at the load and the support were equivalent.  It seems 

likely that the uneven proportioning of the length of the load and support plates in the 

tests by Walraven and Lehwalter and Matsuo et al. contributed to the difference in results 

with those of Zhang and Tan.   

From the aforementioned studies, it was shown that a reduction in the normalized 

shear stress at failure (V/fc′bwd) existed when the load and support plates were not 

properly proportioned according to the depth of the beam.  When the length of the 

bearing plates were increased with the depth of the member, no size effect was apparent, 

especially for members with web reinforcement.  From a strut-and-tie model perspective, 

these results make sense.  In STM, the strength of a deep beam is often controlled by the 

stress on the nodal faces.  If the size of the nodes is increased proportionally to the depth 

of the member, then a similar normalized stress at failure should be expected.  (Node size 

increases, Vult increases, d increases, and V/fc′bwd remains constant).  Similarly, if the 

node size remains constant as the depth of the member increases, then a reduction in the 

normalized shear stress at failure should be expected.  (Node size is similar, Vult is 

similar, d increases, and V/fc′bwd decreases).  Therefore, evaluating the effect of depth on 

the strength of deep beams should be done from a strut-and-tie model perspective.     

4.4.2.2 Strength Results from the Experimental Program 

Before the tests in Series IV could be conducted, the size of the load and support 

plates of the different-sized specimens needed to be determined.  Based on previous 
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research studies, it was apparent that the length of the bearing plates affected the strength 

of deep beams as the effective depth increased.  Also, the tests in Project 5253 on 

triaxially-confined nodal regions (Series II) revealed that the length of the bearing plates 

were far more important to the strength of deep beams than the width of the bearing 

plates at CCC nodes (Tuchscherer, 2008).  Thus, the bearing plate dimensions used for 

the tests in Series IV were carefully chosen.   

The dimensions for the bearing plates and the supporting columns of several 

TxDOT bent caps were studied (Figure 4.45).  In general, the length of the bearing plates 

appeared to be based on the size of the girder supported by the bent cap, rather than the 

depth of the bent cap itself.  The length of the bearing plates used in the Greens Road 

bent caps and in standard Type IV bent caps were identical even though the overall depth 

of these members differed by nearly a factor of 2.  The length of the pot bearings used in 

the I-345 bent cap in Dallas, however, were large due to the size of the continuous steel 

plate girders resting on top of it.  Therefore, notwithstanding the I-345 bent cap, the 

length of bearing plates were generally independent of the depth of the member. 

 

 
Figure 4.45: Bearing plate dimensions in several TxDOT bent caps (TxDOT, 2008) 

For the Series IV specimens, the sizes of the bearing plates were not linked to the 

depth of the member.  Instead, the bearing plate dimensions were selected to create 

similar size nodal regions (CCC and CCT) for each of the three sections tested within this 

task.  The effect of increasing the member depth without increasing the size of the nodal 
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regions on the strength of deep beams was evaluated with this choice.  More importantly, 

it appeared to be more consistent with typical TxDOT practice.  The relative sizes of the 

nodal regions using a single-panel STM for the three sections tested within this task are 

depicted in Figure 4.46 and Figure 4.47. 

 

 
Figure 4.46: Relative size of nodal regions for depth effect specimens 
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Figure 4.47: Relative size of nodal regions in depth effect specimens (2) 

Since the test specimens were loaded with a single point load, the critical 

dimension at the load point was not the full length of the bearing plate, but rather the 

percentage of the bearing plate that was used in the strut-and-tie model for the test region.  

Therefore, this dimension, αll, was kept constant for the three beam sizes (14.5 in.).  For 

reference, α equals 0.5 for the specimen loaded at midspan.  The length of the support 

plates was constant for all of the beams (16 in.).  As shown in Figure 4.47, the resulting 

sizes of the nodal regions were fairly equal even though the overall depth of the test 

specimen increased from 23 in. to 75 in.  The size of the node-to-strut interface increased 

slightly as the depth increased due to the increase in the back face dimensions of both the 

CCC and CCT nodes.  It was not possible to keep these dimensions constant for 

specimens of different sizes while maintaining the same longitudinal reinforcement ratio.   

The test specimens from the experimental program used to evaluate the effect of 

depth on the strength of deep beams are listed in Table 4.7.  The small (21”x23”) and the 

large (21”x75”) sections were tested in Series IV.  The results of these tests were 

compared with similar tests conducted on the 21”x42” section in Series III.  The 

experimental strength results and the relevant information about each specimen is listed 

in Table 4.7.    

 

21” x 23”

21” x 42”

21” x 75”

a/d = 1.85

size of CCT node varies due to steel distribution  
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Table 4.7: Strength results for depth effect specimens 

Beam I.D. bw 
in. 

d 
in. 

f′c 
psi Nominal 

ρv & ρh 

Support 
Plate† 

in. 

Load 
Plate†

 
in. 

α 

a/d 
ratio 

Vtest  
kip  Vcrack / 

Vtest 

III-1.85-02 21 38.6 4100 0.002 16x21 20x21 0.72 1.84 488 0.15 9.4 0.23 
III-1.85-03b 21 38.6 3300 0.003 16x21 20x21 0.72 1.84 471 0.18 10.1 0.24 
III-1.85-02b 21 38.6 3300 0.002 16x21 20x21 0.72 1.84 468 0.17 10.1 - 
III-1.2-02 21 38.6 4100 0.002 16x21 20x21 0.82 1.20 846 0.25 16.3 0.20 
III-1.2-03 21 38.6 4220 0.003 16x21 20x21 0.82 1.20 829 0.24 15.7 - 
III-2.5-02 21 38.6 4630 0.002 16x21 20x21 0.62 2.49 298 0.08 5.4 0.35 
III-2.5-03 21 38.6 5030 0.003 16x21 20x21 0.62 2.49 516 0.13 9.0 - 
IV-2175-1.85-02 21 68.9 4930 0.002 16x21 29x21 0.50 1.85 763 0.11 7.5 0.28 
IV-2175-1.85-03 21 68.9 4930 0.003 16x21 29x21 0.50 1.85 842 0.12 8.3 0.26 
IV-2175-2.5-02 21 68.9 5010 0.002 16x21 24x21 0.33 2.50 510 0.07 5.0 0.28 
IV-2175-1.2-02 21 68.9 5010 0.002 16x21 24x21 0.67 1.20 1223 0.17 11.9 0.21 
IV-2123-1.85-03 21 19.5 4160 0.003 16x21 16.5x21 0.86 1.85 329 0.19 12.5 0.18 
IV-2123-1.85-02 21 19.5 4220 0.002 16x21 16.5x21 0.86 1.85 347 0.20 13.0 0.19 
IV-2123-2.5-02 21 19.5 4570 0.002 16x21 15.5x21 0.81 2.50 161 0.09 5.8 0.32 
IV-2123-1.2-02 21 19.5 4630 0.002 16x21 18x21 0.91 1.20 592(f) 0.31 21.2 0.21 

†     Length along span (l)  x length along width (w) 
(f)   Maximum shear carried in specimen upon the occurrence of concrete crushing at the compression face. 
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The strength results for the specimens in Table 4.7 tested at an a/d ratio of 1.85 

are plotted in Figure 4.48.  The experimental shear strength was normalized by the shear 

area and the compressive strength of concrete.  It is clear from the plot that with 

increasing depth, the normalized shear stress at failure decreases.  These results are 

consistent with those of previous research studies (Walraven and Lewalter, 1994; Tan 

and Lu, 1999; and Matsuo et al., 2001).  It is also clear from the plot that increasing the 

web reinforcement ratio in each direction from 0.2% to 0.3% did not affect the strength 

of the member.  This finding confirms the results discussed in Section 4.3.2 regarding the 

effect of web reinforcement on the strength of deep beams.   

 

 
Figure 4.48: Strength results of depth effect specimens at a/d of 1.85 

The test regions at failure for the three specimens representing the red line in 

Figure 4.48 (ρv = ρh = 0.002) are illustrated in Figure 4.49.  The mode of failure observed 

in these tests was generally the same.  Numerous parallel cracks formed along the line 

between the applied load and the support indicating the presence of a direct strut transfer 

mechanism.  At the ultimate applied load, local crushing near the load point and along the 

strut occurred.  The black lines in Figure 4.49 represent the final failure crack of each 
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specimen, where the final failure crack is defined as the widest crack at failure.  It is 

interesting to note that the final failure crack for the 75-in. specimen extended from the 

edge of the load plate at an angle of approximately 45 deg. instead of extending from the 

edge of both plates as in other tests.  Similar cracking patterns at ultimate exist for the 

specimens with 0.3% reinforcement. 

 

 
Figure 4.49: Failure photographs for depth effect specimens with a/d of 1.85 and 0.2% 

reinforcement 

The strength results for the specimens tested at several a/d ratios (1.2, 1.85, and 

2.5) and with 0.2% web reinforcement in each direction are plotted in Figure 4.50.  The 

Vmax =  763 kips
7.5√f 'c·bw·d
0.11 f 'c·bw·d

Vmax =  468 kips
10√f 'c·bw·d

0.17 f 'c·bw·d

Vmax =  347 kips
13√f 'c·bw·d

0.20 f 'c·bw·d

c). IV-2123-1.85-02 (pre-cracked)

b). III-1.85-02b (pre-cracked)

a). IV-2175-1.85-02
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normalized shear strength of the specimens decreased with increasing depth as before.  It 

is important to note that the normalized shear strength of the 23-in. specimens at a/d 

ratios of 1.2 and 1.85 differ with that of the 75-in. specimens by a factor of 2.  For the 

specimens tested at an a/d ratio of 2.5, the normalized shear strength only slightly 

decreased with increasing effective depth.  The reduction in size effect as the a/d ratio 

increases was also reported by Tan et al. (2005).  In their study, the strength results 

indicated that size effect was more dominant for beams tested at an a/d ratio of 1.69 and 

less as compared to similar beams tested at an a/d ratio of 3.38.   

 

 
Figure 4.50: Strength results of all depth effect specimens 

The test regions at failure for the three specimens representing the red line in 

Figure 4.50 (a/d = 1.2) are illustrated in Figure 4.51.  The mode of failure for the 42- and 

the 75-in. specimen was the crushing of the direct strut between the load and the support.  

The cracking patterns and the presence of local crushing along the strut and near the 

applied load were similar to those of the specimens tested at an a/d ratio of 1.85 (Figure 

4.49).  The 23-in. specimen, however, failed in flexure.  The size of the nodal regions in 

relation to the shear span increased the shear capacity to the point where flexure was the 
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controlling failure mechanism.  From an academic standpoint, it can be inferred that the 

actual shear strength of this specimen was greater than the shear that produces the 

flexural failure.  It is important to note that the strut-and-tie procedure accounts for 

flexural failures with the check of tensions ties and the back face of CCC nodes.  

 

 
Figure 4.51: Failure photographs of depth effect specimens with a/d of 1.2 

Lastly, the test regions at failure for the specimens loaded at an a/d ratio of 2.5 

(orange line in Figure 4.50) are provided in Figure 4.52.  For the 23- and 42-in. 

specimens, the mode of failure was drastically different than those at the other a/d ratios.  

As seen in Figure 4.52, the failure crack resembled a sectional shear, or diagonal tension, 

Vmax = 1,223 kips
12√f 'c·bw·d

0.17 f 'c·bw·d

Vmax = 847 kips
16√f 'c·bw·d

0.26 f 'c·bw·d

Vmax = 592 kips
21√f 'c·bw·d

0.31 f 'c·bw·d

c). IV-2123-1.2-02 (pre-cracked)

b). III-1.2-02

a). IV-2175-1.2-02 (pre-cracked)
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crack.  Very little crushing or parallel cracking was detected in the region of a direct strut.  

This difference in behavior was not surprising since it is well known that as the a/d ratio 

approaches 2, the dominant shear transfer mechanism starts to change.  At low a/d ratios 

(a/d < 2), an arching or direct strut mechanism is dominant.  At higher a/d ratios (a/d > 2), 

a sectional shear mechanism in which shear resistance is provided by the concrete (Vc) 

and steel (Vs) is dominant.  For the 75-in. specimen, the final failure crack slightly 

resembled a sectional shear crack, but there was a considerable amount of parallel 

cracking in the region of the direct strut.  The behavior of this test further illustrates that 

the transition between deep beam behavior and sectional behavior is gradual; it does not 

occur at a distinct a/d ratio.  The transition between deep beam behavior and sectional 

behavior and variables that affect it are addressed explicitly in Section 5.2.  From the test 

results of these three beams (orange line in Figure 4.50), it is clear that size effect 

depends upon the dominant transfer mechanism and thus, the a/d ratio. 
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Figure 4.52: Failure photographs of depth effect specimens with a/d of 2.5 

 The reduction in the normalized shear strength with increasing depth (size effect) 

in Figure 4.48 and Figure 4.50 can be explained with a strut-and-tie model analysis.  As 

discussed in Section 5.2, the primary load carrying mechanism for deep beams (a/d < 2) 

is captured with a single-panel strut-and-tie model.  According to the model, the capacity 

of deep beams is often governed by the size of the nodal regions.  The depth of the 

member does not directly affect the strength.  Therefore, it is inappropriate to normalize 

the experimental strength of deep beams by the member depth.  Doing so assumes that 

the strength of deep beams is a function of the beam depth.  A similar conclusion was 

reached by Zhang and Tan (2007).  They, too, noted that the primary cause of size effect 

Vmax = 510 kips
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was the inappropriate use of the “conventional definition of shear strength of V/(bd)” for 

concrete deep beams (Zhang and Tan, 2007). 

From a design perspective, the most appropriate way to normalize experimental 

strength is with design strength.  The design procedure should account for every major 

variable that affects the strength of the member, and therefore, should provide a 

consistent means of comparison between beams with any combination of these variables.  

The experimental strength of the specimens tested in the current task was normalized 

with the design strength computed according to the 5253 strut-and-tie model provisions 

(Section 2.3.4.4).  The results are plotted in Figure 4.53.  For the deep beams (a/d < 2), 

there was a fairly uniform level of conservatism as the depth of the member increased.  

The reserve capacity (Vtest / Vcalc.) of the 75-in. deep beams (a/d < 2) was approximately 

15% less than that of the 23-in. deep beams.  This reduction is a significant improvement 

to the difference of a factor of 2 in the normalized shear stresses at failure presented in 

Figure 4.50.  Due to the numerous stress checks that can govern the capacity of a strut-

and-tie model, some scatter in the values of Vtest / Vcalc. should be expected.  In addition, 

there is little difference in the reserve capacity of the specimens tested at an a/d ratio of 

1.2 and 1.85.  These results indicate that the single-panel strut-and-tie model adequately 

captured the experimental behavior of the specimens tested at an a/d ratio less than 2, 

regardless of the size and a/d ratio.  It should be noted that similar conclusions would be 

reached with respect to effective depth if the STM provisions in ACI 318-08 Appendix A 

or AASHTO LRFD (2008) were used to estimate capacity. 
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Figure 4.53: Experimental strength of depth effect specimens normalized by calculated 

strength 

Based on the results and discussion of this task, it appears that size effect 

(reduction in efficiency as beam depth increases) is largely eliminated when a strut-and-

tie analysis is used to design deep beams (a/d < 2).  The specimens tested in the current 

experimental program at an a/d ratio less than 2 failed in agreement with a single-panel 

strut-and-tie model.  The calculated capacity of the deep beam specimens in Figure 4.53 

was governed by the stresses at the CCT node-to-strut interface or the CCC back face in 

general.  As such, their strength was a function of the size and stress conditions in the 

nodal regions, not a function of their effective depth.  The size effect in deep beams 

reported in the literature is largely the result of assuming that their strength is a function 

of section size. 

For the beams tested at an a/d ratio of 2.5, the same conclusions did not apply.  As 

noted in Figure 4.52, the specimens tested at this a/d ratio did not fail in a consistent 

manner with a single-panel STM.  Instead, their failure modes more closely resembled 

sectional shear, or diagonal tension, failures.  For this reason, the reserve capacity (Vtest. / 

Vcalc.) for these specimens was not consistent with the rest of the tests (Figure 4.53).  
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However, in all three cases, the strength was conservatively estimated due to the inherent 

conservatism in the strut-and-tie modeling procedure.  These results illustrate a limitation 

of using a single-panel STM on beams loaded with an a/d ratio greater than 2.  When the 

behavior of the member is not consistent with the design procedure, the chance of 

calculating an unconservative estimate of strength increases.    

Therefore, in general, it may not be appropriate to apply a single panel STM 

analysis to design deep beams with a/d ratios of 2.5.  The experimental behavior of these 

members does not match the behavior assumed in a single-panel STM.  Similarly, size 

effect of beams loaded with an a/d ratio of 2.5 should not be evaluated by normalizing the 

experimental strength with calculated strength from a single panel STM.  Instead, size 

effect of these members should be evaluated by normalizing the strength with dbf' wc

since these variables are known to be linked to members governed by sectional shear.   

The strength results of the specimens tested at an a/d ratio of 2.5, normalized with 

dbf' wc , are presented in Figure 4.54.  In this plot, the data indicated that with 

increasing depth a small decrease in the normalized shear strength existed.  The 

normalized strength dropped by approximately 10% between each increase in section 

size.  This amount of strength loss is small considering the range of scatter that is 

consistent with experimental shear tests.  It should be noted that there was some 

difference in the maximum diagonal crack widths between the 23-in. specimens and the 

larger specimens that may have contributed to this slight loss in strength.  However, the 

maximum diagonal crack widths for the 42- and 75-in. specimens were similar.  The 

crack width data will be presented in Section 4.4.3.  
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Figure 4.54: Strength results of size effect specimens with a/d of 2.5 

The experimental strength of the specimens with an a/d of 2.5 is compared to the 

calculated strength using the sectional shear provisions (Vc + Vs) in AASHTO LRFD 

(2008) and ACI 318-08 in Figure 4.55.  The results indicate that even though there was a 

loss in strength with increasing depth, the strength was estimated conservatively with the 

provisions in both specifications.  Since the calculated capacity according to each 

provision does not account for a size effect, there is a slightly decreasing level of 

conservatism (Vtest / (Vc + Vs)) with increasing depth.  For the strength estimate 

according to the AASHTO LRFD 2008 provisions, the approximate procedure (Article 

5.8.3.4.1) was used since each specimen contained sufficient transverse reinforcement.  

The sectional shear provisions in AASHTO LRFD (2008) and ACI 318-08 are provided 

in Section 5.2.3 for reference.   
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Figure 4.55: Level of conservatism in sectional shear provisions for specimens with a/d 

of 2.5 

The experimental shear strength, measured in kips, of the beams tested for the 

depth effect task is plotted in Figure 4.56.  The purpose of this plot is to illustrate that the 

actual load carrying capacity of all the specimens did in fact increase with increasing 

depth.  However, the reason for the increase in strength was not the same for all of the 

specimens.  For the specimens tested at an a/d ratio less than 2, the increase in strength 

with increasing depth was a result of a slight increase in the size of the back face of the 

CCC node and CCT nodes and the resulting increase in the length of the node-strut 

interface of each node (Figure 4.47).  For these tests, the node-strut interface at the CCT 

node generally governed the design capacity computed according to the 5253 STM 

provisions.  It is clear that the increase in load carrying capacity was not proportional to 

the increase in depth for the deep beams (a/d < 2) (Figure 4.50).  For the specimens tested 

at an a/d ratio of 2.5, the increase in strength was directly related to the increase in depth, 

with a minimal reduction due to size effect (Figure 4.54).  Section-based design 

approaches are more applicable to beams with a/d ratios of 2.5.     
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Figure 4.56: Ultimate shear capacity (kips) of size effect speicmens  

In the context of strut-and-tie modeling, size effect of deep beams is not 

applicable.  Size effect needs to be evaluated in terms of the shear transfer mechanism 

that governs the behavior of the specimen.  In previous studies, it was assumed that the 

strength of deep beams was a function of the shear area (bwd).  While this assumption 

does not affect the comparisons of beams with similar depths, it is inappropriate for 

evaluating the performance of beams of varying depth.  The strength of deep beams (a/d 

< 2) is not a function of their shear area, but rather, a function of a single-panel strut-and-

tie model. 

4.4.3 Serviceability Results  

4.4.3.1 Serviceability Results from the Literature 

A few of the experimental studies that investigated the effect of depth on deep 

beam performance recorded serviceability information.  Most of the researchers noted the 

diagonal cracking loads of their test specimens.  Some studies emphasized the load at 
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which the maximum diagonal crack width reached a limiting value (such as 0.012 in. or 

0.016 in.).  The serviceability results of test specimens with web reinforcement from 

three previously-reviewed studies are presented in this section. 

Minimal effect of depth on the shear stress at first diagonal cracking was detected.  

The experimental test results are plotted in Figure 4.57.  The loads at first diagonal 

cracking were normalized by dbf' wc .  In the context of a single-panel STM, the 

mechanism of diagonal cracking in deep beams is a function of the spreading of 

compressive stress in the bottle-shaped strut.  For the member to crack, the transverse 

tensile stress in the strut must exceed the tensile capacity of the concrete.  Thus, 

normalizing the diagonal cracking loads by the approximate cross-sectional area of the 

strut, bwd, and the tensile strength of concrete, cf' , is consistent with the mechanism of 

behavior. 

 

 
Figure 4.57: Diagonal cracking loads of size effect specimens in literature 

 

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0

0 20 40 60 80D
ia

go
na

l C
ra

ck
in

g 
L

oa
d,

 V
cr

/ √
f '

c 
b w

d

Effective Depth, d (in.)

a/d = 0.56 a/d = 0.84 a/d = 1 a/d = 1.1 a/d = 1.13

Tan and Lu (1999)
Walraven and Lehwalter (1994)

Zhang and Tan (2007)



 181

The data in Figure 4.57 are not conclusive regarding the effect of depth on the 

normalized shear stress at first diagonal cracking.  Consider the specimens tested at a/d 

ratios of 0.56 and 1.13 by Tan and Lu (1999).  When the effective depth of the member 

increased from 49 in. to 61 in., a significant reduction in stress at first diagonal cracking 

was observed.  Tan and Lu attributed the drop in stress with increasing depth to Weibull’s 

statistical theory (Weibull, 1939).  In this theory, the diagonal cracking strength of a 

beam is compared to a chain of links in which the strength of the chain is governed by the 

weakest link.  As the depth of the beam increases, the number of links increases and a 

lower cracking strength is expected.  The first diagonal cracking loads of the specimens 

tested at an a/d ratio of 1.0 by Walraven and Lewalter (1994) showed a slight size effect 

with respect to the smallest 7.9-in. specimen.  For the other data in Figure 4.57, the effect 

of depth on the first diagonal cracking stress was not apparent.  Walraven and Lehwalter 

(1994) and Zhang and Tan (2007) made the following conclusions regarding the effect of 

depth on first diagonal cracking:  

“…the load at which inclined cracking occurs is hardly size-
dependent.” (Walraven and Lehwalter, 1994) 

“…the diagonal cracking strengths of deep beams are not size 
dependent.” (Zhang and Tan, 2007) 

The diagonal cracking loads from these research studies can also be normalized 

by the load carrying capacity.  The results are illustrated in Figure 4.58.  The diagonal 

cracking loads of the test specimens represented in Figure 4.58 ranged from 

approximately 20% to 60% of the ultimate load-carrying capacity.  There is not a distinct 

trend with increasing depth.   
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Figure 4.58: Diagonal cracking loads of size effect specimens in literature (function of 

ultimate) 

The loads at which the width of the inclined cracks reached 0.012 in. (0.3 mm) 

were recorded in a couple of research studies as well.  These loads were termed the 

serviceability loads since a crack width of 0.012 in. is generally accepted as a tolerable 

crack width for exterior exposure conditions (ACI 224R-01).  The experimental test 

results are plotted in Figure 4.59.  In this plot, the serviceability loads were also 

normalized by the ultimate load-carrying capacity.  The serviceability loads as a 

percentage of the capacity generally decreased with increasing depth, albeit with some 

inconsistency.  The diagonal crack widths reached the limiting width at lower 

percentages of their ultimate strength as the depth of the member increased.  It seems 

plausible to extend the results in Figure 4.59 to suggest that with increasing depth, 

diagonal crack widths increase for a given percentage of capacity.   
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Figure 4.59: Service loads (diagonal crack width = 0.012 in.) as function of ultimate 

for size effect specimens in literature 

4.4.3.2 Serviceability Results from the Experimental Program  

In the current task, the effect of depth on the serviceability performance of deep 

beams was also evaluated.  The serviceability performance was measured with first 

diagonal cracking loads and with the maximum diagonal crack width at first cracking and 

at each load increment thereafter.   

The load at which the first diagonal crack was detected was recorded for all of the 

tests in the current project.  As noted in Section 4.2.2, for the test regions that were pre-

cracked prior to testing, a load at first diagonal cracking was not available.  This 

restriction did not apply for the beams in Series IV.  For the 75-in. specimens, the 

diagonal cracking loads for each test region were obtained during the first test since the 

position of the ram did not change between the two tests.  For the 21-in. specimens, the 

test region for the second test of each beam was uncracked due to the low level of load 

resisted by the long shear span.  The diagonal cracking loads for the test specimens 

relevant to the current task are listed in Table 4.8.  
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Table 4.8: Diagonal cracking loads of depth effect specimens 

Beam I.D. bw 
in. 

d 
in. 

f′c 
psi Nominal 

ρv & ρh 

Support 
Plate† 

in. 

Load 
Plate†

 
in. 

α 

a/d 
ratio 

Vcrack 
kip Vcrack / 

Vtest 

III-1.85-02 21 38.6 4100 0.002 16x21 20x21 0.72 1.84 112 2.2 0.23 
III-1.85-03b 21 38.6 3300 0.003 16x21 20x21 0.72 1.84 114 2.4 0.24 
III-1.85-02b 21 38.6 3300 0.002 16x21 20x21 0.72 1.84 - -  
III-1.2-02 21 38.6 4100 0.002 16x21 20x21 0.82 1.20 165 3.2 0.20 
III-1.2-03 21 38.6 4220 0.003 16x21 20x21 0.82 1.20 - -  
III-2.5-02 21 38.6 4630 0.002 16x21 20x21 0.62 2.49 105 1.9 0.35 
III-2.5-03 21 38.6 5030 0.003 16x21 20x21 0.62 2.49 - -  
IV-2175-1.85-02 21 68.9 4930 0.002 16x21 29x21 0.5 1.85 216 2.1 0.28 
IV-2175-1.85-03 21 68.9 4930 0.003 16x21 29x21 0.5 1.85 218 2.1 0.26 
IV-2175-2.5-02 21 68.9 5010 0.002 16x21 24x21 0.33 2.50 144 1.4 0.28 
IV-2175-1.2-02 21 68.9 5010 0.002 16x21 24x21 0.67 1.20 262 2.6 0.21 
IV-2123-1.85-03 21 19.5 4160 0.003 16x21 16.5x21 0.86 1.85 60 2.3 0.18 
IV-2123-1.85-02 21 19.5 4220 0.002 16x21 16.5x21 0.86 1.85 65 2.4 0.19 
IV-2123-2.5-02 21 19.5 4570 0.002 16x21 15.5x21 0.81 2.50 51 1.8 0.32 
IV-2123-1.2-02 21 19.5 4630 0.002 16x21 18x21 0.91 1.20 124 4.5 0.21 

†  Length along span (l) x length along width (w) 
(f) Maximum shear carried in specimen upon the occurrence of concrete crushing at the compression face. 
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The experimental load at first diagonal cracking for the beams in the current task 

were normalized, as before, by 'f c bwd.  Information regarding the measurement of the 

diagonal cracking loads was provided in Section 4.2.2.  The results for the beams in the 

current task are plotted in Figure 4.60.  

 

 
Figure 4.60: Normalized diagonal cracking loads for the depth effect specimens 

The test results in Figure 4.60 do not show consistent trends with effective depth.  

For the specimens tested at a/d ratios of 1.85, a negligible difference in diagonal cracking 

strength existed as the depth of the member increased.  It is interesting to note that for 

these members, the shear at first diagonal cracking was approximately 2 'f c bwd which 

is the assumed diagonal cracking strength (and concrete contribution to shear strength) of 

members subjected to sectional shear.  For the specimens tested at an a/d ratio of 1.2, 

however, the shear stress at first diagonal cracking decreased with increasing depth.  The 

high stress at first diagonal cracking for specimen IV-2123-1.2-02 could have been due to 

the size of the bearing plates in relation to the shear span, effectively decreasing the a/d 

ratio (Figure 4.46).  However, this explanation cannot be used to explain the differences 
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in shear stress at diagonal cracking between the 42- and 75-in. specimens.  Similarly, the 

diagonal cracking load decreased between the 42- and 75-in. specimens tested at an a/d 

ratio of 2.5.  It is possible that a Weibell-type statistical size effect or a variation in the 

tensile strength of concrete contributed to the reduction in stress at first diagonal cracking 

for these members.  The lack of consistent trends in the diagonal cracking load of the test 

specimens and those in the literature with increasing depth suggest that the effect highly 

variable. 

As with the data from the literature, the diagonal cracking shears can be 

normalized with the ultimate load carrying capacity.  This normalization technique 

applied to the beams tested in the current task is provided in Figure 4.61.  In this figure, 

the diagonal cracking strength of the specimens ranged from approximately 20% to 35% 

of the capacity.  Also, as the depth of the specimen increased, the ratio of the cracking 

shear to the ultimate shear was fairly constant for the beams tested at each a/d ratio.  This 

finding was particularly interesting for the set tested at an a/d ratio of 1.2.  The results 

indicated that the diagonal cracking strength of deep beams may not be just a function of 

the shear area and the 'f c .  Perhaps, other variables that affect the capacity, namely the 

size of the bearing plates, may also affect the diagonal cracking strength.  More research 

in this area is recommended.   
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Figure 4.61: Diagonal cracking loads normalized by ultimate strength for depth effect 

tests 

In addition to obtaining the diagonal cracking loads of the test specimens, the 

maximum width of the primary diagonal crack was recorded for the duration of each test.  

As noted in Section 3.5.3, the width of the diagonal cracks was measured using a crack 

comparator card.  Measurements were taken on each side of the specimen and at each 

load increment.  The crack width data for all of the specimens relevant to this task are 

provided in Figure 4.62 through Figure 4.65.  Each plot contains the crack width data for 

a set of tests where the only difference among the specimens is their depth.  As before, 

the maximum diagonal crack widths are plotted versus the percent of the maximum 

applied load for the reasons cited in Section 4.2.2.  
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Figure 4.62: Maximum diagonal crack widths for depth effect specimens with an a/d 

ratio of 1.2 

 
Figure 4.63: Maximum diagonal crack widths for depth effect specimens with an a/d 

ratio of 1.85 and 0.2% web reinforcement 
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Figure 4.64: Maximum diagonal crack widths for depth effect specimens with an a/d 

ratio of 1.85 and 0.3% web reinforcement 

 
Figure 4.65: Maximum diagonal crack widths for depth effect specimens with an a/d 

ratio of 2.5 
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In Figure 4.62 through Figure 4.65, the diagonal crack width data for the depth 

effect series were provided.  In general, the widths of the diagonal cracks in the 42- and 

75-in. specimens were fairly consistent for all three a/d ratios.  An increase in depth from 

42 in. to 75 in. did not significantly affect the maximum diagonal crack width.  The 

widths of the diagonal cracks in the 23-in. specimens, however, were consistently 

narrower than the larger specimens at a given percentage of capacity for all three a/d 

ratios.  These data indicated that caution should be used in extrapolating crack width data 

from smaller members to large or full-scale members.  Also, the data presented in Figure 

4.62 through Figure 4.65 was fairly consistent with the results from the literature 

presented in Figure 4.59.  Crack width data presented by Tan and Lu (1999) and Zhang 

and Tan (2007) indicated that the width of diagonal cracks for larger members reached 

the tolerable crack width limit (0.012 in.) at lower percentages of their capacity than for 

smaller members.   

The trend of the data in Figure 4.62 through Figure 4.65 can be explained with 

aspects of modified compression field theory.  According to this theory, as the depth of 

the member increases, the spacing of the diagonal cracks tends to increase (Collins and 

Kuchma, 1999).  The diagonal crack width is a function of transverse tensile strain in the 

member and the spacing of the cracks.  Therefore, as the depth of the member increases, 

the width of the diagonal cracks is expected to increase due to the increase in crack 

spacing.  It should be noted that this theory was formulated for the use with slender 

beams and was based on flexural theory assumptions.  However, the dependence of crack 

spacing on member depth and the influence of spacing on crack width seem applicable to 

deep beams as well.  It is important to note that an appreciable difference in crack width 

was only observed as the overall depth increased from 23 in. to 42 in.  There were 

negligible differences in crack widths as the overall depth increased from 42 in. to 75 in.  

Thus, it would appear that effect of size on diagonal crack width is mitigated once the 

overall depth reaches 42 in. 
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4.4.4 Design Recommendations 

Based on the results presented and discussed in Section 4.4, the design of 

reinforced concrete deep beams (a/d < 2) should be performed with a strut-and-tie 

analysis.  The behavior of deep beams is often governed by the size and stress conditions 

of the nodal regions which single-panel STMs explicitly address.  In this way, size effect 

of deep beams should not be considered.  Sectional design approaches are unacceptable 

for reinforced concrete deep beams.  They inappropriately assume that the strength of 

deep beams increases proportionally to an increase in depth. 

It is important to note that from a design perspective, increasing the depth of a 

member often decreases the a/d ratio since span lengths are generally pre-determined.  In 

this sense, there is a benefit to increasing the depth of a deep beam. 

4.4.5 Summary 

In Section 4.4, the effect of member depth on the strength and serviceability 

performance of reinforced concrete deep beams was investigated.  Tests were conducted 

at an a/d ratio of 1.2, 1.85, and 2.5 on specimens with a 21”x23”, 21”x42”, and 21”x75” 

cross-section.  With increasing depth, the normalized shear strength at failure 

(Vtest/fc′bwd) decreased.  The apparent reduction in strength is due to the incorrect 

association of deep beam capacity to the cross-sectional area (bwd).  Rather, the strength 

of deep beams is appropriately captured by a single-panel strut-and-tie analysis.  

Provided that the bottle-shape strut is adequately reinforced and the force in the tension 

tie does not control, the strength of deep beams is governed by the size and stress 

conditions in the nodal regions, not by the effective depth of the member.  The findings in 

this section illustrate the importance of using a strut-and-tie model analysis to design 

reinforced concrete deep beams.  Section-based approaches are inappropriate. 

Diagonal cracking loads and maximum diagonal crack widths were recorded at 

load stages to evaluate the effect of depth on the serviceability performance of a deep 

beam.  It was shown that for the beams tested at an a/d ratio of 1.85, the diagonal 

cracking load, normalized by 'f c bwd, was not appreciably affected by an increase in 
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depth.  For the beams tested at an a/d ratio of 1.2 and for one specimen tested at an a/d 

ratio of 2.5, a reduction in the normalized diagonal cracking load was observed.  In light 

of previous findings in the literature, it is likely that depth can influence the diagonal 

cracking load to some extent, but the effect is erratic and highly variable.  With 

increasing overall depth from 23” to 42,” an increase in the maximum diagonal crack 

width at a given percentage of the maximum applied load was recorded.  An increase in 

maximum diagonal crack widths was not observed when the overall depth increased from 

42” to 75” in general.  As a result, the crack width data indicated that a size effect exists 

in terms of the crack widths of small specimens.  Caution should be used in basing 

recommendations on full-scale structures off of crack width data of small specimens.  

The measured data suggested that the effect of depth on crack widths is mitigated at 

depths greater than 42 in. 

4.5 SUMMARY 

In Chapter 4, a summary of the experimental results of the specimens tested in 

Project 5253 was presented.  General information regarding the evaluation of the strength 

and serviceability data obtained in the experimental program such as normalization 

techniques, the computation of test shear, and serviceability criteria were provided.  

Then, the results of two primary tasks of Project 5253 were presented in detail.  The 

effect of minimum web reinforcement on the strength and serviceability performance of 

deep beams was discussed in Section 4.3.  The effect of member depth was discussed in 

Section 4.4.   
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CHAPTER 5 
Analysis of Results 

 

5.1 OVERVIEW 

In Chapter 5, the results of three objectives of Project 5253 are presented.  In 

Section 5.2, the task of reducing the discrepancy between shear strength calculated with 

STM and sectional shear provisions is addressed.  In Section 5.3, methods of limiting 

diagonal cracking under service loads are presented.  Lastly, in Section 5.4, the task of 

correlating the maximum diagonal crack width in a reinforced concrete deep beam to its 

residual capacity to aid field assessment of diagonally-cracked bent caps is accomplished.  

All three of these tasks were achieved through the analysis of data from the experimental 

program, the literature, and the evaluation database.   

5.2 DISCREPANCY IN CALCULATED SHEAR STRENGTH AT a/d RATIO OF 2.0 

TxDOT engineers have expressed concern over large discrepancies in shear 

strength calculated using the STM and sectional shear provisions in AASHTO LRFD 

(2008) at a/d ratios near 2.  The objective of this task was to reduce this discrepancy.  In 

this section, a review of the effect of the a/d ratio on the shear behavior of reinforced 

concrete members is provided.  Information regarding the transition from deep beam 

behavior to sectional shear behavior is emphasized.  Based on data from the experimental 

program and from the literature, the use of a single-panel strut-and-tie model for a/d 

ratios up to 2 is justified.  Lastly, the reason for the discrepancy between shear strength 

calculated using the STM and the sectional shear provisions at an a/d ratio of 2 is 

explained.  With the use of the Project 5253 STM provisions, the discrepancy is largely 

eliminated. 

5.2.1 Background 

In Article 5.8.1.1 of AASHTO LRFD 2008, a deep component is defined as: 
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Components in which the distance from the point of zero shear to the 
face of the support is less than 2d or components in which a load 
causing more than ½ (1/3 in case of segmental box girders) of the 
shear at a support is closer than 2d from the face of the support. 

In this requirement, the shear span is defined; and the limiting ratio of shear span 

to effective depth is set at 2.  It should be noted that in this dissertation, the shear span is 

taken from the centerline of the support, not the face as in the above definition.  It is 

required in Article 5.13.2.1 that beams or components meeting the definition of a “deep 

component” be designed according to the strut-and-tie provisions in AASHTO LRFD 

(Article 5.6.3) or another recognized theory.  The basis for restrictions on “deep 

components” is due to the nonlinear strain distribution that exists in regions near 

concentrated loads, supports, or abrupt changes in geometry.  Conventional flexural 

theory, i.e. plane-sections-remain plane, is not valid in these regions.  According to St. 

Venant’s principle, the strain distribution is not affected by the disturbance at 

approximately a distance ‘d’ away from it (Schlaich et al., 1987).  This principle is the 

basis for the limit of a/d ratio of 2.  In regions where “it is reasonable to assume that 

plane sections remain plane after loading,” the sectional model can be used for shear 

design (Article 5.8.1.1, AASHTO LRFD (2008)).  The strain trajectories of an 

asymmetrically-loaded beam are shown in Figure 5.1.  According to AASHTO LRFD 

(2008), different design models should be used in the regions to either side of the 

concentrated load.  Bearing stresses should be checked at the left support and beneath the 

applied load in conjunction with the sectional design. 
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Figure 5.1: Strain trajectories in an asymmetrically-loaded beam 

Therefore, at an a/d ratio of 2, there is a discontinuity in the required shear design 

model according to the specifications of AASHTO LRFD (2008).  If a structure is loaded 

in such a way that an a/d ratio of 2.1 exists, then the sectional shear model applies for 

design.  Conversely, if the structure is loaded such that an a/d ratio of 1.9 exists, then a 

strut-and-tie analysis is required.  It is known that near an a/d ratio of 2, a gradual 

transition in the dominant shear transfer mechanism occurs consistent with each of the 

required models.  The transition is not immediate and a large discrepancy in calculated 

capacity at an a/d ratio of 2 is not justified. 

The main purpose of the current task is illustrated qualitatively in Figure 5.2.  For 

members with an a/d ratio less than 2, shear capacity is computed according to the strut-

and-tie provisions in AASHTO LRFD.  Due to the efficiency factor at the CCT node-to-

strut interface and the geometry of non-hydrostatic nodes, the calculated capacity 

decreases rapidly as the a/d ratio approaches 2.  For members with an a/d ratio greater 

than 2, shear capacity is calculated with a sectional model consisting of Vc + Vs in 

AASHTO LRFD (2008).  The capacity computed according to the sectional model is 

often greater than that according to the STM at an a/d of 2, especially if there is a 

considerable amount of transverse reinforcement in the member (Vs).  The purpose of the 

current task is to reduce the discrepancy between the calculated shear capacities from 

each model at an a/d ratio of 2, thereby providing a uniform level of conservatism across 
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the transition from deep beam to sectional shear behavior.  Additional details explaining 

the computations associated with each model are provided in Section 5.2.3.   

 

 
Figure 5.2: Discontinuity in calculated shear capacity in AASHTO LRFD 2008 at a/d 

of 2 

5.2.2 Effect of a/d ratio on Shear Behavior 

Shear span-to-depth ratio (a/d) has been recognized as an important parameter 
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5.2.2.1 Results from the Literature 

Numerous researchers have shown the effect of the a/d ratio on the shear strength 

and overall behavior of reinforced concrete beams.  Several studies are reviewed in this 

section with an emphasis on the effect of the a/d ratio on the dominant transfer 

mechanism of the member. 

In 1954, forty-two (42) reinforced concrete beams were loaded to failure by 

Moody et al. to evaluate their shear strength.  The size and loading conditions of the test 

specimens were divided into three groups corresponding to three a/d ratios: 

approximately 1.5, 3, and 3.5.  Primarily, the behavior of beams without transverse 

reinforcement was studied.  Two specimens were tested with web reinforcement.  The 

test results indicated that the beams with higher a/d ratios (3 and 3.5) failed soon after the 

load causing first diagonal cracking was reached.  For the beams that were loaded with 

smaller a/d ratios (1.5), the beam had additional capacity after first diagonal cracking.  A 

redistribution of internal stresses took place after the formation of diagonal cracks in 

which compression and shear stresses concentrated in the compression zone at the top of 

the inclined crack.  It was observed that the stress distribution in the tension 

reinforcement along the shear span did not follow the distribution of external moments.  

The failure of the specimens loaded with an a/d ratio of 1.5 was classified as shear-

compression (Moody et al., 1954).   

In 1957, thirty-eight concrete beams without transverse reinforcement were tested 

by Morrow and Viest.  The a/d ratio ranged from approximately 1 to 7.8 for the test 

specimens.  It was observed that the a/d ratio greatly contributed to the failure mode and 

overall performance of the beams.  At an a/d ratio less than about 3.4, the test specimens 

failed in shear-compression.  The beams failed due to crushing of the compression zone 

above the diagonal crack at a higher load than the load at first diagonal cracking.  With 

increasing a/d ratio, the ratio between the ultimate load and the first diagonal cracking 

load decreased.  The beams loaded with an a/d ratio between 3.4 and 6.1 failed in 

diagonal tension in which the load at first cracking was synonymous with the ultimate 

load.  Beams with an a/d ratio greater than 6.1 failed in flexure.  The authors warned that 
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the aforementioned limits on a/d ratio were a function of the properties of the beams that 

were tested and should only be used qualitatively (Morrow and Viest, 1957).  It is 

interesting to note that the transition between shear compression and diagonal tension 

failure was found to be 3.4 in this study.  In other studies reviewed in this section, the a/d 

ratio at this transition is typically around 2 or 2.5.  It is possible that the difference is due 

to the strict definition of a diagonal-tension failure as a case in which the first diagonal 

cracking load and the capacity are equivalent. 

 Hundreds of tests on reinforced concrete beams were conducted by Kani for the 

purpose of understanding the mechanism of diagonal failure, also called shear failure 

(Kani et al., 1979).  Based on the observed behavior of the test specimens, two 

mechanics-based models were derived to form a shear-strength envelope.  The 

applicability of each model was a function of the a/d ratio.  The shear-strength envelope 

is illustrated in Figure 5.3. 

 

 
Figure 5.3: Proposed shear-strength envelope by Kani et al. (1979) 
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moment capacity.  The moment capacity is not reached in a “valley of diagonal failure” 
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flexural failure governs the capacity instead of diagonal, or shear, failure.  At mid-range 

a/d ratios ((a/d)min < a/d < (a/d)TR), the shear strength of a beam is governed by the 

“capacity of concrete teeth.”  This model consists of treating a cracked, reinforced 

concrete beam as a “comb-like structure” with a series of “concrete teeth” cantilevered 

from its base (Kani et al., 1979).  The diagonal failure of the beam is a result of 

overstressing the tooth at its base.  An equation for the capacity of a tooth was developed 

that was a function of the a/d ratio, the flexural strength of concrete, the flexural moment 

arm, the cross-sectional dimensions, and the width and length of the cracks.  The width 

and length of the cracks outlined the dimension of the tooth and were determined 

empirically.  At low a/d ratios (a/d < (a/d)min), the shear strength of a beam was defined 

as a function of the “capacity of the arch.”  This model treated the reinforced concrete 

beam as a tied arch in which the load transferred directly to the support.  The equation 

that was developed for this model was simplified such that it was only a function of the 

flexural capacity of the beam and the a/d ratio.  Good agreement existed between test data 

and the proposed models.   

In his study of diagonal failure, Kani recognized the transition of the dominant 

mechanism of behavior as a function of the a/d ratio.  At low a/d ratios (a/d < (a/d)min), 

the shear strength of the beam was governed by a tied-arch failure.  At higher a/d ratios 

((a/d)min < a/d < (a/d)TR), the shear strength of the beam was governed by a bending 

failure of a “concrete tooth.”  The transition between these different mechanisms was 

labeled (a/d)min because it coincided with the smallest shear strength of the member.  The 

value of (a/d)min was a function of the longitudinal reinforcement ratio, the yield strength 

of the reinforcement, the flexural strength of the concrete, and the width and length of the 

cracks.  Even though (a/d)min changed based on the properties of the beam, it was usually 

close to 2.5.  This value was supported by experiments.   

The effect of transverse reinforcement on the diagonal failure of reinforced 

concrete beams was also investigated by Kani.  The function of the reinforcement was to 

create internal supports for the series of concrete arches that are formed by the concrete 

teeth.  In a sense, the a/d ratio is essentially shortened by the internal supports created by 
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the transverse reinforcement.  In terms of the shear-strength envelope, the region 

governed by the “capacity of the arch” is extended due to the effective shortening of the 

a/d ratio.   

An experimental study was conducted by Ahmad and Lue (1987) on specimens 

with high-strength concrete (f’c > 8,800 psi).  A model similar to the one proposed by 

Kani was developed that was applicable to beams with both normal- and high-strength 

concrete.  Through the experimental study, it was determined that the capacity and the 

failure mode of the test specimens were largely a function of the a/d ratio.  Four different 

failure modes were evident.  At an a/d > 6, the beams generally failed in flexure.  At an 

a/d ratio between 2.5 and 6, the failure of the beams was due to a diagonal tension crack 

that originally propagated from a flexural crack (flexure-shear crack).  At an a/d ratio 

between 1.5 and 2.5, the beams failed by shear compression of the web.  At a/d < 1.5, the 

failure was by crushing of the arch rib of the beams.  Thus, a similar breakdown of failure 

modes to that observed by Kani was also observed by Ahmad and Lue (1987).  At an a/d 

ratio of approximately 2.5, the shear behavior of the beam transitioned from a shear-

compression type failure to a diagonal-tension type failure. 

 The experimental shear strength of high-strength concrete beams with an a/d ratio 

ranging from 1.5 to 2.5 was investigated by Shin at al. (1999).  It was also observed in 

this study that the failure mode of the test specimens was dependent on the a/d ratio.  

However, in this study the transition in failure mode from shear-compression to shear-

tension occurred at an a/d ratio of approximately 2.   

5.2.2.2 Results from the Experimental Program 

In the experimental program of the current study, the effect of a/d ratio was also 

investigated.  Tests were conducted on beams with shear-span-to-depth (a/d) ratios of 1.2, 

1.85, and 2.5.  The normalized shear strength of six 21”x42” specimens in which the a/d 

ratio varied from 1.2 to 2.5 is depicted in Figure 5.4.  With increasing a/d ratio, the 

normalized shear strength at failure decreased; and the failure mode of the test specimens 

changed.  
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Figure 5.4: Effect of a/d ratio on experimental strength of test specimens 

The pictures of the test regions at failure for the specimens represented by the red 

line in Figure 5.4 are displayed in Figure 5.5.  It is important to emphasize that each of 

these specimens had identical reinforcement details (0.2% web reinforcement in each 

direction); the only difference among them was the a/d ratio.  With increasing a/d ratio, a 

change in failure mode was evident.  At an a/d ratio of 1.2, the failure of the specimen 

was the result of crushing along the diagonal strut and near the CCT nodal region.  The 

orientation and number of the diagonal cracks was consistent with a single-panel strut-

and-tie model in which the load is transferred to the support via an inclined strut.  At an 

a/d ratio of 1.85, a similar appearance at failure existed.  At failure, crushing was visible 

along the strut and near both the CCC and CCT nodal regions.  Parallel, inclined cracks 

formed along the axis of a direct strut from the load to the support.  The final failure 

crack slightly resembled the shape of an “S” which is customary to sectional shear 

failures.  This detail may suggest that a portion of the shear is transferred by a sectional-

shear mechanism at an a/d ratio of 1.85.  However, it is evident from the amount of 

parallel cracking and local crushing in Figure 5.5 that a direct-strut mechanism still 
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governs at this a/d ratio.  At an a/d ratio of 2.5, a completely different appearance at 

failure was present.  Virtually no parallel, diagonal cracking existed in the shear span.  

The behavior of the specimen was dominated by a single, diagonal tension crack that 

formed an S-shape between the load and the support.  Some local crushing was visible 

along the diagonal crack, but it was not due to crushing of the concrete, but rather the 

shearing of the interfaces between each side of the diagonal tension crack.  It is clear 

from the behavior of this specimen (III-2.5-02) that at an a/d ratio of 2.5, the dominant 

mechanism of shear transfer is consistent with a sectional-shear model. 
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Figure 5.5: Failure pictures of test specimens with 0.2% reinforcement and variable 

a/d 

The pictures of the test regions at failure for the specimens representing the green 

line in Figure 5.4 are displayed in Figure 5.6.  As before, the primary difference between 

the specimens was the a/d ratio.  Each specimen contained 0.3% web reinforcement in 

each direction.  At an a/d ratio of 1.2, a similar appearance at failure to the specimen with 
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0.2% reinforcement was observed.  The only difference was that the parallel cracking 

was better distributed, thereby reducing the width of the diagonal cracks (Section 4.3.3) 

and enabling more crushing to occur.  At an a/d ratio of 1.85, the failure mode was 

consistent with the companion specimen with 0.2% reinforcement.  Several parallel 

cracks extended from the load to the support.  At the ultimate load, concrete in the CCC 

nodal region and within the strut crushed.  The behavior of both specimens at an a/d ratio 

< 2 was consistent with a single-panel, direct strut transfer mechanism.  At an a/d ratio of 

2.5, a remarkable difference in performance with respect to the specimen with 0.2% web 

reinforcement was observed.  The only difference between these two specimens (III-2.5-

02 and III-2.5-03) was the size of the web reinforcement (#4 versus #5 bars).  The 

spacing of the stirrups (sv) was identical at 9.5 in.  The additional reinforcement in III-

2.5-03 helped distribute the diagonal cracks such that the failure of the specimen was due 

to crushing along the diagonal strut and near the load plate.  This switch in failure mode 

was accompanied by an increase in the shear strength by approximately 60%.  This 

performance suggests that at an a/d ratio of 2.5, a significant portion of the applied load is 

transferred to the support by a sectional-shear mechanism since additional reinforcement 

increased the capacity.   
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Figure 5.6: Failure pictures of test specimens with 0.3% reinforcement and variable 

a/d 

The results of the six tests displayed in Figure 5.5 and Figure 5.6 show that the 

transition from deep-beam to sectional-shear behavior does not occur at a distinct a/d 

ratio.  Rather, it is a gradual process in which the effectiveness of one mechanism reduces 

with respect to the other.  The results of these six tests support the idea that the quantity 

of web reinforcement affects the behavior and strength as the a/d ratio exceeds 2.  This 

finding is in agreement with results from the database presented in Section 4.3.2 that 
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showed at a/d ratios greater than 2, the quantity of web reinforcement increases the 

strength of the member.  Also, the results of these six tests show that at an a/d ratio less 

than 2, the quantity of web reinforcement does not affect the shear strength of the 

member provided that there is enough reinforcement to maintain equilibrium in the 

diagonal, bottle-shaped strut (Section 4.3.2).    

The results of the 21”x75” tests provided additional data to understand the effect 

of a/d ratio on the shear behavior of reinforced concrete beams.  In both of these 

members, the extreme layer of the longitudinal reinforcement was instrumented with 

strain gauges along the entire length of the beam (Section 3.5.1).  The purpose of the 

instrumentation was to monitor the strain in the reinforcement at different locations along 

the shear span.  These strain data were used to correlate the behavior of the specimen 

with the most appropriate type of shear model.  For example, in a single-panel strut-and-

tie model (STM) in which a direct strut carries the applied load to the support, the force 

in the tension tie is constant along the length of the shear span.  Conversely, in a 

multiple-panel STM, the force in the tie reduces as a step function due to the intermittent 

compression diagonals along the shear span.  In the case of a Bernoulli beam, in which a 

sectional shear model is used for shear design, the force in the tie varies approximately 

according to the moment diagram.  These distributions of tensile force are illustrated in 

Figure 5.7.  It is clear that the change in tie-force of a multiple-panel model is an 

approximation of the gradual decline of the tension force consistent with a Bernoulli 

beam.  For a slender beam with well-distributed stirrups, the change in tie force according 

to a Bernoulli beam analysis and a multiple-panel STM analysis should be equivalent.  

Therefore, the data from the strain gauges along the longitudinal reinforcement in the test 

specimens were used to evaluate the governing shear transfer mechanism as the a/d ratio 

changed from 1.2 to 1.85 to 2.5.  It is important to note that several researchers have 

measured strain in this fashion for similar purposes (Moody et al., 1954, Watstein and 

Mathey, 1958, Rogowsky et al., 1986, Quintero Febres et al., 2006, and Tan et al., 2007). 
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Figure 5.7: Distribution of force in longitudinal tension steel along length of beam 

according to different shear models 

The strain measurements in the longitudinal steel for IV-2175-1.85-02 and IV-

2175-1.85-03 are displayed in Figure 5.8.  Recall from Section 3.6 that for the 21”x75” 

beams, two tests were conducted simultaneously.  After one shear span failed, external, 

post-tensioned clamps strengthened the failed span; and the beam was re-loaded in the 

same arrangement.  For the beam in Figure 5.8, the load was applied at midspan such that 

two tests were conducted at an a/d ratio of 1.85.  The difference in the two tests was the 

quantity of web reinforcement.  Strain gauges were applied on the extreme layer of 

tension reinforcement at midspan (beneath the load point) and at three locations along 

each shear span.  The gauges closest to the support were located far enough away from 

the edge of the bearing plate to avoid any detection of local effects at the support, but 

close enough to represent the last probable location of a vertical tie in a multiple-panel 

STM.  The gauges were placed near stirrups since it was observed in previous tests that 

cracks tended to form at the location of stirrups, and strain gauge data were generally 

more reliable near cracks.  Two of the six longitudinal bars were instrumented in this 

fashion.  One set of results is depicted in Figure 5.8, although the data were consistent for 

both sets.  The strain measurements are plotted along the length of the specimen at three 
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different levels of applied load for the first test on this beam.  At each load level, 

calculated strain values along the length of the beam are also provided.  The calculated 

strain in the tension tie of a single-panel, strut-and-tie model is constant over the entire 

member.  It is depicted for each load level as a dashed line in Figure 5.8 and will 

subsequently be referred to as ε1_STM.  The calculated strain in the reinforcement for a 

Bernoulli beam was also plotted in Figure 5.8 for each load level.  This strain is identical 

to the strain in the tension tie of a single-panel STM at the applied load but varies 

approximately with the moment diagram, reaching zero at the supports.  This strain will 

subsequently be referred to as εBEAM.   

 
Figure 5.8: Comparison of measured and calculated strain along the length of 

specimen with a/d of 1.85 

At an applied load of 300 kips (black lines in Figure 5.8), the beam had not 

developed diagonal cracks.  The measured strain in the reinforcement matched the 
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assumed strain from a Bernoulli beam analysis.  This finding matched a previous 

observation by Moody, Viest, Elstner, and Hognestad (1954): 

Until diagonal tension cracks form, the stresses in the tension steel 
and in the concrete are distributed along the length of the beam in the 
same way as the external moments so that these stresses at any section 
are approximately proportional to the moment at that particular 
section.  The formation of diagonal tension cracks changes these 
relationships.  Such changes are called the redistribution of internal 
stresses.  

At an applied load of 900 kips (well after diagonal cracking), the measured strains 

close to the load point were consistent with the calculated strain according to a single-

panel, STM analysis.  Further along each shear span, however, the measured strain 

gradually reduced.  The reduction is an indication that a portion of the applied load is 

being transferred to the support via a multiple-panel or sectional shear model.   

A similar distribution of measured strain exists along the member at an applied 

load of 1475 kips (ultimate for IV-2175-1.85-02 and at 90% of ultimate for IV-2175-

1.85-03).  The measured strain slightly reduces along the length of the shear span 

suggesting that a portion of the load was being transferred to the supports via a sectional 

shear model.  It is clear that the measured strain in the two gauges adjacent to the 

supports is closer to ε1_STM than εBEAM.  In fact, the difference between the measured 

strain and ε1_STM is approximately 1/3 of the total difference between ε1_STM and εBEAM.  

This reduction implies that approximately 1/3 of the load is being transferred to the 

support with a sectional shear model.  The results presented in Figure 5.8 suggest that at 

an a/d ratio of 1.85, the primary shear transfer mechanism is a single-panel, direct strut 

mechanism.  However, a portion of the load (approximately 1/3) is being transferred via a 

sectional shear model signifying that that the transition from deep beam behavior to 

sectional shear behavior has begun.  If the measured strain along the length of the 

member was equal to the calculated Bernoulli beam strain, it would indicate that the full 

shear is transferred by a multiple-panel or sectional shear model.    

The strain measurements in the longitudinal steel for IV-2175-1.2-02 and IV-

2175-2.5-02 are displayed in Figure 5.9.  As in the other 21”x75” beam, two tests were 
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conducted simultaneously.  In this case, the difference between the two tests was the a/d 

ratio.  The depth of the beam was calibrated with the length of the test setup to achieve 

this arrangement.  Strain gauges were applied to the extreme layer of the tension 

reinforcement at the location of the load point and along each shear span.  As before, 

gauges were placed reasonably close to the supports to capture any effect of sectional 

shear behavior without being influenced by local stress conditions at the support.   

 
Figure 5.9: Comparison of measured and calculated strain along length of specimen 

with a/d of 1.2 and 2.5 

At an applied load of 300 kips, the beam had not yet diagonally-cracked; and the 

measured strain in the longitudinal reinforcement matched εBEAM along the entire length 

of the member.  This observation was consistent with the results of the previous 21”x75” 

beam.   
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After the redistribution of internal stresses due to diagonal cracking, the measured 

strains depart from εBEAM in both shear spans.  At an applied load of 900 kips and 1,500 

kips, a similar distribution of the strain in the reinforcement exists along the beam.  At 

1,500 kips, the shear span with an a/d ratio of 2.5 was at ultimate; whereas the shear span 

with an a/d ratio of 1.2 was at approximately 83% of ultimate.  In the span with an a/d 

ratio of 1.2, the measured strains are very similar to ε1_STM.  This suggests that the shear 

in the short span was transferred to the support solely by a single-panel strut-and-tie 

model.  On the contrary, in the span with an a/d ratio of 2.5, the measured strains are 

closer to εBEAM than to ε1_STM.  By inspection, the difference between the measured strain 

and ε1_STM is approximately 2/3 of the total difference between ε1_STM and εBEAM.  These 

data suggest that approximately 2/3 of the shear in the long-shear span (a/d = 2.5) was 

transferred to the support via a sectional-shear mechanism.  Approximately 1/3 of the 

shear was transferred to the support by a mechanism consistent with a single-panel STM.  

Thus, from the data in Figure 5.9, it is evident that the dominant shear transfer 

mechanism has transitioned to a sectional shear mechanism at an a/d ratio of 2.5.   

It is clear from the results in Figure 5.8 and Figure 5.9 that the transition between 

the dominant shear transfer mechanisms near an a/d ratio of 2 is a gradual process.  This 

finding is consistent with the results presented in Figure 5.5 and Figure 5.6 for the 

21”x42” specimens.  It was shown that at an a/d ratio of 1.2, the shear was transferred to 

the support solely by a single-panel, direct-strut mechanism.  At an a/d ratio of 1.85, 

evidence of the initiation of sectional shear behavior was observed; however, the 

dominant transfer mechanism was still consistent with a single-panel STM.  At an a/d 

ratio of 2.5, the dominant shear transfer mechanism was consistent with a sectional shear 

model; however, a portion of the applied load was transferred by a single-panel STM.   

From a design standpoint, the results in this section can be used to determine the 

most appropriate shear design model for a given a/d ratio.  Clearly, for an a/d ratio of 1.2, 

a single-panel strut-and-tie model is the most suitable choice.  For an a/d ratio of 1.85, a 

single-panel model is also the most appropriate choice, but to a slightly lesser extent.  It 

can be argued that two overlapping models should be used.  A single-panel STM could be 
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designed to carry 2/3 of the applied load, and a two-panel STM or a sectional shear 

model could be designed to carry 1/3 of the applied load.  While this approach sounds 

attractive in theory, it is more difficult than using a single-panel STM for the total applied 

load; and it may be inappropriate.  In the case of these two models, stresses are 

concentrated in the nodal regions.  The capacity of the nodal regions cannot be double-

counted or unchecked because different models are used.  Since it is known that at an a/d 

ratio less than 2, the conditions in the nodal regions often govern the behavior, they 

should be emphasized in the design.  Therefore, a single-panel strut-and-tie model should 

be used to design beams with an a/d ratio of 1.85.  It is fairly simple; it appropriately 

accounts for the stress concentrations in the nodal regions due to the total applied load; 

and it is consistent with the dominant shear transfer mechanism.   

For an a/d ratio of 2.5, it was shown that the dominant transfer mechanism is 

more consistent with a sectional shear model than a single-panel STM.  The implications 

of using a single-panel model for a beam with an a/d ratio of 2.5 were discussed in 

Section 4.3.2.  In that section, for the specimens tested as part of the depth effect series 

(Series IV), the experimental strength was compared to the calculated strength with a 

single-panel strut-and-tie model.  For the beams with an a/d ratio of 1.2 and 1.85, there 

was a consistent level of reserve strength (Vtest / Vcalc.) as the section size increased since 

the failure mode of these specimens reasonably matched the assumed behavior in the 

STM.  For the beams with an a/d ratio of 2.5, however, there was not a uniform level of 

conservatism.  The failure mode of these specimens was more consistent with a sectional 

shear model than a single-panel STM model.  The results are replotted in Figure 5.10 for 

quick reference. 
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Figure 5.10: Experimental strength divided by calculated strength for depth effect 

specimens  

As illustrated in Figure 5.10, the experimental strength of the specimens tested at 

an a/d ratio of 2.5 was conservatively estimated even though the failure mode of the 

specimens was more consistent with a sectional shear model.  These results illustrate the 

inherent conservatism of the strut-and-tie modeling procedure.  However, the difference 

in the level of conservatism between the beams tested at an a/d ratio of 2.5 and that of the 

deep beams (a/d < 2) indicates that a single-panel STM should be used with caution when 

the a/d ratio exceeds 2.  It is likely that the size of the bearing plates relative to the section 

size contributed to the decline in the level of conservatism as the effective depth 

decreased for the specimens with an a/d ratio of 2.5.     

It was shown by Tuchscherer (2008) that the TxDOT Project 5253 efficiency 

factors were developed using the evaluation database which consisted of beams with a/d 

ratios up to 2.5 (Section 2.3.4.4).  A single-panel strut-and-tie model was used to analyze 

all of the specimens.  With the Project 5253 efficiency factors and the use of non-

hydrostatic nodes, conservative and reasonably accurate estimates of strength were 

obtained.  This finding further indicates that the inherent conservatism in strut-and-tie 
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modeling can account for some differences between the strut-and-tie model and the actual 

behavior of the member.   

Therefore, it can be concluded that the transition from deep beam behavior to 

sectional shear behavior near an a/d ratio of 2 is a gradual process.  The experimental 

results indicate that for an a/d ratio up to 1.85, the dominant shear transfer mechanism is 

consistent with a single panel strut-and-tie model.  Due to the inherent conservatism in 

strut-and-tie modeling, it is appropriate to extend this finding up to an a/d ratio of 2.  

Thus, it is recommended that a single-panel strut-and-tie model be used to design deep 

beam regions with a/d ratios from 0 to 2.  At a/d ratios above 2, the use of a single-panel 

strut-and-tie model gradually becomes less appropriate.  Up to an a/d ratio of 2.5, a 

single-panel STM can estimate the experimental strength conservatively.  However, the 

amount of conservatism in the strength estimate was greatly reduced with respect to that 

of the deep beam specimens (a/d < 2).  These findings are consistent with the current 

division of deep beam behavior (a/d ≤ 2) and sectional shear behavior (a/d ≥ 2) present in 

AASHTO LRFD (2008) and ACI 318-08.   

5.2.3 Reducing Discrepancy between Shear Models at a/d ratio of 2.0 

The discrepancy in the calculated strength of a member loaded near an a/d ratio of 

2 using the STM and the sectional shear provisions in AASHTO LRFD (2008) is the 

result of a fundamental deficiency in the AASHTO LRFD STM provisions.   

As discussed in the previous section (Section 5.2.2), it is known that the strength 

of deep beams decreases as the a/d ratio increases.  This decline is due to the reduction in 

the effectiveness of a direct-strut mechanism as the a/d ratio increases.  An appropriate 

model to design deep beams should account for this reduction.  In the STM provisions in 

AASHTO LRFD (2008), the decline in strength with increasing a/d ratio is accounted for 

with a variable strut efficiency factor.  As shown in Section 2.3.4.1, the efficiency factor 

of the strut at a CCT node is a function of the principle tensile strain in cracked concrete 

which, in turn, is related to the tensile strain in the direction of the tie at the CCT node.  

As the diagonal strut framing into a CCT node becomes shallower (a/d increases), the 

tensile strain in the tie increases and the efficiency factor decreases.  The reduction in the 
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efficiency factor accounts for the decline in the strength with increasing a/d ratio (or 

decreasing strut angle).   

If the AASHTO LRFD node-to-strut interface efficiency factor is used with 

hydrostatic nodes that increase with increasing a/d ratio (Figure 2.13 and Figure 5.11), 

the reduction in strength is mitigated to acceptable levels.  When the efficiency factor is 

used with non-hydrostatic nodes, overly conservative estimates of strength are calculated.  

The reason is that the node-to-strut interface of a non-hydrostatic node, with a constant 

bearing plate dimension and back face dimension, decreases with increasing a/d ratio as 

shown in Figure 5.11.  Thus, when using the STM provisions of AASHTO LRFD (2008) 

with non-hydrostatic nodes, the decline in strength with a/d ratio is counted for twice.  

Non-hydrostatic nodes are preferred in design since they are directly related to stress 

conditions in the member and do not have to satisfy stringent equal-stress requirements. 

 

 
Figure 5.11: Difference in node geometry with increasing a/d ratio for single-panel 

STM 

In the Project 5253 STM provisions presented in Section 2.3.4.3, the reduction in 

shear strength with increasing a/d ratio is accounted for solely with the reduction in the 

length of the node-strut interfaces.  None of the Project 5253 efficiency factors vary with 

the a/d ratio.  Thus, the reduction in strength with increasing a/d ratio is obtained in the 
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Project 5253 STM provisions by applying a constant efficiency factor (in terms of the a/d 

ratio) on a smaller length of the node-strut interface (Figure 5.11). 

A comparison between the strength estimates for the beams in the evaluation 

database calculated using the AASHTO LRFD STM provisions and the Project 5253 

STM provisions are depicted in Figure 5.12.  For the 179 beams in the evaluation 

database, the experimental strength was divided by the calculated strength using a single-

panel STM, non-hydrostatic nodes, and both the Project 5253 efficiency factors and those 

in AASHTO LRFD (2008).  The results are plotted versus the a/d ratio to illustrate how 

increasing the a/d ratio affects the use of each set of provisions.  It is important to note 

that the stress check at the CCT node-strut interface of AASHTO LRFD (2008) governs 

the capacity of the specimens in the database in nearly every case when the a/d ≥ 1.5.  A 

variety of design checks govern the capacity of the specimens calculated with the Project 

5253 provisions.     

 
Figure 5.12: Level of conservatism in STM provisions with increasing a/d ratio 

In Figure 5.12, at an a/d ratio ≤ 1, the difference in the results from the Project 

5253 STM provisions and those in AASHTO LRFD is negligible.  In both procedures, a 
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fairly uniform level of conservatism exists.  However, at a/d ratios approaching and 

exceeding 2, the difference in the results is substantial.  Whereas a reasonably consistent 

amount of inherent conservatism (Vtest / Vcalc.) exists with the use of the Project 5253 

STM provisions, overly conservative estimates of capacity are calculated with the 

AASHTO STM provisions for a/d ratios ranging from 1 to 2.5.  For instance, the capacity 

of a specimen at an a/d ratio of 2 is conservatively calculated with the AASHTO STM 

provisions by a factor of 4.  The experimental capacity divided by the calculated capacity 

according to the Project 5253 STM provisions for the same beam is less than 2.  Several 

examples such as these are illustrated in Figure 5.12.  The consistent level of inherent 

conservatism provided by the Project 5253 STM provisions indicate that the primary 

variables that affect the strength of deep beams are appropriately accounted for.  In 

general, the experimental strength was approximately 1.5 times the strength calculated 

using the Project 5253 STM provisions, which is appropriate for the scatter in deep beam 

shear strength.  The unnecessary amount of conservatism that results with the use of the 

AASHTO LRFD (2008) STM provisions was the primary factor contributing to the large 

discrepancy in calculated shear capacity at the transition between deep beam and 

sectional shear behavior at an a/d ratio near 2.   

To evaluate the difference in calculated shear strength between the Project 5253 

STM provisions and the sectional shear provisions in AASHTO LRFD (2008), the 

sectional shear provisions need to be presented.   When “it is reasonable to assume that 

plane sections remain plane” (a/d > 2), the shear capacity of a member can be determined 

as the summation of a concrete component, Vc, and a stirrup component, Vs (AASHTO 

LRFD, 2008).  This model is based on the free-body diagram presented as Figure 5.13.  

The shear at the diagonal tension crack is resisted by the stirrups crossing the diagonal 

crack and three different mechanisms of shear transfer that is lumped into the concrete 

contribution Vc.  These mechanisms include the shear resistance of the concrete in the 

compression zone, aggregate interlock across the diagonal crack, and dowel action from 

the longitudinal reinforcement.  It is important to note that this sectional shear model 
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differs from a multiple-panel STM in that no contribution from the concrete is recognized 

in the latter.   

 

 
Figure 5.13: Free-body diagram used as basis for sectional shear model 

The sectional shear provisions in AASHTO LRFD (2008) are presented as the 

following: 

The nominal shear resistance, Vn, shall be determined as the lesser of: 

 

pscn VVVV ++=
 

(5.1) 

pvvcn VdbfV +′= 25.0
 

(5.2)
  

in which:  

vvcc dbfV ′= β0316.0  
(5.3)

  

s
dfA

V vyv
s

θcot
=

 (oriented 90 deg. with longitudinal axis)  
(5.4)

  
 

where f ′c  =  compressive strength of concrete (ksi) 

 bv   =  effective web width within dv (in.) 

Vcz

Vagg

Vdowel

Vtotal

T

C

Vs1

Vs2 Vs3

Vtotal = total shear on the member
Vdowel = shear resistance due to dowel action, contributes to Vc
Vagg = shear resistance due to aggregate interlock, contributes to Vc
Vcz = shear resistance of concrete in compression zone, contributes to Vc
Vs1-3 = shear resistance provided by the stirrups, contributes to Vs
C = compression force due to flexure
T = tension force due to flexure
dv = effective shear depth, distance from C to T

dv
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 dv  =  effective shear depth, taken as the distance between the resultants of 

the tensile and compressive forces due to flexure (in.) 

 Vp  =  component of the prestressing force in direction of applied shear 

(kips) 

 β  =  factor indicating the ability of diagonally-cracked concrete to 

transmit tension and shear, assumed equal to 2 per article 5.8.3.4.1 

 Av  =  area of shear reinforcement within distance s (in.2) 

 fy  = yield strength of shear reinforcement (ksi) 

 θ  =  angle of inclination of diagonal compressive stresses, assumed 

equal to 45 degrees per article 5.8.3.4.1 

 s  =  spacing of stirrups (in.) 

 

For comparison purposes, the equations for Vc and Vs in ACI 318-08 are 

presented as well: 

The nominal shear resistance, Vn, shall be determined as the lesser of: 

scn VVV +=  
(5.5) 

dbfVV wccn ′+= 8
 

(5.6)
  

in which:  

dbfV wcc ′= λ2  
(5.7)

  

s
dfA

V ytv
s =

 
(5.8)

  
 

where f ′c  = compressive strength of concrete (psi) 

 bw  =  width of web (in.) 

 d  =  effective depth, taken as the distance from extreme compression 

fiber to centroid of longitudinal tension reinforcement (in.) 

 λ = modification factor for lightweight concrete   

 Av  = area of shear reinforcement within distance s (in.2) 

 fyt = yield strength of shear reinforcement (ksi) 
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 s  = spacing of stirrups (in.) 

   

The sectional shear provisions in AASHTO LRFD (2008) and ACI 318-08 are 

similar provided that the AASHTO LRFD simplified procedure for nonprestressed 

sections (Article 5.8.3.4.1) is used.  It was determined that the simplified procedure was 

more appropriate for this analysis due to the difficulty in calculating Vc and Vs according 

to the general procedure.  In the general procedure, β and θ are not constant; they are a 

function of εs, the strain in the longitudinal tension reinforcement.  εs is a function of Mu 

and Vu, the factored design forces on the section under consideration.  Since design 

forces are not available for an experimental test, an assumption is required to calculate 

Mu and Vu.  One assumption is to equate Mu and Vu to φMn and φVn.  This assumption 

creates a circular reference which can be solved through iteration.  The problem with this 

assumption is that it is equivalent to the worst-case scenario in which the reduced 

capacity exactly equals the factored forces.  In addition, the general procedure is much 

more complicated than the simplified procedure.  From a design perspective, it seems 

more likely that the requirements of the simplified procedure will be met for 

computational ease.   

In the simplified procedure, a β of 2.0 and a θ of 45 deg. are allowed if the 

member has a minimum amount of transverse reinforcement according to Equation 5.9.  

All of the beams in the evaluation database with a/d ratios between 2 and 2.5 satisfy the 

minimum reinforcement requirement. 

y

v
cv f

sbfA ′≥ 0316.0
 

(5.9)
  

where f ′c  = compressive strength of concrete (ksi) 

 bv  =  effective web width within dv (in.) 

 s  = spacing of stirrups (in.) 

 fy  = yield strength of shear reinforcement (ksi) 

 
As in Figure 5.12, the experimental strength of the beams in the database can be 

compared to the calculated shear strength using the AASHTO LRFD (2008) and the ACI 
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318-08 sectional shear provisions.  The experimental strength for each specimen is 

divided by the calculated strength and plotted versus the a/d ratio in Figure 5.14.  It is 

clear from the results in Figure 5.14 and from the derivation of the sectional shear 

provisions that using Vc + Vs for beams with a/d ratios smaller than 2 is unacceptable.  

The model is completely inconsistent with the shear transfer mechanism.  At a/d ratios 

between 2 and 2.5, however, there is a reasonable level of conservatism (Vtest / (Vc + Vs)) 

using both the AASHTO LRFD and the ACI 318 sectional shear provisions.  It is 

interesting to note that the sectional shear provisions in ACI 318-08 estimate consistently 

higher shear capacity than those in AASHTO LRFD for the full-range of a/d ratios.  

Since the approximate procedure was used for the AASHTO LRFD provisions, the only 

difference between them and ACI 318 is the distance used for the effective depth of the 

section.  In AASHTO LRFD, the depth is taken as the distance between the resultant of 

the compressive and tensile forces from a flexural analysis.  In ACI 318-08, the depth is 

taken as the distance between the extreme compression fiber and the centroid of the 

longitudinal reinforcement.  Thus, the depth used in the AASHTO LRFD equations is 

always less than that used in the ACI equations, which results in slightly more 

conservative estimates using AASHTO LRFD (2008).   
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Figure 5.14: Level of conservatism in sectional shear provisions with increasing a/d 

ratio 

From the results in Figure 5.14 and from the experimental program presented in 

Section 5.2.2.2, it is evident that only the beams with a/d ratios between 2 and 2.5 should 

be used to evaluate sectional shear provisions.  There are 25 beams in the evaluation 

database that meet this criterion.  Using the data from these specimens, the level of 

conservatism consistent with the sectional shear provisions in AASHTO LRFD (2008) 

and ACI 318-08 can be determined.  This amount of conservatism can be compared to the 

amount of conservatism when using the Project 5253 STM provisions for beams with a/d 

ratios between 0 and 2.  In this way, the discrepancy, if any, in the amount of inherent 

conservatism (Vtest / Vcalc.) between the Project 5253 STM provisions and the sectional 

shear provisions in AASHTO LFRD and ACI 318 can be assessed.  The experimental 

shear strength of the 25 beams in the evaluation database tested at a/d ratios between 2 

and 2.5 are divided by the shear strength calculated with the sectional shear provisions in 

AASHTO LRFD and ACI 318 in Figure 5.15.  The results are plotted versus the ratio of 
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Vs/Vc to determine if this variable has any effect on the conservatism of the sectional 

shear provisions. 

 

 
Figure 5.15: Level of conservatism in sectional shear provisions for a/d ratios between 

2 and 2.5 

The results in Figure 5.15 indicate that the sectional shear provisions in AASHTO 

LRFD conservatively estimate the strength of beams with an a/d ratio between 2 and 2.5 

for a wide range of Vs/Vc ratios.  While there is a downward trend in the red data in 

Figure 5.15, the lower bound indicates a fairly consistent level of inherent conservatism.  

The level of conservatism in Figure 5.15 for the AASHTO LRFD sectional shear 

provisions can be compared to the level of conservatism for the Project 5253 STM 

provisions at an a/d ratio near 2.  From the data presented in Figure 5.12 at an a/d ratio of 

2, the experimental shear strength was on average approximately 1.5 times the strength 

calculated with the Project 5253 STM provisions.  This level of conservatism is 

reasonably consistent with the estimates from the AASHTO LRFD sectional shear 

provisions displayed in Figure 5.15, especially at Vs/Vc ratios between 2 and 4.  
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Therefore, at an a/d ratio near 2, the Project 5253 STM provisions and the AASHTO 

LRFD sectional shear provisions provide reasonably consistent levels of conservatism.  

The results in Figure 5.15 in which the ACI sectional shear provisions were used 

to estimate shear strength (green data points) show a downward trend with the Vs/Vc 

ratio.  When the Vs/Vc ratio is less than 2, a comparable level of conservatism exists 

between the ACI sectional shear provisions and the Project 5253 STM provisions (~1.5).  

At higher ratios of Vs/Vc, the level of conservatism when using the ACI sectional shear 

provisions decreases for beams with an a/d ratio between 2 and 2.5.  These data suggest 

that at an a/d ratio near 2, the stirrup contribution to the total shear capacity of the 

member should be limited since the member is transitioning from deep beam behavior to 

sectional shear behavior.  It may not be prudent to rely on a large amount of shear 

capacity from the stirrups at a/d ratios near 2. 

It should be noted that the current study did not explicitly address the suitability 

of the sectional shear provisions in AASHTO LRFD (2008) or ACI 318-08.  The 

sectional shear provisions in each specification were used to determine the appropriate 

level of conservatism that the Project 5253 STM provisions should target at an a/d ratio 

near 2.  The results in Figure 5.15 indicate that the AASHTO sectional shear provisions, 

namely the use of an effective shear depth, may capture the behavior of beams at an a/d 

ratio between 2 and 2.5 better than the ACI sectional shear provisions.  However, more 

research is needed in this area to reach a firm conclusion.   

The results in Figure 5.12 and Figure 5.15 show that in terms of inherent 

conservatism (Vtest / Vcalc.), there is a relatively smooth transition between the Project 

5253 STM provisions and the AASHTO LRFD (2008) sectional shear provisions.  The 

transition is not as smooth when the ACI 318-08 sectional shear provisions are used 

especially at high Vs/Vc ratios.  The transition between design models can also be 

addressed strictly from a design perspective.  That is, the design strength calculated with 

STM and sectional shear provisions can be compared for the beams in the database as 

shown in Figure 5.16. 
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Figure 5.16: Comparison of calculated capacity: Project 5253 STM vs. sectional shear 

In Figure 5.16, the Project 5253 STM calculated capacity is divided by the 

sectional shear capacity calculated according to AASHTO LRFD (2008) and ACI 318-08 

for the 25 beams in the evaluation database with an a/d ratio between 2 and 2.5.  The data 

are plotted versus the Vs/Vc ratio.  The data indicate that with increasing Vs/Vc ratio, the 

calculated sectional shear capacity becomes larger than the calculated Project 5253 STM 

capacity.  This finding is expected since the sectional shear provisions are a function of 

the stirrup contribution (Vs) whereas the Project 5253 STM capacity is a function of a 

single-panel strut-and-tie model.  In both cases, the Project 5253 STM capacity is closest 

to the sectional shear capacity at a Vs/Vc ratio near 2, albeit with a considerable amount 

of scatter.  Thus, from a design perspective, limiting the ratio of Vs/Vc to 2 is 

recommended to reduce the discrepancy between shear strength calculated with STM and 

sectional shear provisions near for a/d ratios between 2 and 2.5.  It is interesting to note 

that limiting the Vs/Vc ratio may also be beneficial for reducing diagonal crack widths in 

service as discussed in Section 4.3.3.1.  
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5.2.4 Design Implications 

The results in this section indicate that a single-panel STM should be used with 

the Project 5253 STM provisions for members with an a/d ratio less than 2.  A single-

panel model is consistent with the dominant shear transfer mechanism and is easy to 

apply.  Multiple panel strut-and-tie models are not recommended for beams with a/d 

ratios less than 2.  They are inconsistent with the dominant shear transfer mechanism and 

are often governed by the vertical tie force since this force is equal to the externally 

applied shear (Tuchscherer, 2008).  Combinations of single- and two-panel models can be 

applied to deep beams (a/d < 2), but the stress conditions in the nodal regions due to the 

total applied force must be accounted for.  At a/d ratios greater than 2, multiple-panel 

STMs are consistent with the behavior of the member but do not account for the 

contribution of concrete to shear strength.  In addition, the required tie reinforcement may 

be unnecessarily large if the diagonal struts are steeper than 45 deg. with respect to the 

horizontal.  Therefore, it is recommended that a sectional shear model is used for 

members with a/d ratios greater than 2. 

With the use of the Project 5253 STM provisions, a relatively smooth transition 

exists between deep beam and sectional shear capacity at an a/d ratio of 2.  A similar 

level of inherent conservatism (Vtest / Vcalc.) of approximately 1.5 exists on average when 

shear strength is calculated with the Project 5253 STM provisions and the sectional shear 

provisions in AASHTO LRFD (2008) and ACI 318-08.  In addition, similar design 

capacities are calculated with these provisions when the Vs/Vc ratio in the sectional shear 

provisions is limited to 2.  The improved transition between sectional shear capacity and 

deep beam shear capacity with the use of the Project 5253 STM provisions is illustrated 

qualitatively in Figure 5.17.  Some discrepancy in the strength calculated between the 

Project 5253 STM provisions and the sectional shear provisions in AASHTO LRFD 

(2008) should be expected; however, the discrepancy is largely reduced relative to when 

the STM provisions in AASHTO LRFD (2008) are used to calculate deep beam shear 

strength.  It is important to note that the Project 5253 STM provisions were not developed 

solely to reduce this discrepancy.  The improved transition between deep beam and 
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sectional shear strength is the result of the careful calibration of the Project 5253 STM 

provisions with data from the evaluation database, from the experimental program, and 

from existing STM specifications (Tuchscherer, 2008).    

  

 
Figure 5.17: Reduction in discrepancy in shear capacity at a/d ratio of 2 with Project 

5253 STM provisions 

In Appendix A, an example problem largely developed by Tuchscherer (2008) is 

reproduced.  In the example problem, the original cross-sections of the I-45 bent cap at 

Greens Road that experienced extensive diagonal cracking in service (Section 2.2) are 

evaluated with design provisions recommended in TxDOT Project 5253.  One of the 

shear spans of the three column bent cap has an a/d ratio of 2.05.  As such, it is an ideal 

case study to evaluate the discrepancy in calculated shear capacity as the member 

transitions from deep beam to slender beam behavior.  The original cross-section with an 

a/d ratio of 2.05 was analyzed with the Project 5253 STM provisions.  It was determined 

that the original section was overstressed by approximately 36% (φVn / Vu = 0.74) under 

the application of factored loads.  This deficiency in strength was reasonable considering 

the amount of distress in the member in service (Section 2.2).  When the same section 

was analyzed with the AASHTO LRFD (2008) STM specifications, it was determined 

that the section was overstressed by approximately 192% (φVn / Vu = 0.34).  It is unlikely 

that the structure would be standing if it was under-designed by such a large amount.  
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Rather, it is probable that the STM provisions in AASHTO LRFD (2008) are overly 

conservative at a/d ratios approaching 2 (Figure 5.12).  The original cross-section met the 

sectional shear requirements of the general procedure of AASHTO LRFD (φVn / Vu = 

2.33) with a Vs/Vc ratio of 3.5 and those in ACI 318-08 (φVn / Vu = 1.49) with a Vs/Vc 

ratio of 3.0.  If the simplified procedure is used in AASHTO LRFD (2008), the ratio of 

φVn / Vu is 1.53 with a Vs/Vc ratio of 3.0.    

The shear capacities calculated according to the aforementioned STM and 

sectional shear provisions can be compared for the original cross-section as in Table 5.1.  

In the far right column of Table 5.1, the calculated sectional shear capacity is divided by 

the calculated STM capacity to evaluate the discrepancy between the two.  The calculated 

sectional shear capacity using the simplified AASHTO LRFD provisions is 2.07 times 

the Project 5253 STM capacity.  While this amount of discrepancy is large, it is a 

significant improvement to the ratios of sectional shear capacity to STM capacity 

according to AASHTO LRFD (6.85) and ACI 318-08 (4.14).  It is possible to further 

reduce the 2.07 factor by limiting the Vs/Vc ratio to 2 instead of the current value of 3.  

Also, additional STM capacity can be obtained without increasing the sectional shear 

strength by increasing the size of the nodal regions.   

 

Table 5.1: Comparison of calculated STM and sectional shear capacity for example 

problem in Appendix A 

Design Provisions 

Capacity / Factored Load 

c
s
V

V  

Ratio 
STMV

SectionalV

n

n

_
_

φ
φSTM  

u
n

V
Vφ  

Sectional 

u
n

V
Vφ  

TxDOT Project 5253 0.74 1.53† 3.0 2.07 

ACI 318-08 0.36 1.49 3.0 4.14 

AASHTO LRFD (2008) 0.34 2.33 3.5 6.85 
 †Simplified procedure in AASHTO LRFD (2008) 
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Completely removing the discrepancy between shear strength calculated with 

sectional shear and STM provisions near a/d ratios of 2 is unlikely.  The design models 

are fundamentally different.  However, through the use of the Project 5253 STM 

provisions and a limit of 2 for the Vs/Vc ratio, the discrepancy is largely reduced.  For the 

design of members with a/d ratios near 2, it may be beneficial to compare the STM and 

sectional shear strength.  

5.2.5 Summary and Conclusions 

The a/d ratio has a significant effect on the shear behavior of reinforced concrete 

beams.  As the a/d ratio increases from 0, the shear strength of a member gradually 

declines due to the reduction in the effectiveness of a direct-strut mechanism.  It was 

shown with results from the experimental program that the transition from deep beam 

behavior to sectional shear behavior was gradual.  However, up to an a/d ratio of 1.85, the 

dominant shear transfer mechanism was consistent with a single-panel strut-and-tie 

model.  Based on these results, it was concluded that a single-panel strut-and-tie model 

should be used to design regions of reinforced concrete members with a/d ratios less than 

2.  At a/d ratios greater than 2, the dominant shear transfer mechanism transitions to a 

sectional-shear mechanism.  While it was shown that a single-panel strut-and-tie model 

can provide a conservative estimate of strength for beams with a/d ratios up to 2.5, the 

behavior of the member is generally not consistent with the assumed behavior in the 

STM.  Therefore, for a/d ratios greater than 2, a sectional shear model should be used.   

At a/d ratios approaching 2, overly conservative estimates of strength were 

calculated for the beams in the evaluation database using the AASHTO LRFD (2008) 

STM provisions.  The excessive amount of conservatism was due to the inconsistency of 

the efficiency factor at the CCT node-strut interface with the geometry of non-hydrostatic 

nodes.  Due to this excessive conservatism, a large discrepancy in calculated shear 

strength between the STM provisions and the sectional shear provisions in AASHTO 

LRFD (2008) exist at an a/d ratio of 2.  With the use of the Project 5253 STM provisions 

(Section 2.3.4.3) and a limit on the Vs/Vc ratio of 2, the discrepancy in calculated shear 

strength is largely eliminated.   
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5.3 DIAGONAL CRACKING UNDER SERVICE LOADS 

The objective of this task was to develop a means of limiting diagonal cracking 

under service loads.  It was determined that the most appropriate approach was to 

perform a separate design check comparing service level shear to an estimate for the 

diagonal cracking load.  Data from the literature and the experimental program were used 

to develop an empirical equation that provides a reasonably conservative estimate for the 

diagonal cracking load of RC deep beams.  

5.3.1 Background 

It may not be possible to completely eliminate the presence of diagonal cracks in 

bent caps under service loads due to a variety of inconsistencies between design 

assumptions and field conditions such as overloads, restrained shrinkage, temperature 

changes, repeated loading, material properties of the concrete, etc.  However, there are a 

few design considerations that can be made to restrict the width of diagonal cracks to an 

acceptable level or to mitigate the chance of the formation of diagonal cracks.  In Section 

4.3.3, the beneficial effect of web reinforcement on the width of diagonal cracks was 

discussed.  It was shown that with minimum web reinforcement of 0.3% in each 

direction, the maximum width of diagonal cracks was limited to 0.016 in. at first cracking 

and up to an approximate service load (33% of ultimate).  Providing additional 

reinforcement can further restrict the width of diagonal cracks to some degree.  In this 

section, the task of reducing the risk of diagonal cracking under service loads is explicitly 

addressed.   

Two types of diagonal cracks are recognized in reinforced concrete beams: 

flexure-shear cracks and web-shear cracks (MacGregor and Wight, 2005).  Flexure-shear 

cracks form after or concurrently with flexural cracks.  They extend from the tip of the 

flexural crack towards the origin of load.  Web-shear cracks occur independently of 

flexural cracking.  They form when the principal tension stress in the web of the member 

exceeds the tensile strength of concrete.  In deep beams, web-shear cracks are also called 

bursting or splitting cracks.  Specifically, they are caused by transverse tensile stresses 
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that exist due to the spreading of compressive stresses in bottle-shaped struts.  It is 

apparent that the spreading of compressive stresses in deep beams contributes to the 

width of flexure-shear cracks as well.  Both of these cracks are depicted in Figure 5.18. 

 

 
Figure 5.18: Types of cracks in reinforced concrete deep beams 

With regard to this task, no distinction was made between flexure-shear or web 

shear cracks when evaluating the diagonal cracking load of the test specimens.  Both 

were treated simply as inclined cracks.  However, as noted in Section 4.2.2, the first 

diagonal crack to appear in the test specimens was generally a flexure-shear crack.  The 

load at which it formed was determined through visual observation and with the help of 

strain gauges attached to the web reinforcement.  For example, the appearances of the test 

regions of several specimens after first diagonal cracking are included in Figure 5.19.  It 

is clear that the inclined cracks in these pictures are flexure-shear cracks.  Also, note that 

the applied shear at the time the picture was taken is slightly greater than the cracking 

shear determined with the strain gauge data attached to the web reinforcement. 
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(a) II-03-CCC2021 (b) III-1.85-03b 

 
(c) III-1.2-02 (d) III-2.5-02 

Figure 5.19: First pictures taken after the formation of first diagonal crack in several 

tests 

5.3.2 Approach 

Two approaches were considered to limit diagonal cracking under service loads.  

The first approach was associated with a single-panel strut-and-tie model.  To limit 

diagonal cracking, the force generated in the bottle-shaped strut due to service loads 

would be limited to a specified percentage of the unfactored strut capacity.  In effect, this 

strategy consisted of performing a separate service-load strut-and-tie analysis in which a 

reduced efficiency factor at the node-strut interface (consistent with the diagonal cracking 

strength of the strut) would be compared to the stress in the strut due to unfactored 

service loads.  The advantage of this approach was that it could be integrated fairly easily 

with the ultimate-strength strut-and-tie analysis since the same model would be used.  

II-03-CCC2021
Vapp = 147 kips
Vcr = 139 kips

III-1.85-03b
Vapp = 133 kips
Vcr = 114 kips

III-1.2-02
Vapp = 192 kips
Vcr = 165 kips

III-2.5-02
Vapp = 118 kips
Vcr = 105 kips



 233

The differences would be the applied loads and the efficiency factor at the node-strut 

interface.   

However, it was determined that this approach was flawed.  The basic theory 

behind strut-and-tie modeling is that it is a lower-bound plasticity-based approach.  It is 

intended to be used in design to provide a safe estimate for ultimate strength.  It is not 

intended to accurately estimate service level stresses or to limit diagonal cracking.  In 

fact, cracking is expected to occur for the member to reach the capacity estimated by a 

strut-and-tie analysis.  Therefore, it was inappropriate to use a STM-based approach to 

limit diagonal cracking under service loads. 

The second approach considered for this task consisted of a separate, service load 

check.  The service level shear would be compared to an estimate for the diagonal 

cracking load of the member.  This check would be done separately from the ultimate 

strength analysis.  It was more theoretically justified than the first approach and was still 

very simple.  To use this approach, an estimate of the diagonal cracking load of deep 

beams was required.  In this task, a recommendation is given to estimate the diagonal 

cracking load of deep beams based on data from the experimental program and the 

literature.      

5.3.3 Results 

One approach to estimating the diagonal cracking load of a deep beam is to 

perform an elastic analysis.  However, due to the proximity of the load to the support, 

there is a complicated state of stress in the member (Figure 5.20).  Plane sections do not 

remain plane and general flexural theory assumptions do not apply.  To address this 

difficulty, a finite element analysis (FEA) can be performed to determine the location and 

magnitude of the principal tension stress in the member.  This procedure is plausible for 

cases in which the maximum principal stress is in the web of the member, indicating that 

the first crack should be a web-shear crack.  However, in cases where the maximum 

principal stress is at the extreme tension fiber of the member, the beam is expected to 

develop flexural cracks first.  After which, shear cracks will extend from the end of the 

flexural cracks (flexure-shear cracks).  In this case, the elastic analysis needs to be 
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modified to account for the redistribution of stresses after flexural cracking (MacGregor 

and Wight, 2005).  In the past, researchers have addressed the difficulty associated with 

an elastic analysis of a deep beam by estimating the diagonal cracking load with 

empirical models.  This approach was taken in this project as well.   

 

 
Figure 5.20: Stress trajectories in B-regions (Bernoulli) and in D-regions 

(discontinuity) 

5.3.3.1 Variables that affect diagonal cracking loads of deep beams 

In 1962, a landmark paper was published entitled “Shear and Diagonal Tension” 

by ACI-ASCE Committee 326.  In this paper, the development of a semi-empirical 

equation for the diagonal tension cracking load of reinforced concrete beams was 

discussed.  The equation was based off a principal stress analysis and was calibrated with 

test data from several research studies (ACI-ASCE Committee 326, 1962).  The equation 

is presented as Equation 5.10. 
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 M  =  moment at critical section (in-kips) 

 bw  =  web width of the member (in.) 

 d  =  effective depth of the member (in.) 

 

The equation incorporated all of the major variables that affected the diagonal 

cracking load of reinforced concrete beams known at the time, namely (1) the section size 

(bwd), (2) the tensile strength of concrete ( 'f c ), (3) the longitudinal reinforcement ratio 

(ρl),  and  (4) the ratio of moment to shear at the critical section (M/V).  The equation 

could be applied to reinforced concrete beams with any a/d ratio as long as the critical 

section was appropriately defined.  It was determined that for deep beams (a/d ≤ 2), the 

critical section is located at the middle of the shear span (a/2).  This critical section 

produces an M/V ratio for simple beams with single or double concentrated loads of a/2.  

For beams with an a/d > 2, the critical section is located at a distance ‘d’ from the 

maximum applied moment.  In this case the M/V ratio is equal to ‘a’ minus ‘d.’  Thus, 

the equation was intended to be used for beams with any a/d ratio and was calibrated as 

such.  

In ACI 318-08, Equation 5.10 is listed as Equation 11-5.  In the commentary 

(R11.2.2.1), it is stated that the variables accounted for in Equation 5.10 are still 

considered the primary variables that affect diagonal cracking loads.  However, some 

research has shown that Equation 5.10 does not appropriately weigh each of the 

variables.  In addition, it is suggested that the overall depth of the member may influence 

the diagonal cracking strength as well (ACI 318-08). 

In the current task, the effects of the aforementioned variables (bwd, 'f c , a/d, ρl, 

d) on the diagonal cracking load of deep beams were assessed with data from the 

experimental program and the literature through the use of the evaluation database.  The 

purpose was to validate that these variables do affect the diagonal cracking loads of deep 

beams.  Ultimately, this information was used to recommend an equation to estimate 

diagonal cracking loads for the purpose of limiting diagonal cracking in service.   
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The evaluation database consists of 179 specimens from the literature and the 

experimental program (Section 2.4.2).  The diagonal cracking loads from more than half 

of the specimens from the literature were not reported.  In addition, as noted in Section 

3.6, only the cracking load of the first test of each 42 in-, 44 in.-, and 48 in.-deep 

specimen was available due to the testing procedure.  As a result, the diagonal cracking 

loads of 59 specimens existed in the evaluation database.  The diagonal cracking loads 

for the Project 5253 specimens are listed in Table 4.1.  The diagonal cracking loads for 

all of the specimens in the evaluation database are listed in Appendix B.  

The effect of section size on the diagonal cracking load of the specimens in the 

evaluation database is shown in Figure 5.21.  As expected, as the shear area (bwd) of the 

specimen increases, the diagonal cracking load increases.  Prior to diagonal cracking, the 

member primarily behaves elastically. The entire section contributes to the diagonal 

cracking strength.  It is important to note that this finding is not necessarily consistent 

with the ultimate strength of deep beams as shown in Section 4.4.2. 

 

 
Figure 5.21: Effect of shear area on the diagonal cracking load of beams in evaluation 

database 
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The diagonal cracking loads of two specimens from the literature were circled in 

Figure 5.21 because longitudinal bars were cut off within the shear span (Uribe and 

Alcocer, 2001).  To ensure that the specimens would fail in shear, additional longitudinal 

reinforcement at midspan was provided; but the reinforcement was terminated at two 

locations within the shear span.  It is likely that the stress concentrations that existed at 

the cutoff locations affected the first cracking load.  These specimens were included in 

the evaluation database to illustrate the effect of bar cutoffs on the load at first diagonal 

cracking and because a similar situation could arise in practice. 

It is clear from Figure 5.21 that within each group of data of the same section size 

there is a considerable amount of scatter.  The scatter is a result of the other variables that 

contribute to the diagonal cracking load of deep beams.  The effect of these variables       

( 'f c , a/d, ρl, d) were assessed with the evaluation database as well.  To isolate the 

effect of the tensile strength of concrete, the diagonal cracking load was normalized by 

the shear area and plotted versus 'f c  in Figure 5.22.   
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Figure 5.22: Effect of tensile strength on diagonal cracking load of deep beams in 

database 
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cracking load.  The results presented in Figure 5.21 and Figure 5.22 support this practice, 

albeit with significant amounts of scatter. 

The effect of the shear-span-to-depth (a/d) ratio on the load at first diagonal 

cracking is illustrated in Figure 5.23.  With increasing a/d ratio, the normalized diagonal 

cracking load decreases for the most part.  This trend is associated with the change in the 

principle tensile stress distribution that occurs as the a/d ratio changes.  At low a/d ratios, 

a complicated state of stress exists due to the proximity of the applied load to the support.  

As the a/d ratio approaches and exceeds 2, the state of stress near midheight of the 

member is not affected by local support or loading conditions.  The state of stress is 

consistent with flexural theory assumptions.  As a result, as the a/d ratio approaches 2 in 

Figure 5.23, the diagonal cracking loads approach the diagonal cracking strength of 

slender beams, 2 'f c bwd.  For slender beams without transverse reinforcement, the 

diagonal cracking load of 2 'f c bwd is equivalent to the ultimate strength.  It is important 

to note that the trend of decreasing diagonal cracking loads with increasing a/d ratio was 

observed previously by numerous researchers for deep beams (Smith and Vantsiotis, 

1982, Tan et al., 1995, Tan and Lu, 1999, Shin et al., 1999, and Oh and Shin, 2001).   
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Figure 5.23: Effect of a/d ratio on diagonal cracking load of deep beams in database 
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Figure 5.24: Effect of longitudinal reinforcement ratio on diagonal cracking load of 

beams in the database 

 
Figure 5.25: Effect of longitudinal reinforcement ratio on diagonal cracking load of 

beams with the same a/d ratio 
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The data in Figure 5.25 are from specimens tested in the experimental program 

and from one specimen tested by Deschenes (2009).  All of the tests were conducted at an 

a/d ratio of 1.85.  The 21-in. wide specimens in the experimental program had a 

longitudinal reinforcement ratio of 2.3%; the 36”x48” specimens had a longitudinal 

reinforcement ratio of 2.9%.  The specimen tested by Deschenes had a 21”x42” cross-

section and a longitudinal reinforcement ratio of 3.1%.  Since all of the specimens in 

Figure 5.25 were tested at the same a/d ratio and were similar in size, the effect of the 

longitudinal reinforcement ratio on the diagonal cracking load can be isolated from other 

contributing variables.  The results indicate that the normalized diagonal cracking load 

increases with increasing longitudinal reinforcement ratio to some degree.  This finding is 

in agreement with the results of several research studies (Moody et al., 1954, Morrow and 

Viest, 1957, de Paiva and Siess, 1965), most of which were used in the development of 

Equation 5.10.  The results in Figure 5.25 are justified since the first diagonal crack is 

generally a flexure-shear crack.  At the tip of the flexural crack, the amount of 

longitudinal reinforcement reduces the principal tension stress thereby delaying the load 

at which the flexural crack turns into a diagonal crack.   

The effect of depth on the diagonal cracking load of the beams in the evaluation 

database is shown in Figure 5.26.  The results indicate that the diagonal cracking load of 

deep beams decreased with increasing depth, on average.  However, it is possible that the 

scarcity of data for beams with effective depths greater than 40 in. contributed to this 

average reduction.  From a lower bound perspective, the decrease in cracking load with 

increasing depth is small.  As before, the effect of depth on the diagonal cracking load of 

deep beams can be isolated by plotting the data from specimens with different depths, but 

identical a/d ratios and beam parameters.  The diagonal cracking loads of the beams 

tested in the experimental program are provided in Figure 5.27.  
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Figure 5.26: Effect of depth on the diagonal cracking load of beams in the evaluation 

database 

 
Figure 5.27: Effect of depth on the diagonal cracking load of deep beams in testing 

program 
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All of the data in Figure 5.27 are from the current experimental program.  The 

normalized diagonal cracking loads of the specimens tested at an a/d ratio of 1.2 

decreased with increasing depth.  At an a/d ratio of 2.5, the normalized cracking load at 

first cracking decreased with an increase in effective depth of 38 to 69 in.  At an a/d ratio 

of 1.85, little to no depth effect was apparent.  As noted previously in Section 4.3.3, the 

reduction in diagonal cracking load for some of the specimens may be due to variations 

in tensile strength or to a Weibell statistical effect.  Conflicting results on this issue exist 

in the literature.  Similar results to that in Figure 5.27 were presented by Tan and Lu 

(1999) for specimens tested at a/d ratios of 0.56 and 1.13, but not for specimens tested at 

an a/d ratio 0.84.  Conversely, in experimental studies by Walraven and Lehwalter (1994) 

and Zhang and Tan (2007), both researchers concluded that the diagonal cracking load of 

deep beams is not affected by size.  The specimens in these studies were tested at an a/d 

ratio of approximately 1.  As a result, it is possible that the effective depth of a deep beam 

contributes to the diagonal cracking load to some extent, but the lack of consistent trends 

suggests that the overall effect is small. 

The effect of the quantity of web reinforcement on the diagonal cracking load of 

deep beams was also evaluated in the experimental program and with the evaluation 

database.  In Section 4.3.3, it was shown that the diagonal cracking loads of deep beams 

were not appreciably affected by the quantity of web reinforcement, either in the 

horizontal or the vertical direction (Figure 4.21 and Figure 4.22).  This finding is 

plausible since the web reinforcement should not affect the performance of the beam until 

diagonal cracks form.  The results from the specimens in the experimental program in 

which web reinforcement was the primary variable are illustrated in Figure 5.28. 
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Figure 5.28: Effect of web reinforcement on the diagonal cracking load of similarly 

sized deep beams 
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conservative approach in estimating the diagonal strength of reinforced concrete deep 

beams. 

5.3.3.2 Estimating Diagonal Cracking Loads  

For this task, an estimate for the diagonal cracking load of deep beams was 

required.  Previous researchers have proposed empirical equations aimed at estimating 

the diagonal cracking load of reinforced concrete beams.  In general, the equations have 

accounted for the primary variables that affect diagonal cracking with the exception of 

the effective depth.  In this section, a few equations from the literature and design 

specifications are evaluated with the data in the evaluation database. 

The first equation to be evaluated is ACI-318-08 Equation 11-5, presented 

previously as Equation 5.10.  This equation was developed in the early 1960s and 

accounts for the following variables: bwd, 'f c , a/d, and ρl.  For each specimen in the 

database, the estimated cracking load according to Equation 5.10 was computed.  For 

beams with an a/d ≤ 2, the critical section was taken as the halfway point on the shear 

span producing an M/V ratio equal to a/2.  For beams with an a/d > 2, the critical section 

was taken as d away from the location of maximum moment which slightly affected the 

M/V ratio for these specimens.  The experimental diagonal cracking loads were divided 

by the estimated diagonal cracking loads.  The results were plotted in Figure 5.29 versus 

the a/d ratio. 

 



 247

 
Figure 5.29: Comparison of measured and estimated diagonal cracking loads – ACI 

Eq. 11-5 

In Figure 5.29, a value of 1.0 represents a cracking load estimate that is equal to 
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cracking load.  Zsutty’s design equation is presented as Equation 5.11.  In the derivation 

of the equation, the data were split by the a/d ratio.  Beams with an a/d ratio > 2.5 were 

considered slender.  Beams with an a/d ratio < 2.5 were considered short.  The cutoff at 

an a/d ratio of 2.5 was made because Zsutty found that above this value, the diagonal 

cracking load data agreed well with his empirical equation.  At an a/d ratio less than 2.5, 

there were significantly greater errors.  Based on this abrupt change in performance, the 

cutoff between short beams and slender beams was taken at an a/d ratio of 2.5.  The 

reason for the additional error in the short beam data was believed to be the result of the 

“arch action” in short beams (Zsutty, 1968).  Improvements to the equation for short 

beams were attempted to no avail.  In the words of the author: “several attempts to 

remove variables such as ρ, or add variables such as bond contact area ratio, did nothing 

to improve the prediction precision” (Zsutty, 1968).  In a later publication, a modification 

to Equation 5.11 was made to estimate the ultimate strength of short beams (Zsutty, 

1971).  In estimating the ultimate strength of short beams, Zsutty commented that the 

equation “must contain an accurate representation of the top and bottom pressures due to 

load and support conditions” (Zsutty, 1968).  No need was seen to alter the estimate for 

first diagonal cracking of short beams since these members carry additional load after 

first cracking.  However, great attention was given to improving the estimated diagonal 

cracking load for slender beams since this value is often the ultimate strength of 

unreinforced specimens and is used as the concrete contribution in the sectional shear 

design model.  The diagonal cracking loads in the evaluation database are compared to 

those estimated with Equation 5.11 in Figure 5.30. 
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with  f ′c  =  compressive strength of concrete (psi) 

 ρl  =  longitudinal reinforcement ratio (As / bwd) 

 d  =  effective depth of the member (in.) 

 a  =  shear span (in.) 
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 bw  =  web width of the member (in.) 

 

 
Figure 5.30: Comparison of measured and estimated diagonal cracking loads – Zsutty 

Equation 
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section of the specimens was 4.9”x9.8” and the longitudinal reinforcement ratio was 

3.8%.  Two series of tests were conducted in which the concrete strength was either 7,600 

psi or 10,600 psi.  The diagonal cracking loads of the specimens were evaluated with 

Equations 5.10 and 5.11.  The authors found that Equation 5.10 was overly conservative 

when used to estimate the cracking loads of their specimens.  A fairly good correlation 

was found with the use of Equation 5.11.  Based on a regression analysis of their test 

data, a different equation for the diagonal cracking load of deep beams was 

recommended. The equation is presented as Equation 5.12.  The diagonal cracking loads 

in the evaluation database are compared to those estimated with Equation 5.12 in Figure 

5.31.   
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with  f ′c  =  compressive strength of concrete (psi) 

 ρl  =  longitudinal reinforcement ratio (As / bwd) 

 d  =  effective depth of the member (in.) 

 a  =  shear span (in.) 

 bw  =  web width of the member (in.) 
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Figure 5.31: Comparison of measured and estimated cracking loads – Shin et al. 

Equation 
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it was obviously not calibrated with the range of parameters in the evaluation database.  

Instead, the point is to illustrate the wide range of scatter that can result when the 

quantities of the primary variables that affect the diagonal cracking load are altered.  

Whereas the data from the study by Shin et al. were predicted with their proposed 

equation with remarkable accuracy (Avg. = 1.0, SD = 0.06, COV = 0.06), the data in the 

evaluation database were not.  This inconsistency suggests that while the parameters that 

affect diagonal cracking are correctly identified, it is difficult to weigh them 

appropriately for the wide range of values for each pertinent variable.  In addition, there 

may be inconsistencies in the way with which each researcher is measuring the diagonal 

cracking load, although the description of first diagonal cracking in each study is similar.    

In AASHTO LRFD (2008), there is an equation for Vci that can be used to 

estimate first diagonal cracking.  Vci is defined as the “nominal resistance provided by 

concrete when inclined cracking results from combined shear and moment” (AASHTO 

LRFD, 2008).  Specifically, Vci refers to flexure-shear cracking which was the first type 

of diagonal crack observed in the specimens of the experimental program (Section 5.3.1).  

The equation for Vci (5.13) was calibrated for both prestressed and reinforced concrete 

members as described in NCHRP Report 549 (Hawkins et al., 2005).  The equation for 

the cracking moment needed to compute Vci is provided in Equation 5.14.  The diagonal 

cracking loads in the evaluation database are compared to those estimated with Equation 

5.13 in Figure 5.32.   

dbf
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where  f ′c  =  compressive strength of concrete (ksi) 

 bv  =  effective web width within dv (in.) 

 dv  =  effective shear depth, taken as the distance between the resultants 

of the tensile and compressive forces due to flexure (in.) 

 Vd  =  shear force at section due to unfactored dead load (kips) 
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 Vi  =  factored shear force at section due to externally applied loads 

occurring simultaneously with Mmax (kips) 

 Mcre  =  moment causing flexural cracking at section due to externally 

applied loads (kip-in.) 

 Mmax  =  maximum factored moment at section due to externally applied 

loads (kip-in.) 

and 

⎟⎟
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⎞
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⎝
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−+=

nc

dnc
cperccre S

MffSM  (5.14) 

 

where  Sc  =  section modulus for extreme fiber of the composite section where 

tensile stress is caused by externally applied loads (in.3) 

 fr  =  modulus of rupture of concrete (ksi) 

 fcpe  =  compressive stress in concrete due to effective prestress forces 

only at extreme tensile fiber (ksi) 

 Mdnc  =  total unfactored dead load moment on noncomposite section (kip-

in.)  

 Snc  =  section modulus for extreme fiber of the noncomposite section 

where tensile stress is caused by externally applied loads (in.3)  
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Figure 5.32: Comparison of measured and estimated cracking loads – AASHTO Vci  

The results in Figure 5.32 with respect to those in Figure 5.29 through Figure 5.31 

indicate that the AASHTO LRFD Vci equation does a slightly better job estimating 

diagonal cracking loads than the other equations for the specimens in the database.  The 

estimates are conservative on average (Avg. = 1.09) and are reasonably consistent for the 

full range of a/d ratios.  However, a significant amount of scatter still exists as measured 

by the standard deviation (SD = 0.34) and coefficient of variation (COV = 0.31).  

Based on the results presented in this section, it is clear that it is very difficult to 

estimate diagonal cracking loads of deep beams accurately.  While the AASHTO LRFD 

(2008) Vci equation appeared to do the best job of the equations that were evaluated, a 

considerable amount of error exists.  This error is likely due to the interdependency of the 

wide range of variables that affect diagonal cracking loads and the variability in the 

diagonal cracking loads themselves as pointed out by Zsutty (1968).  To illustrate the 

variability in diagonal cracking loads of nominally-identical specimens, the cracking 

loads of several beams from the evaluation database in which the only variable is the 

quantity of web reinforcement are plotted in Figure 5.33.  Fifteen specimens with an 

identical cross-section and longitudinal reinforcement ratio from the research study 
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conducted by Oh and Shin (1999) are included.  Eight specimens with the same 

longitudinal reinforcement ratio and cross-section from the experimental program are 

included as well.    

 

 
Figure 5.33: Diagonal cracking loads for nominally-identical specimens 

As shown previously in Figure 5.28 and in Section 4.3.3, the quantity of web 

reinforcement did not have an appreciable effect on the diagonal cracking load.  

Therefore, the diagonal cracking loads in Figure 5.33 at each a/d ratio should be similar.  

Instead, a considerable amount of scatter exists.  Often, the maximum diagonal cracking 

load in a group is 50% greater than the minimum.  In a couple of cases, the maximum and 

minimum diagonal cracking load differ by a factor of 2.  Thus, for nominally-identical 

specimens, the diagonal cracking loads are considerably different.  The most likely 

reason for the scatter is the variability in the tensile strength of concrete.  Improving the 

accuracy of diagonal cracking loads beyond the accuracy with which the tensile strength 

of concrete is estimated is not possible.   

Due to the difficulties associated with estimating diagonal cracking loads, it is 

unlikely that an equation can be developed that will be significantly more accurate than 
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the AASHTO LRFD Vci equation.  However, since the purpose of the current task is to 

prevent diagonal cracking in service, a simple and conservative estimate may be more 

appropriate than an accurate one.  With the data presented previously in Figure 5.23, a 

lower-bound estimate of the diagonal cracking load was determined.  The proposed 

lower-bound equation is shown with the data in Figure 5.34.  Since first diagonal 

cracking is a serviceability consideration, a more liberal lower-bound equation is 

warranted compared to a strength consideration.  

 

 
Figure 5.34: Development of proposed equation for a conservative estimate of diagonal 

cracking 

The proposed diagonal cracking load equation is a reasonable lower-bound to the 

data from a serviceability perspective.  The equation considers the primary variables that 

affect first cracking, namely the section size (bwd), the tensile strength of concrete            

( 'f c ), and the a/d ratio of the member.  For an a/d ratio less than 0.5, the estimated 

diagonal cracking load is 5 'f c bwd.  As the a/d ratio increases from 0.5 to 1.5, the 

estimated diagonal cracking load decreases from 5 'f c bwd to 2 'f c bwd.  For an a/d 
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ratio > 1.5, the diagonal cracking load is 2 'f c bwd.  Limiting the diagonal cracking load 

to 2 'f c bwd at an a/d ratio of 2 is consistent with the diagonal cracking load of slender 

beams.  Since the equation is a lower-bound estimate, it inherently accounts for other 

variables that may contribute to the scatter in Figure 5.34 (i.e. the longitudinal 

reinforcement ratio or the effective depth).  Furthermore, it does not seem practical to 

recommend an equation that varies with the longitudinal reinforcement ratio since ρl in 

TxDOT structures does not vary as much as it does for beams in the literature.  In typical 

bent caps, the longitudinal reinforcement ratio is generally less than 1% (TxDOT, 2008).  

It is important to emphasize that the proposed diagonal cracking load estimate is intended 

to be simple and reasonably conservative at the cost of being less accurate.   

5.3.4 Design Implications 

To limit diagonal cracking under service loads, the following approach should be 

taken.  After the completion of a strength analysis, a service load shear check should be 

performed.  The shear in the member due to the unfactored service loads should be 

computed.  This value should then be compared to the estimated diagonal cracking load 

given by the following equation:   

dbf
d
aV wccr '35.6 ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−=

 (5.15)  
but not greater than 5 'f c bwd nor less than 2 'f c bwd 

with  a  =  shear span (in.) 

 d  =  effective depth of the member (in.) 

 f ′c  =  compressive strength of concrete (psi) 

 bw  =  web width of the member (in.) 

 

If the service level shear is less than the estimated diagonal cracking load, then 

the member is not expected to crack in service.  If the service level shear is greater than 

the estimated diagonal cracking load, several options exist for the designer.  First, the 
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design of the member can be altered to increase the value of the diagonal cracking load.  

The section size (bwd) of the member can be increased.  If the depth is increased, the a/d 

ratio of the member for the typical situation in which the span length is fixed will also be 

reduced.  Alternatively, or in conjunction with an increase in section size, a higher 

compressive strength of concrete can be specified.  Second, if these options are not 

practical, the designer can provide additional web reinforcement to help restrain the 

diagonal crack widths under service loads.  However, as noted in Section 4.3.3, there are 

some diminishing returns in regards to the benefits of the quantity of web reinforcement 

for crack width control.   

Alternatively, the AASHTO LRFD (2008) Vci equation can be used to estimate 

the diagonal cracking load with the service load check outlined above.  It is expected that 

this equation will provide a more accurate, yet potentially unconservative, estimate of the 

diagonal cracking load with additional calculation.    

In the design example in Appendix A, a service load shear check is performed 

with the proposed lower-bound equation on two sections (a/d of 0.85 and 2.05) of the I-

45 bent cap at Greens Road (Section 2.2).  For the original cross-section with an a/d ratio 

of 2.05, the diagonal cracking load estimate (2 'f c bwd) was equivalent to only 88% of 

the service dead load shear on the section.  Thus, it is not surprising that extensive 

diagonal cracking was observed in this member in service.  With the revised section that 

was designed according to the Project 5253 STM provisions (at a/d of 0.85 and 2), the 

diagonal cracking load estimate was equal to the full service dead load shear plus 

approximately 25% of the service live load shear.  Thus, for these examples, diagonal 

cracking would still be expected under full service loads.  To reduce the risk of diagonal 

cracking under full service loads, modifications to the cross-section will need to be made.  

This example indicates that it may be slightly impractical to design the cross-section to 

remain free of diagonal cracks under the application of the full service load.  Instead, 

limiting diagonal cracking under the full dead load and a percentage of the live load may 

be more realistic.  This adjustment can be made in the proposed service load shear check 
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by simply computing the shear due to the dead load plus a reasonable amount of live 

load.   

The service load check outlined in this section provides an indication of the 

likelihood of diagonal cracks forming in service.  If the service load shear exceeds the 

expected diagonal cracking load, the designer can determine at what percentage of the 

live load the member is expected to form a diagonal crack.  In extreme cases (I-45 at 

Greens Road), this check will indicate if the member is expected to crack under service 

dead loads.   
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5.3.4.1 Summary and Conclusions 

In this task, the variables that affect the diagonal cracking load of deep beams 

were determined with data from the experimental program and from the literature.  It was 

verified that the cross section of the member (bwd), the tensile strength of concrete           

( 'f c ), and the a/d ratio are primary variables.  The diagonal cracking load appeared to 

be a function of the longitudinal reinforcement ratio to some degree, but there was not a 

wide enough range of data to evaluate this variable properly.  It should be noted that the 

longitudinal reinforcement ratio does not vary much in TxDOT bent caps in general.  It 

was shown that the effective depth of the member may have an effect on the normalized 

diagonal cracking load, but the effect was inconsistent and likely small overall.  Using 

empirical equations presented in the literature and in design specifications, it was 

determined that accurately estimating the diagonal cracking load is difficult.  The 

difficulty is due to the complexity of accounting for the wide range in the values of each 

variable that affect diagonal cracking and due to the inherent scatter of the diagonal 

cracking loads of nominally-identical specimens.  The latter problem is likely due to the 

variability in the tensile strength of concrete.  As a result, a simple empirical equation 

was recommended to estimate the diagonal cracking load of deep beams with a 

reasonable amount of conservatism.  This estimate can be compared to service level shear 

to determine the likelihood of diagonal cracking in service. 

Following the procedure outlined in this section will not guarantee that a 

reinforced concrete deep beam will remain uncracked in service, primarily due to the 

inconsistencies between many design assumptions and actual field conditions such as 

overloads, restrained shrinkage, temperature changes, repeated loadings, material 

properties of the concrete, etc.  However, it is a simple and logical approach that can 

significantly reduce or limit diagonal cracking in service.  Furthermore, it forces the 

designer to think about the serviceability performance of the structure in the design 

phase. 
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5.4 CORRELATION OF MAXIMUM DIAGONAL CRACK WIDTH TO CAPACITY 

On occasion, diagonal cracks are discovered in bent caps (deep beams) in service 

(Section 2.2).  Upon inspection of the structures, field engineers are asked to assess the 

amount of distress in the cracked member.  Currently, there is little information in the 

literature regarding a method to link the width of diagonal cracks to the amount of 

distress in the deep beam.     

The objective of this task was to develop a means to aid field engineers in 

evaluating the residual capacity of a diagonally-cracked bent cap.  Data from the 

literature and data from the experimental program were used to identify key variables that 

influence the width of diagonal cracks.  Accounting for these variables, a simple chart 

was developed that correlates the maximum width of the primary diagonal crack in a 

deep beam to the corresponding percent of its capacity.   

5.4.1 Background 

Contrary to that of diagonal cracks, the variables affecting the width of flexural 

cracks have been studied extensively over the last fifty years.  Several empirical 

relationships based on experimental data exist for estimating the width of flexural cracks.  

A brief background on variables affecting the width of flexural cracks will be discussed 

in this section.  Less information on the width of diagonal cracks is present in the 

literature, particularly for members governed by shear behavior.  Of the many research 

projects conducted on deep beam shear, diagonal crack width information was only 

included in a few studies.  These studies will provide some indication of the primary 

variables that affect diagonal crack width in shear-critical members.   

5.4.1.1 Variables affecting width of flexural cracks 

 Based on research conducted over the last fifty years, the three primary variables 

affecting flexural crack width are steel stress, concrete cover, and bar spacing.  Test 

results indicate that steel stress is the most important of the three, especially at service 

load levels.  In ACI 318-08, crack width is limited through the maximum bar spacing of 

the reinforcement (ACI, 2008).  The equation for bar spacing accounts for the stress in 
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the reinforcement and concrete cover.  In AASHTO LRFD 2008, crack width is also 

limited by restricting the spacing of mild reinforcement (AASHTO, 2008).  However, the 

AASHTO equation for bar spacing addresses exposure condition and strain gradient in 

addition to concrete cover and steel stress.  A distinction between exposure conditions is 

not made in ACI 318-08 due to “the inherent variability in cracking” and due to 

experimental evidence that does not support the width of cracks influencing corrosion at 

service-load levels (Committee Closure, 1999 and ACI 318-08, 2008).    As noted in 

Section 4.2.2, exposure conditions were addressed in ACI-318 prior to the 1999 version 

of the code.   

Tensile stress of the longitudinal reinforcement was confirmed as the primary 

variable affecting flexural crack widths in a research study conducted by Young et al. in 

2002.  Sixteen (16) full-scale reinforced concrete bent caps were tested at an a/d ratio of 

approximately 1.6 by Young et al. (2002).  Limiting the longitudinal reinforcement stress 

at the face of the column to 30 ksi and 24 ksi under service load levels corresponded to 

maximum flexural crack widths of 0.016 in. and 0.013 in., respectively.  It was found that 

the distribution of longitudinal reinforcement through transverse spacing had little effect 

on flexural crack widths. 

5.4.1.2 Types of diagonal cracks 

As noted in Section 5.3.1, two different types of diagonal cracks exist in 

reinforced concrete deep beams: flexure-shear cracks and web-shear cracks.  Flexure-

shear cracks form after or concurrently with flexural cracks.  They extend from the top of 

the flexural crack towards the origin of load.  Web-shear cracks occur independently of 

flexural cracking.  They form when the principal tension stress in the web of the member 

exceeds the tensile strength of concrete.  In deep beams, web-shear cracks are also 

referred to as bursting or splitting cracks.  Specifically, they are caused by transverse 

tensile stresses that exist due to the spreading of compressive stresses in bottle-shaped 

struts.  It is apparent that the spreading of compressive stresses in deep beams contributes 

to the width of flexure-shear cracks as well.  Both of these cracks are depicted in Figure 

5.35. 
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Figure 5.35: Types of cracks in reinforced concrete deep beams 

The purpose of this task was to correlate maximum diagonal crack widths with 

the residual capacity of a deep beam bent cap.  In the analysis of the crack width data 

from the experimental program and the literature, a distinction between web-shear cracks 

and flexure-shear cracks was not made.  Both were treated simply as inclined cracks.  

The only relevant distinction between the two is related to the level of distress present in 

a shear-critical member.  In general, the presence of web-shear cracks is a sign of 

impending failure (Section 4.3.2).  

5.4.1.3 Effect of web reinforcement on diagonal crack widths of deep beams 

In the literature, transverse reinforcement was found to be the most important 

variable in controlling diagonal crack widths.  Unfortunately, very little diagonal crack 

width data were reported in the literature.  A few studies in which diagonal crack widths 

were monitored during deep beam tests are discussed in this section.  Crack width data 

from these studies are replotted where possible.  In each case, the qualitative findings of 

the researchers are presented.   

 In a study by Smith and Vantsiotis (1982), fifty-two (52) deep reinforced 

concrete beams with a 4”x14” cross-section were tested to failure.  The purpose of the 

study was to evaluate the effect of web reinforcement on the strength and overall 

performance of deep beams.  Specimens were tested with simple supports at a/d ratios of 

0.77, 1.01, 1.34, and 2.01.  During the tests, maximum crack widths were recorded at 
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each load increment.  In the paper, the maximum diagonal crack width at failure for each 

of the specimens was listed.  However, only representative crack width data were 

provided from a beam at each a/d.  Nevertheless, the authors indicated that “web 

reinforcement was effective in reducing crack widths at all corresponding load levels and 

particularly in beams with a/d > 1.0” (Smith and Vantsiotis, 1982).  Specifically, the 

researchers recommended minimum web reinforcement to restrain crack widths 

corresponding to 0.18% in the vertical direction and 0.23% in the horizontal direction (ρv 

= 0.0018 and ρh = 0.0023).  It was apparent from the maximum crack width at failure 

data that reinforcement in addition to the minimum did little to further restrain the 

diagonal crack widths.    

A research study conducted by Kong et al. (1970) focused on varying the amount 

of transverse reinforcement depending on the a/d ratio of the test specimen.  Kong et al. 

tested thirty-five (35) reinforced concrete deep beams with a/d ratios ranging from 0.35 to 

1.18.  The crack width data indicated that at low a/d ratios (0.35), horizontal 

reinforcement placed near the tension steel was most effective at restraining crack widths.  

As the a/d ratio increased, the effectiveness of the vertical reinforcement at restraining 

diagonal cracks increased.   

In an investigation by Tan et al. (1997), crack width data were recorded for 

eighteen (18) deep reinforced concrete beams.  Six specimens each were tested at an a/d 

ratio of 0.85, 1.13, and 1.69.  It was observed that for specimens with reinforcement in 

only one direction, vertical reinforcement was more effective than horizontal 

reinforcement at restraining crack widths.  However, the most effective crack width 

restraint was provided by similar amounts of reinforcement in both orthogonal directions 

(Tan et al., 1997).  These trends were evident at all three a/d ratios.   

The effect of transverse reinforcement on the width of diagonal cracks was also 

evaluated in the full-scale study conducted by Bracci et al. (Bracci et al., 2000 and Young 

et al., 2002).  Sixteen (16) 33”x36” bent caps were tested to failure at an a/d ratio of 

approximately 1.6.  The longitudinal reinforcement ratio for the specimens ranged from 

0.6% to 0.8%.  Three different web reinforcement arrangements were included in the test 
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specimens.  For the Group 1 and 2 specimens, the reinforcement in the horizontal 

direction ranged from 0.19% to 0.22%; the reinforcement in the vertical direction was 

0.3%.  The vertical reinforcement consisted of two-legged, #5 stirrups.  In the Group 3 

specimens, the horizontal reinforcement was 0.22% and the vertical reinforcement was 

0.6%.  The vertical reinforcement in the Group 3 specimens consisted of four-legged #5 

stirrups.  During the tests to failure, the maximum width of inclined cracks was recorded 

for each specimen.  From the test results, it was observed that the additional vertical 

reinforcement in the Group 3 specimens promoted “a more desirable (ductile) flexural 

failure mechanism at ultimate loading” (Young et al., 2002).  The diagonal crack width 

data from this study are replotted in Figure 5.36.  From the data, it is evident that the 

additional vertical reinforcement did little to further restrain the diagonal crack widths at 

first cracking and in the service load range.  Above 50% of the total applied load, 

however, the Group 3 specimens had narrower crack widths than the Group 1 or 2 

specimens.  These results agree well with the findings in Section 4.3.3 regarding 

minimum web reinforcement.  Increasing the amount of vertical reinforcement from 

0.3% to 0.6% did little to reduce the crack widths at first cracking or at typical service 

loads.  These data indicate that there are diminishing returns in regards to the diagonal 

crack width restraint from increasing the amount of transverse reinforcement.  
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Figure 5.36: Effect of transverse reinforcement on width of diagonal cracks (Bracci et 

al., 2000) 

5.4.1.4 Effect of a/d ratio on diagonal crack widths 

In the literature, there are mixed observations regarding the effect of a/d ratio on 

diagonal crack width.  This effect was not comprehensively studied by any previous 

researcher.  In a few research projects, some trends between diagonal cracks widths and 

a/d ratio were either noted or denied.  When possible, only specimens with transverse 

reinforcement are evaluated in this section. 

In the study by Kong et al. (1970), a trend with a/d ratio was detected.  Thirty-five 

(35) deep beams were tested at a/d ratios of 0.35, 0.54, and 1.18.  As the a/d ratio 

increased, average and maximum diagonal crack widths increased.  The maximum crack 

width data from the Series 4 and 5 specimens are replotted in Figure 5.37.  These series 

had the most practical reinforcement layouts of the beams tested.  From the data, a 

considerable difference in the diagonal crack widths was seen at 50% of the maximum 

applied load and greater.  The first cracking load for the specimens tested at an a/d ratio 

of 0.35 was approximately 40% of the maximum applied load.  It is important to note that 

different a/d ratios were obtained by changing the depth of the section.  It is possible that 
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the change in depth also influenced the crack widths based on the results that were 

presented in Section 4.4.3.  In this case, the effect of depth would have mitigated the 

width of the diagonal cracks as the a/d ratio increased (and the depth of the member 

decreased).    

 

 
Figure 5.37: Effect of a/d ratio on maximum width of diagonal cracks (Kong et al., 

1970) 

In the study by Tan et al. (1997), a slight increase in diagonal crack widths with 

increasing a/d ratios was noticed.  Diagonal crack width plots were provided for the 

beams tested at each a/d ratio: 0.85, 1.13, and 1.69.  Unfortunately, only the general 

trends in the data were visible in the original reference; it was not possible to extract the 

data from the plots due to their size.  Nevertheless, at similar percentages of the 

maximum applied load, it appeared that the diagonal crack widths were greater in the 

specimens with an a/d ratio of 1.69 when compared to those tested at an a/d ratio of 0.85 

or 1.13.  However, there was not a clear difference between the data from the specimens 

with an a/d ratio of 0.85 and 1.13.  For the specimens tested at an a/d ratio of 1.69, it was 

noted that “the fastest development rate of the diagonal crack occurred” (Tan et al., 

1997).   
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In the research study conducted by Smith and Vantsiotis (1982), however, no 

trend between diagonal crack widths and a/d ratio was detected.  Fifty (50) reinforced 

concrete beams were tested at a/d ratios of 0.77, 1.01, and 1.34.  Two (2) additional 

beams were tested at an a/d ratio of 2.0.  Maximum crack width at failure was tabulated 

for all of the specimens.  Negligible differences in maximum crack width at failure were 

evident as the a/d ratio changed for the test specimens.  In addition, representative load 

versus crack width plots were provided at each a/d ratio.  From these plots, an effect of 

a/d ratio on the width of diagonal cracks was not apparent.  The data from the 

representative crack width plots are replotted in Figure 5.38.   

 

 
Figure 5.38: Effect of a/d ratio on maximum diagonal crack width (Smith and 

Vantsiotis, 1982) 

5.4.1.5 Effect of longitudinal reinforcement on diagonal crack widths 

In 1971, Suter and Manuel tested twelve (12) deep beams (6” x 13”) at an a/d 

ratio of 1.5 and 2.0.  At each a/d ratio, the longitudinal reinforcement was either 0.96% or 

2.44%.  Four of the beams were unreinforced transversely; the remaining eight were 

reinforced with a single stirrup at the midspan of the beam.  The experimental results 

suggested that the beams with greater longitudinal reinforcement (2.44%) were more 
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shear critical.  Specifically, the width of diagonal cracks was more dominant than the 

flexural cracks at service loads and near ultimate.  On the contrary, the width of the 

diagonal cracks of the beams with a lower amount of longitudinal reinforcement (0.96%) 

was not as critical as the flexural cracks at service loads (0.4Multimate).  At approximately 

70% of the ultimate load, the width of the diagonal cracks exceeded that of the flexural 

cracks.  All of the transversely reinforced beams with 0.96% longitudinal reinforcement 

failed in flexure; two of the four transversely reinforced beams with 2.44% longitudinal 

reinforcement failed in flexure; the other two in shear.  This study illustrated that 

longitudinal reinforcement can affect the diagonal crack widths in a deep beam by 

affecting the governing mechanism of behavior. 

5.4.1.6 Effect of concrete cover on diagonal crack widths 

It is known that the width of flexural cracks is affected by the thickness of the 

concrete cover to the extreme tension face (Gergely and Lutz, 1968 and Frosch, 1999).  

The reason is due to the strain gradient.  The crack width measured at the extreme tension 

face will increase as the concrete cover increases because the restraint provided by the 

primary tension reinforcement is further away.  The situation is different for diagonal 

crack widths and side face cover.   

An experimental study was conducted by Rahal (2006) to investigate the effect of 

concrete cover on shear behavior.  Attention was given to the effect on diagonal crack 

widths.  Seven (7) tests were carried out at an a/d ratio of 3.  The overall depth of the test 

specimens was 15.7 in.  The width of the specimens ranged from 8.3 in. to 13.8 in.  The 

side concrete cover to the stirrups increased proportionally with the width of the member.  

Four different covers were evaluated: 0.2 in., 1 in., 2 in., and 3 in.  The diagonal crack 

widths were plotted versus the applied shear for the test specimens.  A similar increase in 

the width of diagonal cracks with increasing applied load was observed for the specimens 

with 0.2 in., 1 in., and 2 in. of cover.  When the cover was within this range, the diagonal 

crack widths were not affected.  For the specimens with 3-in. side cover, however, “a 

sharp increase in crack width” occurred shortly after cracking, nearly 10-times larger than 

that of the specimens with smaller cover (Rahal, 2006).  The same general trend was seen 
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for specimens with 3,600 psi and 6,000 psi concrete.  Thus, the study by Rahal suggests 

that concrete cover should not affect the width of diagonal cracks provided that the cover 

is less than 2 in.  For reference, the side face cover for most of the specimens in the 

Project 5253 experimental program was 0.75 in. which is smaller than that in the field 

(1.5 in. to 2 in.). 

In summary, the primary variable that affects the width of diagonal cracks is the 

amount of web reinforcement.  While there was not much crack width data in the 

literature showing this relationship, numerous researchers unanimously came to this 

conclusion.  However, it was shown that there is a limit to the reduction in diagonal crack 

widths that can be obtained by providing additional web reinforcement.  There was not as 

much consensus in the literature with regards to the effect of a/d ratio on the width of 

diagonal cracks.  Based on the available data, it is likely that the a/d ratio affects the 

diagonal crack widths to some degree.  Perhaps, the lack of consensus is an indication 

that the effect is relatively minor.  Also, it was shown that the longitudinal reinforcement 

ratio can affect the width of diagonal cracks by altering the governing behavior of the 

member.  In the current task, the performance of shear-critical members was addressed in 

response to the observed cracking patterns in field specimens (Section 2.2).  With 

knowledge of the primary variables that affect diagonal crack widths, an approach to 

correlate them with the residual capacity of a deep beam can be determined. 

5.4.2 Approach 

In this task, a technique to link the maximum width of a diagonal crack with the 

residual capacity of an in-service bent cap was required.  Two different approaches were 

considered that incorporated the primary variables that affect the width of diagonal cracks 

in deep beams.   

First, an analytical approach was taken.  The steps of the approach are illustrated 

in Figure 5.39.  A simple strut-and-tie model was used to estimate the perpendicular 

tensile force in a bottle-shaped strut, assuming that the diagonal crack forms along the 

axis of the strut.  The perpendicular tensile force was calculated as a function of the angle 

of spreading in the bottle-shaped strut, the angle of the strut with respect to the 
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horizontal, and the amount of shear on the section.  The tensile force was converted to 

tensile strain assuming that all of the strain exists in the transverse steel, ignoring the 

strain in the concrete.  Multiplying the perpendicular tensile strain by the perpendicular 

crack spacing provided an estimate for the average width of a diagonal crack.  From the 

literature, a constant of 2.0 was used to convert the average width of the diagonal crack to 

the maximum diagonal crack width, or the 95-percentile crack width (Adebar, 2001).  

Several assumptions were required to estimate diagonal crack widths with this approach.  

They include the following: 

• Strain in the concrete perpendicular to the diagonal crack was ignored 

• Crack spacing perpendicular to the diagonal crack was calculated 

assuming that longitudinal crack spacing (sl) was equal to stirrup spacing  

• The difference between average crack widths and maximum crack widths 

was taken as 2.0 

• An angle of spreading (α) was assumed  

 

 
Figure 5.39: Preliminary analytical model for estimating diagonal crack widths 

where   w  =  diagonal crack width (in.) 
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 s┴ =  crack spacing perpendicular to the diagonal strut (in.) 

⊥⊥= sw ε

⊥
⊥ = AE

T

s
ε

θ
α

sin
tanVT =

θθ sincos hv AAA +=⊥

θsinlss =⊥

)sincos(
tan

θθ
α

hvs

l

AAE
sVw

+
⋅

=

(1)

(2)

(3)

(4)

(5)

(6)

Fs

Fs

FsV

V

θ

Fs/2

Fs/2

T/2

T/2

α



 272

 sl = longitudinal crack spacing (in.) 

  T = total tie force in the bottle-shaped strut (kips) 

  Es = modulus of elasticity of strut reinforcement (ksi) 

  Av = area of vertical strut reinforcement (in.2)   

  Ah = area of horizontal strut reinforcement (in.2) 

  V = shear on the section (kips) 

  θ = angle of diagonal strut with respect to horizontal (deg.) 

  α  = angle of spreading of diagonal strut (deg.) 

 

A few of the aforementioned assumptions are troublesome.  Neglecting the 

contribution of the concrete in resisting the transverse tensile stresses in a bottle-shaped 

strut is fairly reasonable.  The tensile strain in the concrete between cracks is very small 

in relation to the strain in the reinforcement at the cracks.  Assuming that the crack 

spacing equaled the stirrup spacing is also a fair assumption.  The basis of this 

assumption was the crack patterns of similar specimens in the experimental program in 

which the main difference between them was a stirrup spacing of 6 in., 10 in., or 15 in.  

However, even though the crack spacing changed between these tests, the maximum 

diagonal crack width was not affected proportionally to the spacing.  It is likely that the 

difference between average crack widths and maximum crack widths is not constant as 

the stirrup spacing changes.  Lastly, and most important, it is difficult to justify an 

assumed angle of spreading.  In ACI 318-08 Appendix A, the angle of spreading (α) is 

assumed to be approximately 26 deg., corresponding to a slope of 2:1 (ACI 318-08, 

2008).  In 1982, Schlaich and Weischede presented a model for estimating the spreading 

of compressive stresses in an elastic body based on the starting width of the bottle-shaped 

strut and an assumed width at midheight.  In general, this approach yielded angles of 

spreading shallower than 26 deg.  It is difficult to justify either assumption. 

In addition to the problems with the assumptions of this analytical approach, there 

are significant problems with its applicability.  Crack widths are calculated as a function 

of the shear in the member.  Since this task is aimed at correlating crack widths to 



 273

residual capacity, an estimate for the load-carrying capacity of the member must be made 

as well.  As such, a full strut-and-tie model analysis would be required.  This level of 

calculation is inappropriate for a task conducted in the field.  Lastly, conditions in the 

field can be very different from those in the laboratory.  Some differences may include 

boundary conditions, axial restraint, long-term (time) effects, and the presence of 

repeated loads.  The inherent variability of crack widths and the differences between field 

and laboratory conditions negate the level of accuracy that is implied with these detailed 

calculations. 

It should be noted that a study was conducted by Zhu et al. (2003) aimed at crack 

width prediction using a “compatibility-aided strut-and-tie model.”  This study focused 

specifically on the diagonal cracking of members with re-entrant corners.  In this study, 

some of the aforementioned assumptions of the analytical approach were addressed.  

Strains in the concrete perpendicular to the diagonal crack were accounted for, but in 

conjunction with an assumed area of concrete contributing to the restraint.  Instead of 

crack spacing, an estimate for gauge length was used that was calibrated with test data.  

Due to the dominance of a single crack at re-entrant corners, a difference between 

average and maximum crack widths was not made.  Lastly, assumptions regarding the 

angle of spreading were not necessary due to the defined geometry of this application.  

While the approach by Zhu et al. (2003) is more sophisticated and more calibrated than 

the analytical approach discussed herein, it suffers from the same limitations in 

applicability in regards to the current task.  The required amount of calculations is 

significant, an ultimate-strength estimate is required, and the level of accuracy is not 

justified due to inevitable differences between field and laboratory conditions.  

The second approach used to address this task was empirically-based.  Maximum 

crack width data were obtained for the specimens tested in the current study as discussed 

in Section 3.5.3.  Each crack width measurement was plotted versus the corresponding 

percent of ultimate load.  The data were grouped by the amount of web reinforcement in 

the test specimen.  A strong relationship between the maximum diagonal crack width and 

the amount of web reinforcement crossing the crack was supported by the test data.  A 
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chart was developed with the diagonal crack width data from the experimental program 

that links the maximum diagonal crack width to the amount of load in the member 

(quantified as a percent of the ultimate strength).  Only the amount of web reinforcement 

in each direction is needed to use the chart.   

The data used in the development of the chart are discussed in the next section.  

Following that, the chart is presented.  Estimates from the chart are compared to crack 

width data from sixteen full-scale bent caps tested by Bracci et al. (2000) that were not 

used in the calibration of the chart. 

5.4.3 Results 

All of the test specimens fabricated in the current project are listed in Table 5.2.  

Two specimens fabricated and tested by Deschenes are listed in the table as well 

(Deschenes, 2009).  The beam details and test results for the specimens tested by 

Deschenes are provided in Table 5.3 and Table 5.4, respectively.  The data from these 

specimens were included with the beams from the experimental program due to the 

scarcity of diagonal crack width data for full-scale, deep beams in the literature.  In 

addition, the specimens contained different amounts of longitudinal and web 

reinforcement.   

The shaded specimens in Table 5.2 were not used to address this task.  The data 

from specimens with insufficient web reinforcement, overall beam height of 23 in., and 

abnormally large bearing plates were excluded because their details did not reflect typical 

TxDOT practice.  Also, since the current project focused on deep beam behavior, 

specimens tested at an a/d ratio greater than 2 were not used.  Lastly, the crack width data 

from two specimens, II-02-CCC1007 and M-03-2-CCC2436, were excluded because the 

data were unreliable.   

Therefore, the results of 24 deep beam shear tests were used in the current task 

(two of which were tested by Deschenes (2009)).  Twenty-one tests were conducted at an 

a/d ratio of 1.85; three tests were conducted an a/d ratio of 1.2.  The overall height of the 

specimens ranged from 42 in. to 75 in.  The width ranged from 21 in. to 36 in.  The 

minimum amount of web reinforcement in the specimens was either 0.2% in both 
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orthogonal directions or 0.25% in the vertical direction and 0.15% in the horizontal 

direction.  The maximum amount of reinforcement in the vertical and horizontal direction 

was 0.86% and 0.58%, respectively.  Several different bearing plate sizes were used as 

shown in Table 5.2.  Lastly, the longitudinal reinforcement ratio ranged from 2.3% to 

3.1%.   

The measured diagonal crack width data from the tests in the experimental 

program were plotted versus the percent of maximum applied load.  It was determined 

that plotting crack widths in this manner was an appropriate way to compare data from 

beams with a variety of different section parameters, such as size and compressive 

strength.  Furthermore, it was consistent with the primary goal of this task: to correlate 

maximum diagonal crack widths to the load on the structure, quantified as a percent of 

the capacity.  Provided that the depth of the member was greater than or equal to 42 in., 

the size of the member did not affect the diagonal crack width data when plotted in this 

fashion (Section 4.4.3).  Also, the size of the bearing plates had no effect on the width of 

diagonal cracks as long as the size did not significantly alter the effective a/d ratio 

(Tuchscherer, 2008).  
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Table 5.2: Specimens used in correlating crack width-to-capacity (shaded tests not 
used) (1 of 2) 

Testing 
Series Beam I.D.  b 

in. 
d 
in. 

Support 
Plate† 

Load 
Plate† 

No. of 
Stirrup 

Legs
ρv ρh a/d 

ratio

I 

I-03-2 

21 38.5 16”x21” 20”x21” 

2
0.003 0.003 

1.84 
I-03-4 4
I-02-2 2

0.002 0.002 
I-02-4 4

II 

II-03-CCC2021 

21 38.6 

10”x21” 20”x21”

2 

0.003 0.0045 

1.84 

II-03-CCC1007 10”x21” 10”x7”
II-03-CCT1021 10”x21” 36”x21”
II-03-CCT0507 5”x7” 36”x21”
II-02-CCT0507 5”x7” 36”x21”

0.002 0.002 
II-02-CCC1007 10”x21” 10”x7”
II-02-CCC1021 10”x21” 10”x21”
II-02-CCT0521 5”x21” 20”x21”

III 

III-1.85-0 

21 38.6 16”x21” 20”x21” 

- 0.000 0.000 
1.84

III-2.5-0 2.47
III-1.85-02 

2 

0.002 0.002

1.84 

III-1.85-025 0.0025 0.0015
III-1.85-03 0.003 0.003
III-1.85-01 0.001 0.001
III-1.85-03b 0.003 0.003
III-1.85-02b 0.002 0.002
III-1.2-02 0.002 0.002

1.20 
III-1.2-03 0.003 0.003
III-2.5-02 0.002 0.002

2.49 
III-2.5-03 0.003 0.003

†  Load plate dimensions: [in direction of span] x [transverse to direction of span] 
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Table 5.2 (cont.): Specimens used in correlating crack width-to-capacity (shaded 
tests not used) (2 of 2) 

Testing 
Series Beam I.D.  b 

in. 
d 
in. 

Support 
Plate† 

Load 
Plate† 

No. of 
Stirrup 

Legs
ρv ρh a/d 

ratio

IV 

IV-2175-1.85-02 

21 

68.9 

16”x21” 

29”x21” 

2 

0.002 0.002 
1.85 

IV-2175-1.85-03 0.003 0.003
IV-2175-2.5-02 

24”x21” 
0.002 0.002 2.50

IV-2175-1.2-02 0.002 0.002 1.20
IV-2123-1.85-03 

19.5 

16.5”x 
21” 

0.003 0.003
1.85 

IV-2123-1.85-02 0.002 0.002
IV-2123-2.5-02 15.5”x21 0.002 0.002 2.50
IV-2123-1.2-02 18”x21” 0.002 0.002 1.20

M 

M-03-4-CCC2436 

36 40 16”x36” 

24”x36”

4 

0.003 0.003

1.85 
M-03-4-CCC0812 8”x12” 0.003 0.003
M-09-4-CCC2436 24”x36” 0.0086 0.003
M-02-4-CCC2436 24”x36” 0.002 0.002
M-03-2-CCC2436 24”x36” 2 0.003 0.003

Deschenes 
(2009) 

Validation 
21 42 16”x21” 20”x21” 2 

0.003 0.0058
1.85 

nR1 0.003 0.0058
†  Load plate dimensions: [in direction of span] x [transverse to direction of span] 

 

Table 5.3: Summary of beam details for two specimens tested by Deschenes (2009) 

Beam I.D. 
bw 

(in.) 

h 

(in.) 

d 

(in.) 
ρl ρ′l ρv ρv 

Support 

Plate 

Load 

Plate 
a/d 

Validation 21 42 36.1 0.031 0.01 0.003 0.0058 16”x21” 20”x21” 1.85 
nR1 21 42 36.1 0.031 0.01 0.003 0.0058 16”x21” 20”x21” 1.8 

 

Table 5.4: Summary of test results for two specimens tested by Deschenes (2009) 

Beam 

I.D. 

f ′c 

(psi) 

fyl 

(ksi) 

fyv 

(ksi) 

Vcrack 

(kips) 

Vcrack / 

Vtest 

Vtest 

(kips) 

Validation 5,060 66 65 151 0.26 571 
nR1 7,250 66 65 - - 561 
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5.4.3.1 Effect of web reinforcement on diagonal crack widths of deep beams 

The variables that affect the width of diagonal cracks of deep beams were 

explicitly evaluated with the tests in the experimental program.  The most important 

variable noted in the literature was the amount of web reinforcement crossing the 

diagonal crack.  The same conclusion was reached in this project.  The effect of the 

quantity of web reinforcement on the diagonal crack widths of deep beams was 

previously discussed in Section 4.3.3.  Diagonal crack width data from five 21”x42” 

specimens tested at an a/d ratio of 1.85 are shown in Figure 5.40.  In general, the amount 

of transverse reinforcement directly affects the maximum width of the diagonal crack at 

first cracking and throughout the loading history.  Providing web reinforcement of 0.25% 

in the vertical direction and 0.15% in the horizontal direction yielded similar results to 

providing 0.2% in each direction.  For this reason, the data from these specimens were 

grouped together in the development of the crack-width-to-capacity chart later in this 

section. 

 
Figure 5.40: Effect of web reinforcement on diagonal crack widths of test specimens 
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The spacing of web reinforcement was not explicitly evaluated in the 

experimental program.  However, a couple of valid comparisons were possible.  As noted 

in Section 4.3.3, the spacing of the vertical reinforcement only slightly affected the width 

of diagonal cracks and only if the reinforcement was not adequately distributed.  For one 

specimen, III-1.85-02, the spacing of the stirrups was 14.5 in.  The diagonal crack widths 

for this specimen were compared to that of a nominally-identical specimen with a stirrup 

spacing of 9.5 in.  The results indicated that the larger stirrup spacing in III-1.85-02 

contributed to slightly wider cracks.  However, the wider cracks were within the total 

scatter of crack widths recorded from specimens with similar section sizes and quantities 

of web reinforcement (Section 4.3.3).  Thus, for the purposes of this task, the spacing of 

web reinforcement was not considered a primary variable that affects the width of 

diagonal cracks in deep beams. 

 

5.4.3.2 Effect of a/d ratio on diagonal crack widths of deep beams 

The effect of a/d ratio on the diagonal crack widths of deep beams was also 

evaluated through the tests in the experimental program.  Little consensus exists in the 

literature regarding the effect of a/d ratio.  In the experimental program, three full-scale 

tests were conducted at a/d ratios of 1.2 and 2.5.  The test results of three specimens with 

identical beam details are presented in Figure 5.41.  All three 21”x42” specimens had 

0.3% web reinforcement in each direction.  The only difference among the tests was the 

a/d ratio.  Since the current task is limited to evaluating deep beams (a/d < 2), the data 

from specimen III-2.5-03 were not specifically needed.  It is included in Figure 5.41 for 

comparison purposes.  It is appropriate to compare the data from this specimen with that 

of the other specimens because the final failure mode was consistent for all three (Section 

4.3.2). 
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Figure 5.41: Effect of a/d ratio on maximum diagonal cracking widths, 3 specimens, 

0.3% reinf.  

In Figure 5.41, a trend between the a/d ratio and the maximum width of diagonal 

cracks is observed.  For a given percentage of maximum applied load, the diagonal crack 

width increases as the a/d ratio increases.  The data in Figure 5.41 plotted with the 

diagonal crack widths of the other applicable tests in the experimental program are shown 

in Figure 5.42.  The data in Figure 5.42 indicate that while there may be an effect with 

a/d ratio, the effect is relatively small in light of the scatter that exists in diagonal crack 

width data.  The change in the maximum width of diagonal cracks from an increase in a/d 

ratio from 1.2 to 1.85 was not greater than the scatter associated with the crack widths of 

similar specimens. 
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Figure 5.42: Effect of a/d ratio on maximum diagonal crack widths, 9 specimens, 0.3% 

reinf. 

The diagonal crack width data for two similar specimens with 0.2% web 

reinforcement tested at an a/d ratio of 1.2 and 1.85 are presented in Figure 5.43.  The 

specimens have a 21”x42” cross-section.  A trend with a/d ratio is not evident in this plot.  

It should be noted that the crack width data from a similar specimen tested at an a/d ratio 

of 2.5 were excluded from Figure 5.43 because this specimen failed in sectional shear 

whereas the other two specimens failed by crushing of the direct strut.  As noted 

previously (Section 4.3.3), the dominant shear transfer mechanism must be similar to 

compare crack width data from multiple tests.  The crack width data from all of the 

specimens with 0.2% web reinforcement are plotted in Figure 5.44.  The maximum 

diagonal crack widths from IV-2175-1.2-02 were included in this plot as well.  In Figure 

5.44, it is clear that no trend with a/d ratio is evident, especially considering the scatter 

that exists in diagonal crack width data.   
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Figure 5.43: Effect of a/d ratio on maximum diagonal crack widths, 2 specimens, 0.2% 

reinf. 

 
Figure 5.44: Effect of a/d ratio on maximum diagonal crack widths, 11 specimens, 

0.2% reinf. 
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The results presented in Figure 5.41 indicate that a trend with a/d ratio exists to 

some extent.  However, the results presented in Figure 5.42 through Figure 5.44  suggest 

that the trend is relatively weak considering the scatter in diagonal crack width data for 

deep beams.  Based on these findings, it was determined that increasing the a/d ratio from 

1.2 to 1.85 did not significantly affect diagonal crack widths.  Thus, it was not considered 

a primary variable for the purpose of this task.  

5.4.3.3 Effect of longitudinal reinforcement on diagonal crack widths of deep beams 

The effect of the longitudinal reinforcement ratio on the width of diagonal cracks 

was not explicitly studied in the experimental program.  However, the crack width data 

from two tests with similar beam parameters but different longitudinal reinforcement can 

be compared to evaluate it to some degree.  In Figure 5.45, the diagonal crack width data 

from two tests in the experimental program, II-03-CCC2021 and II-03-CCC1007, were 

compared to that of the two tests conducted by Deschenes (2009) that were described 

previously (Table 5.3 and Table 5.4).  All four specimens had an identical cross-section 

and similar amounts of web reinforcement.  The main difference between the specimens 

was the amount of longitudinal reinforcement.  Specimens II-03-CCC2021 and II-03-

CCC1007 had 2.3% longitudinal reinforcement; the beams tested by Deschenes (2009) 

had 3.1% reinforcement.  
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Figure 5.45: Effect of longitudinal reinforcement on diagonal cracks in shear-critical 

members 

The results in Figure 5.45 indicate that the quantity of longitudinal reinforcement 

does not affect the width of diagonal cracks in deep beams in general.  Since the 

maximum diagonal crack width was often measured near the mid-depth of the member, 

this finding makes sense.  It should be noted, however, that the width of diagonal cracks 

can be affected by the longitudinal reinforcement by affecting the dominant mechanism 

of behavior as noted by Suter and Manuel (1971).  More discussion related to the effect 

of longitudinal reinforcement on the width of diagonal cracks exists later in this section 

when the data from Bracci et al. (2000) are compared to the estimates from the proposed 

chart. 

It was shown from the crack width data from the experimental program that the 

quantity of web reinforcement is the primary variable that affects the maximum width of 

diagonal cracks.  To some extent, the a/d ratio contributed to the width of diagonal 

cracks.  However, the effect was small in relation to the scatter associated with the crack 

widths of similar specimens.  Also, it was shown with the data from the experimental 
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program that the longitudinal reinforcement ratio does not affect the width of diagonal 

cracks for shear-critical members.  Lastly, based on the conclusions of Rahal (2006) 

regarding the influence of concrete side cover on diagonal crack widths, this variable is 

also unlikely to significantly affect the width of diagonal cracks (Section 5.4.1.6).  As a 

result, a method for correlating the diagonal crack width to the residual capacity of the 

member was developed considering the quantity of web reinforcement as the primary 

variable. 

5.4.3.4 Correlation of Crack Width to Residual Capacity 

The crack width data for the 21 specimens used in the current task are plotted in 

Figure 5.46.  All of the beams represented in this plot were tested at an a/d ratio of 1.85.  

The data were separated into three groups by the quantity of web reinforcement: 0.2% 

reinforcement in each direction, 0.3% reinforcement in each direction, and greater than 

0.3% reinforcement in each direction.  The data from one specimen with 0.25% vertical 

reinforcement and 0.15% horizontal reinforcement were included in the 0.2% group 

(Figure 5.40).  The data in the greater-than-0.3% group had a variety of different 

distributions in each direction.  In general, the specimens in this group had reinforcement 

in one direction greater than 0.3% and reinforcement in the other direction of 

approximately 0.3%.   

From the data in Figure 5.46, a consistent trend of the maximum diagonal crack 

width to the amount of web reinforcement is seen.  It is clear that there is some scatter in 

the plot consistent with crack widths in general.  A power function trend line was fitted 

through the data in each group.  The square of the correlation coefficient (R2) is provided 

next to each trend line.  This value quantifies the error between the trend line and the data 

points.  An R2 value of 1.0 represents a perfect fit.  In Figure 5.46, it is interesting to note 

that the R2 value increases as the quantity of web reinforcement increases in each group.  

This finding indicates that with less reinforcement (0.2% in each direction), there was 

generally more scatter in the diagonal crack width data.  As the amount of web 

reinforcement approached and exceeded 0.3% in each direction, the maximum width of 

diagonal cracks at each load increment was more consistent. 
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In Figure 5.47, the power function trend line is replaced with several straight line 

segments.  From these straight line segments, a table was created that correlated the 

maximum width of diagonal cracks to the corresponding percent of the capacity.  At 

several values for the maximum diagonal crack width, the average percent of capacity 

was tabulated for each data group.  With each average value, a range of the scatter in 

terms of the percent of capacity was placed in parentheses. The chart is included as 

Figure 5.48. 

 
Figure 5.46: All crack width data used in this task with trend lines 
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Figure 5.47: All crack width data used in this task with multiple straight line 

approximations
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Figure 5.48: Proposed chart that links diagonal crack width to percent of capacity of deep beams 

                                          wmax (in.)               
Reinforcement

0.01 0.02 0.03 0.04 0.05 0.06

ρv = 0.002        ρh = 0.002 20 (+10) 30 (±10) 40 (±10) 50 (±10) 60 (±15) 70 (±15)

ρv = 0.003        ρh = 0.003 25 (±10) 40 (±10) 55 (±10) 70 (±10) 80 (±10) 90 (±10)

ρv > 0.003        ρh > 0.003 30 (±10) 50 (±10) 70 (±10) 85 (±10) ~ Ultimate ~ Ultimate

Notation: Directions:
wmax = maximum measured diagonal crack width (in.) 1). Determine ρv and ρh for bent cap
ρv = reinforcement ratio in vertical direction (ρv = Av / bsv) 2). Measure maximum diagonal crack width, wmax, in inches
ρh = reinforcement ratio in horizontal direction (ρh = Ah / bsh) 3). Use chart with wmax, ρv, and  ρh to estimate % of capacity

Av & Ah = total area of stirrups or horizontal bars in one spacing (in.2)
sv & sh = spacing of stirrups or horizontal bars (in.)
b = width of web (in.)

Important Notes:

    -variability in crack widths in general (± scatter)      -differences between field and laboratory conditions
    -members loaded at a/d < 1.85 may be at slightly higher % of capacity      -implications of an unconservative estimate of capacity

This chart is not intended to be used for inverted-tee bent caps.

In this chart, the maximum width of the primary diagonal crack in a shear-critical member is linked to the load on the member, quantified as a percent of 
its ultimate capacity.  The intent of this chart is to aide field engineers in evaluating residual capacity in diagonally-cracked, reinforced-concrete bent caps 
subjected to concentrated loads at a/d ratios between 1.0 and 2.0.  This chart was developed from crack width data from 21 tests of simply-supported 
reinforced concrete beams with overall heights between 42" and 75".  The testing was conducted at an a/d ratio of 1.85.  Data has shown that diagonal 
crack widths may slightly decrease with decreasing a/d ratio.  The same crack width at a smaller a/d ratio indicates that a higher percentage of capacity 
from the above chart has already been reached.                                                                                                       

This chart should be used in conjunction with sound engineering judgement with consideration of the following limitations:                     

Load on the Member, Quantified as a Percent of Ultimate Capacity on Average (± scatter)
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The crack width measurements obtained by Bracci et al. (2000) were compared to 

the estimates from the proposed chart.  Two different distributions of web reinforcement 

were investigated by Bracci et al.  Some judgment was required to group the data with 

the limits in the proposed chart.  The specimens with 0.3% vertical reinforcement and 

0.22% horizontal reinforcement were compared with the 0.3% group estimate.  The 

specimens with 0.6% vertical reinforcement and 0.22% horizontal reinforcement were 

compared to the greater-than-0.3% group.  The results of the comparisons are provided in 

Figure 5.49.  

 

 
Figure 5.49: Comparison of crack width data from Bracci et al. (2000) and chart 

estimates 

In Figure 5.49, the accuracy of the proposed chart was evaluated with independent 

crack width measurements of full-scale specimens.  The specimens were tested at an a/d 
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those used to develop the chart, the level of accuracy is reasonable.  In each group, at a 

given crack width, the chart estimated an amount of load on the member that was within 

20 percentage points of the actual capacity.  For example, at a crack width of 0.02 in., it 

was estimated with the chart that a member with 0.3% reinforcement in each direction 

was at approximately 40% (±10%) of its capacity.  The specimens with a similar amount 

of reinforcement at the same crack width were at anywhere from 48% to 60% of their 

capacity.  It was estimated with the chart that specimens with web reinforcement 

exceeding 0.3% in each direction were at 50% (±10%) of their capacity at a maximum 

diagonal crack width of 0.02 in.  The specimens tested by Bracci et al. (2000) with 

similar amounts of reinforcement and with maximum crack widths of 0.02 in. were at 

48% to 68% of their capacity.   

It is clear from Figure 5.49 that the data from Bracci et al. (2000) is shifted to the 

left with respect to the estimates from the chart.  One potential reason for the shift is the 

longitudinal reinforcement ratio.  The smaller longitudinal reinforcement ratio in the 

specimens tested by Bracci et al. (2000) caused the specimens to be less shear-critical 

than those represented in the proposed chart.  It is possible that the maximum width of 

the diagonal cracks reduced for this reason.  Additional research is needed to improve the 

accuracy of the chart in relation to the effects of a/d ratio and the longitudinal 

reinforcement ratio.   

The accuracy of the proposed chart was also compared to the specimens from the 

experimental program that were tested at an a/d ratio of 1.2.  In this way, the implications 

of excluding an adjustment for the a/d ratio in the proposed chart could be evaluated.  

The results are presented in Figure 5.50.  The results indicate that the chart does an 

adequate job of estimating the level of distress in each member until approximately 60% 

to 70% of the capacity is reached.  Closer to ultimate, the crack widths for the specimens 

with 0.2% web reinforcement diverge from the estimated crack widths.  As noted 

previously, changing the a/d ratio from 1.85 to 1.2 only slightly affected the maximum 

width of diagonal cracks. 
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Figure 5.50: Comparison of data from specimens tested at a/d of 1.2 and chart 

estimates 

Since the chart was developed with data from specimens tested at an a/d ratio of 

1.85 and was evaluated with data from specimens at an a/d ratio of 1.2, it should not be 

used for cases well outside of this range.  A range in a/d ratio from 1 to 2 seems 

appropriate due to the minor affect of a/d ratio on the width of diagonal cracks.  It is not 

recommended to use the proposed chart for members with a/d ratios less than 1 since no 

data were obtained in this range.  Maximum diagonal crack widths at a given percentage 

of capacity may slightly decrease with decreasing a/d ratio.  As a result, a crack width of 

0.03 in. may be more critical (higher percentage of capacity) for a member loaded with 

an a/d ratio < 1 than for a member loaded with an a/d ratio of 1.85.   

The chart is not intended to be used for inverted-tee bent caps.  No diagonal crack 

width data from inverted-tees were used in the calibration of the chart.  It is possible that 

the presence of tension in the web of an inverted-tee member due to load applied to the 

flange could significantly alter the width of diagonal cracks.  Future research is required 

to assess the applicability of this chart to inverted-tee bent caps. 
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It was shown in Section 2.2 that two bent caps in Texas were retrofitted due to 

extensive diagonal cracking in service.  Web reinforcement corresponding to 0.05% and 

0.49% in the horizontal and vertical directions, respectively, was placed in the I-345 bent 

cap in Dallas, Texas.  The maximum diagonal crack width in this member was 

approximately 0.035 in.  While the web reinforcement in this cap does not match the 

divisions in the proposed chart, the use of the chart with some judgment suggests that the 

I-345 bent cap was loaded to approximately 60% (±10%) of its capacity.  In the I-45 bent 

cap at Greens Road in Houston, Texas, 0.29% and 0.65% reinforcement in the horizontal 

and vertical directions, respectively, was provided.  The maximum diagonal crack width 

in this member was approximately 0.035 in. as well.  The use of the proposed chart 

suggests that this member was loaded to approximately 77% (±10%) of its capacity.  As 

such, the strengthening of both structures was largely justified.       

The use of the proposed chart should be done in conjunction with sound 

engineering judgment.  It is clear that conditions in the field can be drastically different 

than in the laboratory.  The chart estimate can likely be off by as much as 20% of the 

capacity due to variability in crack width data, the limited variables accounted for in the 

chart, and the differences between field and laboratory conditions.  Thus, the chart should 

be viewed as an important guide to making an informed decision regarding the level of 

distress in a diagonally-cracked bent cap, in the absence of more sophisticated means of 

distress evaluation.      

5.4.4 Summary and Conclusions 

For the current task, information from the literature and data from the 

experimental program were used to determine the primary variables that affect the 

maximum width of diagonal cracks in shear-critical deep beams.  The results indicate that 

the amount of web reinforcement crossing the diagonal crack is the primary variable.  

The effect of changing the a/d ratio from 1.2 to 1.85 did not significantly affect the 

maximum width of the diagonal cracks considering the inherent amount of scatter in 

crack widths.  From the crack width data obtained in the experimental program, a chart 

was prepared that correlates the maximum width of the primary diagonal crack to the 
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load acting on the member, quantified as a percent of the capacity.  Experimental data 

from 21 full-scale tests on specimens that were 21”x42,” 21”x44,” 21”x75,” and 36”x48” 

were used to develop the chart.  The chart is applicable for a/d ratios between 1 and 2 and 

for a range of web reinforcement quantities.  The chart should be used with sound 

engineering judgment considering the following limitations: 

• Variability in crack widths in general 

• Limited variables accounted for in the chart 

• Differences between field and laboratory conditions 

• Implications of an unconservative estimate of capacity 

5.5 SUMMARY 

In Chapter 5, the results of three objectives of TxDOT Project 5253 were 

presented.  In Section 5.2, it was shown that the discrepancy between calculated shear 

strength near an a/d ratio of 2 is largely eliminated with the use of the Project 5253 STM 

provisions.  In Section 5.3, a service load check was developed that limits diagonal 

cracking under service loads.  In Section 5.4, a simple chart that relates maximum 

diagonal crack widths to the residual capacity of a deep beam was presented to aid in the 

field assessment of diagonally-cracked bent caps.  The results for these three tasks were 

obtained through the analysis of data from the experimental program, the literature, and 

the evaluation database.   
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CHAPTER 6 
Summary and Conclusions 

 

6.1 SUMMARY 

Diagonal cracking has been observed in several reinforced concrete bent caps in 

service throughout the state of Texas.  In two cases, costly retrofits were implemented to 

strengthen the cracked structures (Section 2.2).  The Texas Department of Transportation 

(TxDOT) was interested in obtaining insight into the cause of the diagonal cracking, in 

developing a means to assess the residual capacity of diagonally-cracked bent caps, and 

in refining the strength and serviceability design provisions for bent caps and other deep 

beams.   

In addition, with the advent of strut-and-tie modeling as the preferred method for 

deep beam design in U.S. design specifications within the last decade, TxDOT engineers 

have expressed concerns regarding the implementation of these provisions into their bent 

cap designs.  Currently, the strut-and-tie model design provisions in AASHTO LRFD 

(2008) and ACI 318-08 Appendix A are often unclear and inconsistent.  Also, 

serviceability-related provisions are not available to supplement the strut-and-tie 

modeling procedure.    

Eight objectives related to the diagonal cracking of in-service bent caps and to the 

concerns associated with using strut-and-tie models to design deep beams were addressed 

within TxDOT Project 5253.  The eight objectives are listed as follows: 

(1). Determine the influence of the distribution of stirrups across the width of a 

beam web on the strength and serviceability behavior of a deep beam. 

(2). Determine the influence of singular nodes triaxially confined by concrete 

on the strength and serviceability behavior of a deep beam. 
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(3). Determine an appropriate amount of minimum web reinforcement 

(stirrups and longitudinal side face reinforcement) considering the strength 

and serviceability demand of a deep beam. 

(4). Determine the influence of member depth on the strength and 

serviceability behavior of a deep beam. 

(5). Develop a simple STM design methodology, including node proportioning 

techniques, allowable stresses, and applicable design checks, for the 

design of deep beams. 

(6). Develop a means to reduce the discrepancy between shear strength 

calculated using STMs and sectional shear provisions at an a/d ratio of 2. 

(7). Develop a means to mitigate the formation of diagonal cracks under 

service loads. 

(8). Develop a means to relate the maximum diagonal crack width of a deep 

beam to its residual capacity for field engineers. 

The results of five of the eight objectives of Project 5253 were presented in this 

dissertation.  In Chapter 4, the effect of minimum web reinforcement and of member 

depth on the strength and serviceability performance of deep beams was evaluated 

(objectives 3 and 4).  Appropriate design recommendations were detailed for these tasks 

as well.  In Chapter 5, objectives 6, 7, and 8 were addressed.  Design provisions that 

reduced the discrepancy between the shear strength calculated with STMs and sectional 

shear provisions at an a/d ratio of 2 were provided in Section 5.2.  A service load design 

check was outlined in Section 5.3 that limits the formation of diagonal cracks in service.  

Lastly, a simple chart that correlates the maximum diagonal crack width to the residual 

capacity of diagonally-cracked bent cap was developed in Section 5.4.   The results of the 

other three objectives of Project 5253 (objectives 1, 2, and 5) were presented by 

Tuchscherer (2008).   

To accomplish the aforementioned objectives, an extensive experimental program 

was conducted.  Due to the specific nature of the objectives in this study and to best 

improve the design and performance of actual bent caps, it was necessary to test 
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specimens that were of comparable size to typical bent caps in Texas.  Thirty-seven (37) 

tests were conducted on 19 reinforced concrete beams with the following cross-sectional 

dimensions: 21”x23”, 21”x42”, 21”x44”, 21”x75”, and 36”x48.”  The test specimens 

were among the largest reinforced concrete deep beams in the literature.   

To supplement the experimental program, a database of deep beam test results 

was compiled from the literature.  The database was an expansion of a database originally 

compiled by Brown et al. (2006).  The total number of deep beam test results (shear-

span-to-depth ratio (a/d) ≤ 2.5) in the database was 905 (including 37 from the 5253 

experimental program).  Entries in the database that lacked sufficient information to 

perform a strut-and-tie analysis and that did not meet established cross-sectional size or 

web reinforcement criteria were filtered from the database (Section 2.4).  The final 

database was called the evaluation database and contained 179 deep beam test results (35 

from the 5253 experimental program).  The use of the evaluation database in conjunction 

with the 5253 experimental program enabled each objective to be addressed from broad 

and specific viewpoints.   

6.2 EXAMINATION OF I-45 BENT CAP IN HOUSTON, TEXAS 

Insight into the cause of diagonal cracking in service of several I-45 bent caps in 

Houston, Texas (Figure 2.5) was obtained through the examination of the original design 

of one of the multiple-column bent caps in the interchange.  In Appendix A, the original 

design was examined with strut-and-tie model and sectional shear design provisions from 

AASHTO LRFD (2008), ACI 318-08, and TxDOT Project 5253.  It was found that the 

portion of the structure with an a/d ratio of 2.05 satisfied estimated design loads with 

sectional shear provisions but not with strut-and-tie model provisions.  With the strut-

and-tie model design procedure developed in TxDOT Project 5253 (Section 2.3.4.3), it 

was estimated that the node-to-strut interface at the bearing of the steel box girder was 

under-designed by approximately 36% (Section A.2.3.3).  High ratios of the stirrup 

contribution to shear strength, Vs, to the concrete contribution to shear strength, Vc, were 

required to satisfy the design loads with sectional shear provisions.  The Vs/Vc ratio was 

3.5 and 3.0 according to the sectional shear design procedures in AASHTO LRFD (2008) 
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and ACI 318-08, respectively.  In addition, the first diagonal cracking load of the original 

structure was estimated to be only 88% of the unfactored dead load according to the 

proposed equation in Section 5.3.4 of this dissertation.  These findings largely explain the 

extensive amount of diagonal cracking present in the original structure (Figure 6.1).    

 
Figure 6.1: Diagonal cracks in I-45 bent cap in Houston, Texas 

The results of examining the original design of the I-45 bent cap in Houston, 

Texas are consistent with several findings in this dissertation.  The importance of 

accounting for high stresses in the nodal regions of deep beams with strut-and-tie models 

was illustrated in Section 4.4.2.2 with the analysis of the depth-effect specimens.  Also, 

in Section 5.2.3 and 4.3.3.2, potential problems with using high ratios of Vs/Vc in 

sectional shear design was shown from a strength and serviceability perspective.  In 

Section 5.2.3, it was shown that relying on large amounts of strength from stirrups (high 

Vs/Vc ratio) at a/d ratios near 2 may not be prudent.  Similarly, diagonal crack width data 

presented in Section 4.3.3.2 illustrated that diagonal crack widths increase in service with 

increasing Vs/Vc ratios for specimens with an a/d ratio of 2.5.  Lastly, applying the 

service load design check outlined in Section 5.3.4 suggested that the I-45 bent cap would 

diagonally-crack under dead loads.  In light of several findings presented in this 

dissertation, it is not surprising that the original structure performed poorly in service.  
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6.3 CONCLUSIONS 

The conclusions of the current study are presented in this section. The following 

conclusions are based on information from the literature, data from the experimental 

program, and the analysis of the evaluation database. 

6.3.1 Minimum Web Reinforcement 

The purpose of this task was to recommend an appropriate amount of minimum 

web reinforcement to ensure adequate strength and serviceability performance in deep 

beams.  Numerous tests in the experimental program were used to evaluate the effect of 

the quantity of web reinforcement on the performance of the member.  At an a/d ratio of 

1.85, tests were conducted on beams with a 21”x23”, 21”x42”, 21”x44”, 21”x75”, and 

36”x48” cross-section.  At a/d ratios of 1.2 and 2.5, two tests were conducted on beams 

with a 21”x42” cross-section.  Several different distributions of web reinforcement were 

investigated.  The majority of the test specimens had either 0.2% or 0.3% reinforcement 

in each direction.  Stirrups with 2 and 4 legs were used.  Two tests were conducted on 

specimens without web reinforcement. 

• For beams tested at an a/d ratio of 1.2 and 1.85, providing either 0.2% or 0.3% 

reinforcement did not affect the shear strength of the member.  A specimen 

tested at an a/d ratio of 2.5 with 0.3% reinforcement in each direction failed at a 

substantially higher load than a companion specimen with 0.2% reinforcement.  

The specimens tested at an a/d ratio less than 2 failed in a manner consistent with a 

single-panel, direct-strut mechanism.  Thus, any reinforcement greater than that 

which is required to maintain equilibrium in the bottle-shaped strut is unnecessary for 

strength.  The specimens tested at an a/d ratio of 2.5 generally failed in a manner that 

was consistent with a sectional-shear model, or a multiple-panel STM.  At this a/d 

ratio, increasing the amount of vertical reinforcement increases the shear strength of 

the member. 

• To restrain maximum diagonal crack widths to 0.016 in. at first cracking and at 

estimated service loads, 0.3% reinforcement in each orthogonal direction should 
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be provided and spaced evenly near the side face of the effective strut area.  The 

maximum diagonal crack width of specimens with 0.2% reinforcement in each 

direction often exceeded 0.016 in. at first cracking and at estimated service loads 

(33% of ultimate), whereas those with 0.3% reinforcement satisfied this limit in 

general.  0.3% reinforcement is consistent with the current AASHTO LRFD 

provision (Article 5.6.3.6, 2008) except it is proposed that the amount of 

reinforcement need not be based on the gross concrete section.  A revised definition is 

provided, for adoption into the AASHTO LRFD specifications, in Section 4.3.4. 

6.3.2 Effect of Member Depth 

The purpose of this task was to evaluate the effect of member depth on the 

strength and serviceability performance of reinforced concrete deep beams.  Tests were 

conducted at a/d ratios of 1.2, 1.85, and 2.5 on specimens with 21”x23”, 21”x42”, and 

21”x75” cross-sections and with 0.2% web reinforcement in each direction.  The size of 

the nodal regions was kept as constant as possible for the tests conducted at each a/d 

ratio.  In this way, the effect of changing the depth of a deep beam without proportionally 

changing the size of the nodal regions was assessed.    

• Provided that the bottle-shaped strut is adequately reinforced and the force in 

the tension tie does not control, the strength of deep beams (a/d ≤ 2) is governed 

by the size and stress conditions in the nodal regions, not by the effective depth 

of the member.  The results in this task highlighted the importance of using a strut-

and-tie analysis to design reinforced concrete deep beams in order to explicitly 

address the stress conditions in the nodal regions.  Using section-based approaches to 

design deep beams is unacceptable and inappropriately suggests that a large size 

effect exists.     

• The maximum diagonal crack width at a given percentage of the maximum 

applied load tended to increase as the overall depth of the member increased 

from 23” to 42” but not from 42” to 75”.  The results in this task suggested that 

diagonal crack width data from small specimens should be used with caution in 
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forming recommendations for full-scale structures.  At a depth of 42 in. and greater, it 

appeared that the effect of depth on the width of diagonal cracks is mitigated.   

6.3.3 Discrepancy in Calculated Shear Strength at a/d Ratio of 2 

The objective of this task was to reduce the discrepancy in shear strength 

calculated using the STM and the sectional shear provisions in AASHTO LRFD (2008) 

at an a/d ratio of 2.  It is well known that as the a/d ratio approaches and exceeds 2, the 

dominant shear transfer mechanism transitions from a deep beam mechanism to a 

sectional shear mechanism.  However, the transition in behavior is gradual, not 

immediate; and therefore, a large discrepancy between the shear strength calculated at an 

a/d ratio of 2 according to each design model is not justified.  The level of conservatism 

consistent with the sectional shear provisions in AASHTO LRFD was compared to that 

of the AASHTO LRFD and 5253 STM provisions for specimens in the database with a/d 

ratios up to 2.5.  Also, shear capacity calculated with the 5253 STM provisions was 

compared to capacity calculated with sectional shear provisions in AASHTO LRFD 

(2008) and ACI 318-08 for specimens in the database with a/d ratios between 2 and 2.5.   

• With the use of the 5253 STM provisions and a limit on the ratio of Vs/Vc in 

sectional shear provisions, a reasonably smooth transition exists as the shear 

design model changes at an a/d ratio of 2.  The 5253 STM provisions more 

appropriately account for the reduction in shear strength with increasing a/d ratio than 

the AASHTO LRFD STM provisions.  As a result, excessive conservatism concurrent 

with the use of the AASHTO LRFD STM provisions near an a/d ratio of 2 has been 

largely eliminated.  In terms of calculated design strength, limiting the ratio of Vs/Vc 

to 2 for sectional shear reduces the difference in capacity of the two design models 

near an a/d ratio of 2.      

• Data from the experimental program suggested that a single-panel strut-and-tie 

model is suitable for the design of deep beams with a/d ratios ≤ 2.  The observed 

failure modes of the test specimens and measured strain data from specimens with a/d 

ratios of 1.2, 1.85, and 2.5 suggest that the dominant transfer mechanism for beams 
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with an a/d ratio ≤ 2 is consistent with a single-panel STM.  The use of a multiple-

panel model at an a/d ratio less than 2 is not recommended since it is not consistent 

with the dominant load transfer mechanism and thus, often results in an overly 

conservative estimate of strength.         

6.3.4 Limiting Diagonal Cracking under Service Loads 

The purpose of this task was to assess the feasibility of limiting diagonal cracking 

under service loads.  In addition to providing minimum web reinforcement, it was 

determined that a service-load shear check was a simple way to limit diagonal cracking 

under service loads.  Measured diagonal cracking loads from the experimental program 

and from the database were used to determine the primary variables that affect the 

diagonal cracking load of deep beams.   

• A simple and reasonably conservative equation to estimate the diagonal cracking 

load of deep beams was developed that was a function of the shear area, the 

square root of the compressive strength of concrete, and the a/d ratio.  With this 

equation, the service level shear in the member (full dead load + live load) can be 

checked with the estimated diagonal cracking load.  If the service level shear exceeds 

the estimated diagonal cracking load, the design of the section can be modified.  At 

the very least, this check encourages the designer to consider the likelihood of 

diagonal cracking in service.   

6.3.5 Correlation of Maximum Diagonal Crack Width to Capacity 

The purpose of this task was to develop a means to help field engineers in 

evaluating the residual capacity of a diagonally-cracked bent cap.  On occasion, diagonal 

cracks are discovered in bent caps in service.  Currently, there is little information in the 

literature regarding a method to link the width of diagonal cracks to the amount of 

distress in the member.  Data from the literature and the current experimental program 

were used to identify primary variables that influence the width of diagonal cracks in 

deep beams.  All of the crack width data was from specimens with a minimum overall 

depth of 42 in. 
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• A simple chart was developed to correlate the maximum diagonal crack width in 

a deep beam to the load acting on the member, quantified as a percent of its 

capacity.  The chart applies to beams with an a/d ratio between 1 and 2 and is only a 

function of the amount of web reinforcement in the member.  It was determined that 

the effect of a/d ratio within this range on diagonal crack widths was minimal relative 

to the amount of scatter inherent in diagonal crack width data.  This chart is viewed as 

a simple means to make an informed decision regarding the amount of distress in a 

diagonally-cracked bent cap in the absence of a more sophisticated means of distress 

evaluation. 
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APPENDIX A 
Example Problem 

 

A.1 OVERVIEW 

The following example problem was largely prepared by Tuchscherer (2008).  

Additional discussion regarding topics addressed within this dissertation, such as 

minimum web reinforcement, service load diagonal cracking, and the transition between 

deep beam and sectional shear, were added.  In this example problem, one of several 

multiple-column bent caps that experienced diagonal cracking problems in service 

(Section 2.2 and Figure A.1) was examined.  The cracking was so extensive that a costly 

retrofit project was undertaken in order to strengthen all of the bent caps in the 

interchange.  Based on the load and support conditions, the bent cap contains several 

regions with different a/d ratios.  The two regions that are analyzed within this example 

problem have an a/d ratio of 0.85 and 2.05.  The original design of the member will be 

compared to designs consistent with the STM provisions in Project 5253, ACI 318-08 

Appendix A, and AASHTO LRFD (2008).  For the region with an a/d ratio of 2.05, 

sectional shear provisions will be used to check the capacity of the section as well.  As a 

result, this example can be viewed as multiple examples within one structure in which the 

design of D-regions with relatively low and high a/d ratios can be evaluated.  In addition, 

the capacity calculated with sectional shear provisions and STM provisions can be 

directly compared for the portion of the bent cap with an a/d ratio of 2.05.  Where 

appropriate, serviceability design provisions will be implemented in addition to strength 

checks.  It is interesting to note that the bent cap was originally designed according to 

sectional shear provisions.  Strut-and-tie modeling was not used in the original structural 

design.   
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Max Crack = 0.035 in.  
Figure A.1: I-45 over Greens Road Bent Cap 

The multiple-column bent cap to be investigated is used to support an 86-foot 

wide portion of a 180-foot wide roadway, comprising nine 12-foot wide traffic lanes and 

one 25-foot wide high occupancy vehicle (HOV) lane.  A layout of the bent cap is 

illustrated in Figure A.2.  Cross-sectional details are presented for the two critical regions 

under investigation (a/d equal to 0.85 and 2.05). 
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4’-0” typ.

5’-0” typ.

 

@ 4.25” @ 6”

14 -20 -

5.75”

8.5”

   

Max
Span = 185 ft

fc′ = 5,000 psi
fy = 60,000 psi

 

Figure A.2: Preliminary plan; elevation; and cross-sectional details at critical shear regions.
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As mentioned, this cap exists in the field.  The details of the original cross-section 

at the critical shear regions will be evaluated.  Where necessary, the cross-section will be 

modified to meet the requirements of AASHTO LRFD (2008), ACI 318-08 Appendix A, 

and the Project 5253 provisions.  Afterwards, the cross-sections proportioned to satisfy 

the three sets of STM provisions are compared for both shear regions.   

The design dead and live loads applied to the bent cap from each steel box girder 

are presented as follows.  

Dead Loads 

The dead load includes the weight of the steel box girder, the concrete deck, and 

the self-weight of the bent cap.  For simplicity, the self weight of the bent is distributed to 

the four girder locations in order to easily apply it to a truss model. 

PDL = 792 kip  

Live Loads + Impact 

The live load includes lane load and truck load plus impact.    

PLL = 280 kip  

Service Load 

The load case that is used to examine the amount of service load applied to the 

structure is the SERVICE I load case specified in AASHTO LRFD (2008). 

Ps = 792 kip (DL) + 280 kip (LL + Impact) Ps = 1072 kip 

Factored Load 

Load factors specified by AASHTO LRFD (2008) and ACI 318-08 are slightly 

different. For the purpose of comparison, the Project 5253 methodology will use the same 

load factors as AASHTO LRFD (2008). 

 

AASHTO LRFD: STRENGTH I 

Pu = 1.25·(792 kip) + 1.75·(280 kip) Pu_AASHTO = 1480 kip 

 

ACI 318-08 

Pu = 1.2·(792 kip) + 1.6·(280 kip) Pu_ACI = 1398 kip 
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Resistance Factors 

Resistance factors specified by AASHTO LRFD (2007) and ACI 318-08 are 

slightly different. For the purpose of comparison, the Project 5253 methodology will use 

the same resistance factors as AASHTO LRFD. 

AASHTO LRFD 

Struts and Nodal Regions,   φ = 0.70 

Steel Tie,     φ = 0.90 

 

ACI 318-08 

Struts and Nodal Regions,   φ = 0.75 

Steel Tie,     φ = 0.90 

A.2 DEEP BEAM DESIGN 

This bent example problem has three distinct shear regions.  The first D-region 

has an a/d ratio of 0.85.  This portion is re-designed using strut-and-tie provisions as 

presented in Section A.2.2. The next shear region has an a/d ratio greater than 3.5 and 

would be designed using typical sectional shear provisions. Finally, the third region has 

an a/d ratio of approximately 2.05 (the a/d ratio varies between 1.9 and 2.1 depending 

where the depth is measured). This portion of the beam is considered to be in the 

transition zone where the shear behavior of a beam converts from sectional to deep beam 

shear.  Therefore, this portion of the structure could be designed using either a strut-and-

tie model or typical sectional shear provisions. The STM design for this region is 

presented in Section A.2.3 and the sectional shear design for this region is presented in 

Section A.3. 

When designing a D-region using a strut-and-tie model, the first step is to 

determine the configuration of the truss model and resulting forces in the truss elements. 

A preliminary truss model is determined as follows. 
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A.2.1 Determination of Preliminary Truss Model 

The structure illustrated in Figure A.2 is modeled as a truss with compressive 

struts and tensile ties as presented in Figure A.3. The AASHTO LRFD (2007) factored 

load, Pu_AASHTO, is applied to the structure at each girder support. Only one half of the 

structure is presented; the bent is symmetric about its centerline, therefore, the loading 

and proportions of the other half are identical. 
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1480 kip 1480 kip

1254 742 158 -517 948

-1940 -76
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-744 -158
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STM STMSectional Shear Region

a/d = 0.85 a/d = 2.05

A
B C D E F

G H I J K

856 kip2104 kip

Symmetric 
about CL

Symmetric 
about CL

 
Figure A.3: Strut-and-tie model with AASHTO LRFD (2008) factored loads. 

According to the Project 5253 STM provisions (Section 2.3.4.3), a deep beam 

region can be modeled with a single panel strut provided the a/d ratio is less than 2. 

Similarly, according to ACI 318-08, a single-panel strut may be used provided the angle 

of inclination is greater than 25-degrees; AASHTO LRFD (2008) does not limit a strut’s 

angle of inclination. As a result, both D-regions are shown in Figure A.3 as single 

compression struts.  While the a/d ratio of the interior D-region slightly exceeds 2, it is 

close enough to use either sectional shear or STM provisions. Also, it is necessary to 

model the sectional shear portion of the bent as part of the overall truss in order to 

adequately represent the entire structure. Even though this portion of the structure is 

designed using sectional shear provisions, it is necessary to model the entire bent so that 

the correct quantity of shear is transferred to Strut EK. 

Typically, the top and bottom chords of a STM are positioned based on the 

location of the centroid of the longitudinal reinforcement or the depth of compression 
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zone depending on whether the chord resists tension or compression, respectively. In a 

continuous element, the top and bottom chord resist both tension and compression. For 

the sake of simplicity, both of their locations are based on the centroid of the longitudinal 

reinforcement. For this example problem, the centroid of the longitudinal reinforcement 

is, on average, taken to be 5.75 in below the top surface and 8.5 in above the bottom 

surface.  These dimensions result in heights of the back face of the nodes of 11.5 in. and 

17 in., respectively.   

A.2.2 Shear Region with an a/d Ratio Equal to 0.85 

A close-up of the critical Strut AG and respective nodal zones is presented to 

scale in Figure A.4.  The dimensions of the node-to-strut interfaces (24.6 in. and 41.9 in. 

in Figure A.4) were calculated using the definition provided in Figures 2.14 and 2.15. 

 

1254 kip

24.6”

11.5”

NODE G
(CCC)

NODE A
(CCT)

1480 kip

1940 kip

1940 kip

1254 kip

1480 kip

41.9”

54.4°

22”

39.4”

17”

(49.7°)
per global 
STM

5’
 –

3.
75

”

624 kip  
Figure A.4: Critical strut in region with a/d equal to 0.85 (AASHTO LRFD factored 

loads). 
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The length of Node G is proportioned based on the amount of force that is 

transferred to the near support. As a result, the angle of inclination of Strut AG shown in 

Figure A.4 is slightly different from the angle in the global model shown in Figure A.3 

(54.4 deg. versus 49.7 deg., respectively). If the global truss model were to be updated 

with this new angle, then the forces in the elements would change slightly. However, it is 

common practice to ignore this slight discrepancy. Therefore, the truss elements shown in 

Figure A.4 are designed for the forces presented in Figure A.3. 

In order to design Strut AG, the allowable capacity of each nodal face (i.e. 

bearing face, back face, and strut-to-node interface) must be greater than the force 

applied to the boundary. This procedure is presented for the Project 5253 method, ACI 

318-08, and AASHTO LRFD (2008) provisions in the following sections. 

A.2.2.1 Design of Region with a/d = 0.85: Project 5253 Provisions  

Node A (CCT Node) 

The back face of node A must resist the bond stresses developed by the anchorage 

of the tie. For this type of condition, stresses at the back face of a CCT node are not 

critical. The first step of the Project 5253 method is to determine the triaxial confinement 

factor, m, as illustrated in Figure A.5. 

45 deg
22” x 22”

Bearing Plate
A1

45 deg

45 deg

Top of Bent Section through Bent

A2 is measured on this 
plane

Bearing Plate, A1

2
1

2
1

45”

 
Figure A.5: Determination of Triaxial Confinement Factor 
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Triaxial Confinement Factor:  ( )
( ) 204.2

in22
in45m 2

2

≤==  

BEARING FACE  

Factored Load:  Fu = 1480 kip 

Efficiency:   ν = 0.70 

Concrete Capacity:  fcu = m·ν·fc′ = (2)·(0.7)·(5 ksi) = 7.0 ksi 

φ·Fn = (0.7)·(7.0 ksi)·(22 in.)·(22 in.) 

 = 2372 kip > 1480 kip OK 

STRUT-TO-NODE INTERFACE  

 Factored Load:  Fu = 1940 kip 

 Efficiency:   0.65 ≤ ( )ksi20
ksi585.0 −  ≤ 0.45 = 0.60 

Concrete Capacity:  fcu = m·ν·fc′ = (2)·(0.60)·(5 ksi) = 6.0 ksi 

φ·Fn = (0.7)·(6.0 ksi)·(24.6 in.)·(22 in.) 

 = 2273 kip > 1940 kip OK 

Thus, according to the Project 5253 procedure, the strength of Node A is 

sufficient to resist the applied forces. The capacity of Node G is determined as follows. 

Node G is not triaxially confined, so the confinement factor, m, is equal to one. 

 

Node G (CCC Node) 

Triaxial Confinement Factor:  m = 1.0 

BEARING FACE  

Factored Load:  Fu = 1480 kip 

Efficiency:   ν = 0.85 

Concrete Capacity:  fcu = m·ν·fc′ = (1)·(0.85)·(5 ksi) = 4.3 ksi 

φ·Fn = (0.7)·(4.3 ksi)·(39.4 in.)·(45  in.) 

 = 5337 kip > 1480 kip OK 

BACK FACE  

Factored Load:  Fu = 1254 kip 

Efficiency:   ν = 0.85 
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Concrete Capacity:  fcu = m·ν·fc′ = (1)·(0.85)·(5 ksi) = 4.3 ksi 

φ·Fn = (0.7)·(4.3 ksi)·(17 in.)·(45  in.) 

 = 2303 kip > 1254 kip OK 

STRUT-TO-NODE INTERFACE  

 Factored Load:  Fu = 1940 kip 

 Efficiency:   0.65 ≤ ( )ksi20
ksi585.0 −  ≤ 0.45 = 0.60 

Concrete Capacity:  fcu = m·ν·fc′ = (1)·(0.6)·(5 ksi) = 3.0 ksi 

φ·Fn = (0.7)·(3.0 ksi)·(41.9 in.)·(45 in.) 

 = 3960 kip > 1940 OK 

Thus, according to the Project 5253 procedure, the strength of Node G is 

sufficient to resist the applied forces. The capacity of Tie AB must also be evaluated. 

TIE AB 

Factored Load:  Fu = 1254 kip 

Efficiency:   ν = 1.0 

Tie Capacity:   (1.0)·(60ksi)·(20)·(1.56 in2) = 1872 kip 

φ·Fn = (0.9)·(1872 kip) 

 = 1685 kip > 1254 kip OK 

Thus, the capacity of Tie AB is adequate. Verifying the tie capacity is essentially 

the same procedure for all three provisions. Therefore, this check is not repeated for other 

provisions. 

 

Minimum Transverse Reinforcement 

The original cross-section (a/d = 0.85) had #6 4-legged stirrups at 4¼” and #7 

horizontal bars at approximately 9” for web reinforcement.  The corresponding 

reinforcement ratios in each direction are calculated as follows: 

vw

v
v sb

A
=ρ  → 4·(0.44 in2)/ (45 in·4¼ in) = 0.0092   

hw

h
h sb

A
=ρ  → 2·(0.60 in2)/ (45 in·9 in) = 0.0029   
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The original cross-section practically meets the minimum web reinforcement 

requirements of the Project 5253 provisions (Section 4.3.4).  The amount of stirrups 

exceeds the minimum by a factor of 3.  The quantity of horizontal reinforcement is 

slightly less than the required 0.3%.  If only the minimum amount of web reinforcement 

was provided, the web reinforcement would be as follows:   

1wv sb003.0A ⋅⋅=  → 2·(0.44 in2) = 0.003·(45in)·s1 

    s1 = 6.5in 

2wvh sb003.0A ⋅⋅=  → 2·(0.60 in2) = 0.003·(45in)·s2 

    s2 = 8.9in 

This reinforcement equates to #6 vertical stirrups (2 legs) at 6.5 in. and #7 

horizontal bars at 8.5 in. on center.  The minimum web reinforcement will be shown in 

the cross-section designed with the Project 5253 STM provisions for comparison with the 

cross-sections designed according to the other specifications.  However, it is important to 

note that providing web reinforcement in excess of the minimum (as done in the original 

cross-section) is encouraged, albeit not required.  Additional web reinforcement will 

reduce the width of diagonal cracks (with diminishing returns) and will provide 

additional redistribution capacity to the member.   

A summary of the preceding design is presented in Figure A.7 along with the 

other provisions. Next, Strut AG and respective nodal regions are designed according to 

ACI 318-08. 

A.2.2.2 Design of Region with a/d = 0.85: ACI 318-08 Appendix A 

Check the ACI 318-08, §A.3.3.1 requirement for an adequately reinforced strut 

(discussed in Section 2.3.4.2, Equation 2.11). 

°⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅
+°⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅

⋅
=

⋅
∑ 4.54sin

in6.8in45
in60.026.35sin

in25.4in45
in44.04sin

sb
A 22

i
is

si α  

      = 0.008 > 0.003 OK 

Thus, according to ACI 318-08 §A3.2.2, the strut is adequately reinforced. As a 

result, a higher strut efficiency factor of 0.75 may be used. 
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Refer to Figure A.4 for preliminary strut proportions and applied loads. The ACI 

318-08 load factors are lower than those applied to the STM presented in Figure A.3; as a 

result, the loads shown are multiplied by a factor of 0.945 (i.e. Pu_ACI/Pu_AASHTO = 

1398/1480 = 0.945). 

 

Node A (CCT Node) 

BEARING FACE  

Factored Load:  Fu = 1398 kip 

Efficiency:   β = 0.80 

Concrete Capacity:  fcu = 0.85·β·fc′ = (0.85)·(0.8)·(5 ksi) = 3.4 ksi 

φ·Fn = (0.75)·(3.4 ksi)·(22 in.)·(22 in.) 

 = 1234 kip < 1398 kip NG! 

BACK FACE  

Factored Load:  Fu = 1185 kip 

Efficiency:   β = 0.80 

Concrete Capacity:  fcu = 0.85·β·fc′ = (0.85)·(0.8)·(5 ksi) = 3.4 ksi 

φ·Fn = (0.75)·(3.4 ksi)·(11.5 in.)·(22 in.) 

 = 645 kip < 1185 kip NG! 

STRUT-TO-NODE INTERFACE  

Factored Load:  Fu = 1833 kip 

Efficiency:   β = 0.75 

Concrete Capacity:  fcu=0.85·β·fc′ = (0.85)·(0.75)·(5 ksi) = 3.2 ksi 

φ·Fn = (0.75)·(3.2 ksi)·(24.6 in.)·(22 in.)  

 = 1299 kip < 1833 kip NG! 

Thus, the capacity of Node A does not meet the requirements of ACI 318-08. By 

inspection, Node A is more critical than Node G. The most critical location of Node A is 

its back face. Therefore, the bearing plates and bent must be resized in order to provide 

the back face of Node A with sufficient capacity. 
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Typically, if a designer wishes to increase the capacity of a truss element, the 

simplest way is to increase the size of the bearing plate. However, there are realistic 

limits to the maximum size of a plate that can be provided. For this example, a 30”x30” 

bearing plate is considered to be a reasonable maximum size. It follows that increasing 

the size of the bearing plate to 30”x30” does not sufficiently increase the capacity of Strut 

AG in order for it to meet the requirements of ACI 318-08. 

Based on the ACI 318-08 STM provisions, additional shear capacity can be 

attained by increasing the depth of the bent (increasing strut angle, decreasing a/d ratio); 

increasing the compressive strength of concrete; providing supplementary longitudinal 

reinforcement in order to increase the assumed height of the back face of a CCT node; or 

by a combination of all three of these methods. 

Increasing the compressive strength of concrete can be a very simple way to 

increase the capacity of a structure. However, TxDOT has expressed concern about 

maximum curing temperature in regard to concrete durability. Thus, it is believed to be 

impractical to exceed 5,000 psi compressive strength while complying with the maximum 

temperature limits of the TxDOT 2004 Specifications. Also, for the purpose of 

comparison among different design provisions, the compressive strength of concrete is 

constantly maintained to be 5,000 psi. 

For the purpose of this example problem, additional capacity is acquired by 

increasing the depth of the bent and/or nodal region. Most likely, the solutions 

determined in this example would vary from those selected in a design office given the 

many external factors involved such as: site restrictions, construction costs, and personal 

preferences. Nonetheless, the conclusions formed from comparing the provisions to one 

another will remain valid regardless of differences in optimization preferences. 

 In order for Strut AG (Figure A.4) to meet the requirements of ACI 318-08, its 

overall depth must be increased by 18 in and the depth of the back face of Node A must 

be increased by 2.5 in. As a result, the depth of the global model shown in Figure A.3 is 

increased by 16.75 in. (18” – 2
"5.2 = 16.75”) and the forces in the truss members are 

recalculated accordingly.  Specifically, the force in strut AG reduced due to the increase 
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in depth.  The strut proportions and loads associated with these increases are illustrated in 

Figure A-6. 

NODE A
(CCT)

1398 kip

14” 938 kip

30”

62°

1683 kip

33.1”

938 kip

1398 kip

17”

39.6”

42.9”

1683 kip

(56.2°)

per global 
STM

6’
–

8.
5”

 
Figure A-6. Strut proportions associated with an increase in overall depth of 18 in. and 

increase in back face of Node A of 2.5 in. (ACI 318-08 load factors) 

The capacity of the critical back face of Node A is calculated as follows according 

to ACI 318-08. 

BACK FACE OF NODE A, PER FIGURE A-6 

Factored Load:  Fu = 938 kip 

Efficiency:   β = 0.80 

Concrete Capacity:  fcu = 0.85·β·fc′ = (0.85)·(0.8)·(5 ksi) = 3.4 ksi 

φ·Fn = (0.75)·(3.4 ksi)·(14 in.)·(30 in.) 

 = 1071 kip > 938 kip OK 

Thus, the capacity of the bent illustrated in Figure A-6 meets the requirements of 

ACI 318-08. 
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Minimum Transverse Reinforcement 

ACI 318-08 does not require a minimum amount of transverse reinforcement. 

However, in order to use the higher strut efficiency factor, the following minimum 

amount of reinforcement must be provided: 

003.0sin
sb

A
i

is

si >
⋅

∑ α  

If it is assumed that the vertical and horizontal reinforcement ratios are identical, 

003.062sin28sin >°⋅+°⋅ ρρ  

Thus, 

 ρv = ρvh > 0.0022  

Provide #5 vertical stirrups at 6 in. and #6 horizontal bars at 8.5 in. on center.  

A summary of the preceding ACI 318-08 design is presented in Figure A.7 along 

with the other provisions. Next, Strut AG and respective nodal regions are designed 

according to AASHTO LRFD (2008). 

 

A.2.2.3 Design of Region with a/d = 0.85: AASHTO LRFD 

Refer to Figure A.4 for preliminary strut and nodal proportions, and respective 

applied loads. 

 

Node A (CCT Node) 

BEARING FACE  

Factored Load:  Fu = 1480 kip 

Efficiency:   ν = 0.75 

Concrete Capacity:  fcu = ν·fc′ = (0.75)·(5 ksi) = 3.8 ksi 

φ·Fn = (0.7)·(3.8 ksi)·(22 in.)·(22 in.) 

 = 1287 kip < 1480 kip NG! 

BACK FACE  

Factored Load:  Fu = 1254 kip 

Efficiency:   ν = 0.75 
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Concrete Capacity:  fcu = ν·fc′ = (0.75)·(5 ksi) = 3.8 ksi 

φ·Fn = (0.7)·(3.8 ksi)·(11.5 in.)·(22 in.) 

 = 673 kip < 1254 kip NG! 

STRUT-TO-NODE INTERFACE  

 Factored Load:  Fu = 1940 kip 

Solve set of four equations simultaneously: 

Concrete Efficiency:  85.0
1708.0
1

1
≤

⋅+
=

ε
ν   =  0.76 

 Tensile Strain Term:  °++= 4.54cot)002.0( 2
ss1 εεε   =  0.0030 

Tie Tensile Strain:  ( ) ( )ksi000,29in56.120
4.54cosF

2
n

s ⋅⋅
°⋅

=ε   = 0.0013 

Strength of Nodal Face: Fn= ν·(5 ksi)(24.6 in.)(22 in.) = 2058 kip 

    φ·Fn = (0.7)(2058 kip) 

 = 1441 kip < 1940 kip NG! 

By inspection, Node A is more critical than Node G. The most critical location of 

Node A is its back face. Therefore, the bearing plates and beam are proportioned such 

that Node A meets the requirements of AASHTO LRFD (2008). For the purpose of 

comparison, the nominal capacity of Node A is determined for the same strut proportions 

required by ACI 318-08 (Figure A-6). 

BACK FACE OF NODE A, PER FIGURE A-6 

Factored Load:  Fu = 993 kip 

Efficiency:   ν = 0.75 

Concrete Capacity:  fcu = ν·fc′ = (0.75)·(5 ksi) = 3.8 ksi 

φ·Fn = (0.7)·(3.8 ksi)·(14 in.)·(30 in.) 

 = 1117 kip > 993 kip OK 

Thus, for an a/d ratio of 0.85, the requirements of AASHTO LRFD (2008) are 

similar to ACI 318-08. 
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Minimum Transverse Reinforcement 

AASHTO LRFD requires a vertical and horizontal reinforcement ratio of 0.3% of 

the gross area for the purpose of controlling crack widths. So, based on this requirement, 

provide #6 vertical stirrups at 6.5 in. and eighteen #7 horizontal bars distributed evenly 

across the height of the section (resulting spacing is 5.75 in.).  

A.2.2.4 Comparison of Design Provisions for Shear Region with a/d = 0.85 

A comparison between the results obtained from the three design methodologies 

for the D-region with an a/d ratio equal to 0.85 (Figure A.2, Cross-Section A) is 

presented in Figure A.7. 
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#6 Stirrup
@ 6.5” o.c.

22” x 22” PL22” x 22” PL
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–
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M
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.

#11 Long. Bar

#6 Stirrup
@ 4.25” o.c.

#7 Horz. Bar
@ 8.5”

#11 Long. Bar

Original Cross Section

22” x 22” PL22” x 22” PL

Proposed Method

3’-9” 3’-9”  

#11 Long. Bar

#5 Stirrup
@ 6” o.c.

#6 Horz. Bar
@ 8.5”

#11 Long. Bar

30” x 30” PL30” x 30” PL

8’
–

0”
M

ax
.

#6 Stirrup
@ 6.5” o.c.

30” x 30” PL30” x 30” PL

ACI 318-08 AASHTO LRFD

#7 Horz. Bar
@ 5.75”

3’-9” 3’-9”  
       Increase Plate to 30”; Height by 18”; Depth of Node by 2.5” 

 

Ratio of Capacity over Applied Load, 
φVn Vu

Ratio of Capacity over Applied Load, 
φVn Vu

φVn Vu

 
 

Proposed = 1.17
ACI 318 = 0.54
AASHTO = 0.54

Proposed = 1.17
ACI 318 = 0.54
AASHTO = 0.54   

ACI 318 = 1.14
Proposed = 1.86
AASHTO = 1.12

AASHTO = 1.12
Proposed = 1.86
ACI 318 = 1.14  

Figure A.7: Comparison of required cross-section per the Project 5253 method, ACI 318-08, and AASHTO LRFD: a/d 

ratio = 0.85. 
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Based on a comparison of the three provisions, the following observations can be 

made: 

The Project 5253 method results in a much higher nominal capacity than those 

obtained by using the ACI 318-08 and AASHTO LRFD (2008) provisions. As a result, 

the required cross-section is significantly smaller. This is primarily attributed to the fact 

that the Project 5253 provisions recognize that the back face check is overly conservative 

when the applied stress is attributed to bond of anchored reinforcement. The capacity of 

the structure as determined by the ACI 318-08 and AASHTO LRFD (2008) provisions is 

controlled by the capacity at the back face of the CCT node. According to the Project 

5253 provisions, provided the tie is properly anchored behind the node, the stress check 

at this nodal face is not critical. 

Also, the smaller bearing plate (22”x22”) did not adversely affect the nominal 

capacity of the structure according to the Project 5253 provisions due to triaxial 

confinement. Alternatively, the ACI 318-08 and AASHTO LRFD (2008) provisions do 

not consider the increase provided by triaxial confinement, so the bearing plate 

dimensions had to be increased to the maximum possible size (i.e. 30”x30”). 

Finally, the minimum amount of transverse reinforcement required by the Project 

5253 method, ACI 318-08 and the AASHTO LRFD (2008) specifications is significantly 

less than the amount contained in the existing bent.  However, the fact that the structure 

contains an amount in excess of the minimum is not a deficiency.  On the contrary, 

additional transverse reinforcement will provide for narrower crack widths and better 

distribution of cracks upon diagonal cracking with some diminishing returns.  

Next, the service load diagonal cracking check is performed on the region of the 

bent cap with an a/d ratio of 0.85.   

A.2.2.5 Serviceability Behavior for Region with a/d = 0.85 

By comparing the amount of shear due to service loads to the cracking strength of 

concrete, it is possible to estimate the likelihood that the structure will crack under 

service loads. The shear due to service loads for the portion of the bent with an a/d ratio 

of 0.85 is as follows: 
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 Vsrv = 1072 kip 

As presented in Section 5.3.4, for an a/d ratio of 0.85, the shear at which the first 

diagonal crack will form can estimated as the following: 

( )( )inindbfdaV wccr 5.6945500095.3')/35.6( =⋅⋅−=  = 874 kip 

As a result, with the original cross-section, it is likely that diagonal cracks will 

form under the application of the full service loads.  Specifically, the first diagonal crack 

is expected to form under the full DL and 29-percent of the LL (792 + 0.29*280 = 874 

kips).  To reduce the likelihood of diagonal cracking under full service loads, the size of 

the cross-section can be increased (increasing ‘d’ will also reduce the a/d ratio) or a 

higher strength concrete can be specified.  Minor diagonal cracking (single, narrow 

crack) was detected in this region of the actual structure.  

A.2.3 Shear Region with an a/d Ratio Equal to 2.05 

In this section, the nominal capacity determined by the Project 5253 provisions is 

investigated for the portion of the bent with an a/d ratio equal to 2.05.  Since the a/d ratio 

for this portion of the structure slightly exceeds 2, a sectional analysis would be 

recommended according to ACI 318-08 and AASTHO LRFD 2007.  However, as shown 

in Section 5.2, the transition between deep beam and sectional beam behavior is gradual.  

Thus, a STM analysis at this a/d ratio should be performed and compared with a sectional 

analysis.  A close-up of the critical strut proportions and respective nodal zones is 

presented to scale in Figure A-8. Note, the vertical reactions are slightly different from 

one another due to the inclined tie at Node K. 
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Figure A-8. Critical strut in region with a/d = 2.05. 

The length of Nodes E and K are proportioned based on the amount of force that 

is transferred to the near support. As a result, the angle of inclination of the strut is 

slightly changed from the global model shown in Figure A.3. However, forces from the 

global model are not updated to account for the slight change in strut angle. This method 

is consistent with standard design practice. 

Nodes E and K are classified as CCT nodes because of the presence of a 

horizontal tie to the right of Node E and to the left of Node K. Tensile stresses in the tie 

must be developed in the nodal region to some degree. However, the stress condition at 

the back face of Nodes E and K is more complicated because of the compressive force 

that is applied from an additional strut framing into each node. These compressive 

stresses are not attributed to the bond stress of an anchored tie.  Therefore, they must be 

applied to the back face; and the nodes must be designed accordingly.  

In order to design this portion of the structure, the allowable capacity of each 

nodal face (i.e. bearing face, back face, and strut-to-node interface) must be greater than 
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the applied force. This procedure is presented for the Project 5253 method, ACI 318-08 

and the AASHTO LRFD (2008) provisions for Nodes E and K as follows. 

A.2.3.1 Design of Region with a/d Ratio Equal to 2.05: Project 5253 Method 

Node E (CCT Node) 

Triaxial Confinement Factor:  ( )
( ) 204.2

in22
in45m 2

2

≤==  

BEARING FACE  

Factored Load:  924 kip 

Efficiency:   ν = 0.70 

Concrete Capacity:  fcu = m·ν·fc′ = (2)·(0.7)·(5 ksi) = 7.0 ksi 

φ·Fn = (0.7)·(7.0 ksi)·(13.7 in.)·(22 in.) 

 = 1477 kip > 924 kip OK 

STRUT-TO-NODE INTERFACE  

 Factored Load:  2108 kip 

 Efficiency:   0.65 ≤ ( )ksi20
ksi585.0 −  ≤ 0.45 = 0.60 

Concrete Capacity:  fcu = m·ν·fc′ = (2)·(0.60)·(5 ksi) = 6.0 ksi 

φ·Fn = (0.7)·(6.0 ksi)·(16.8 in.)·(22 in.) 

 = 1552 kip < 2108 kip NG! 

BACK FACE 

 Factored Load:  947 kip 

 Efficiency:   ν = 0.70 

Concrete Capacity:  fcu = mνfc´ = (2)(0.70)(5 ksi) = 7.0 ksi 

φFn = (0.7)(7.0 ksi)(11.5 in.)(22 in.) 

= 1240 kip > 947 kip OK 

Node K (CCT Node) 

Triaxial Confinement Factor:  m = 1.0 

BEARING FACE  

Factored Load:  857 kip 
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Efficiency:   ν = 0.70 

Concrete Capacity:  fcu = m·ν·fc′ = (1)·(0.70)·(5 ksi) = 3.5 ksi 

φ·Fn = (0.7)·(3.5 ksi)·(28 in.)·(45  in.) 

 = 3087 kip > 857 kip OK 

STRUT-TO-NODE INTERFACE  

 Factored Load:  2108 kip 

 Efficiency:   0.65 ≤ ( )ksi20
ksi585.0 −  ≤ 0.45 = 0.60 

Concrete Capacity:  fcu = m·ν·fc′ = (1)·(0.6)·(5 ksi) = 3.0 ksi 

φ·Fn = (0.7)·(3.0 ksi)·(28.6 in.)·(45 in.) 

 = 2703 kip > 2108 OK 

BACK FACE 

 Factored Load:  948 kip 

 Efficiency:   ν = 0.70 

Concrete Capacity:  fcu = mνfc´ = (1)(0.70)(5 ksi) = 3.5 ksi 

φFn = (0.7)(3.5 ksi)(17 in.)(45 in.) 

= 1874 kip > 948 kip OK 

Tie EF 

Factored Load:  Fu = 948 kip 

Efficiency:   ν = 1.0 

Tie Capacity:   (1.0)·(60ksi)·(14)·(1.56 in2) = 1310 kip 

φ·Fn = (0.9)·(1310 kip) 

 = 1179 kip > 948 kip OK 

Thus, according to the Project 5253 procedure, the stress check at the strut-to-

node interface at Node E is not satisfied.  To increase the capacity, the beam width and 

the size of the bearing pad can be increased.  Also, the depth of the member can be 

increased which will decrease the force in the inclined strut.  All three of these options 

were used.  The size of the bearing plate was increased to 30”x30.”  This was considered 

to be a reasonable maximum for the size of the bearing plate.  Also, the beam width and 

beam depth were increased by 6 in.  With these changes, the node-to-strut interface at 
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Node E has sufficient capacity.  The updated strut proportions and forces are illustrated in 

Figure A-9. 
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Figure A-9: Strut proportions and forces associated with a 6-inch increase in depth of 

bent. 

NODE E STRUT-TO-NODE INTERFACE, PER FIGURE A-9 

 Factored Load:  1954 kip 

 Confinement Factor:  ( )
( ) 7.1

in30
in51m 2

2

==  

Efficiency:   0.65 ≤ ( )ksi20
ksi585.0 −  ≤ 0.45 = 0.60 

Concrete Capacity:  fcu = m·ν·fc′ = (1.7)·(0.60)·(5 ksi) = 5.1 ksi 

φ·Fn = (0.7)·(5.1 ksi)·(19.6 in.)·(30 in.) 

 = 2099 kip > 1954 kip OK 

Thus, the capacity of strut illustrated in Figure A-9 meets the requirements of the 

Project 5253 method. 
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Minimum Transverse Reinforcement 

As shown in the previous section, the size of the original cross-section (a/d = 

2.05) was not sufficient according to the Project 5253 STM provisions.  The minimum 

reinforcement required to ensure the satisfactory serviceability performance of the new 

section would be as follows:   

1wv sb003.0A ⋅⋅=  → 2·(0.44 in2) = 0.003·(51in)·s1 

    s1 = 5.75in 

2wvh sb003.0A ⋅⋅=  → 2·(0.60 in2) = 0.003·(51in)·s2 

    s2 = 7.8in 

This reinforcement equates to #6 vertical stirrups at 5.5 in. and #7 horizontal bars 

at 7.5 in. on center. The reinforcement should be distributed as shown in Section 4.3.4.   

A summary of the preceding design is presented in Figure A.12 along with the 

other provisions. Next, Strut EK and respective nodal regions are designed according to 

ACI 318-08. 

 

A.2.3.2 Design of Region with a/d Ratio Equal to 2.05: ACI 318-08 Appendix A 

Refer to Figure A-8 for preliminary forces, strut, and nodal dimensions. By 

inspection, Node E is the most critical nodal zone. Therefore, the design of Strut EK is 

based on the design of Node E. Recall, that the ACI 318-08 load factors are less than 

those presented in Figure A-8. Therefore, all of the load values are multiplied by a factor 

of 0.945 (i.e. Pu_ACI/Pu_AASHTO = 1398/1480 = 0.945). 

Node E (CCT Node) 

BEARING FACE  

Factored Load:  Fu = 873 kip 

Efficiency:   β = 0.80 

Concrete Capacity:  fcu = 0.85·β·fc′ = (0.85)·(0.8)·(5 ksi) = 3.4 ksi 

φ·Fn = (0.75)·(3.4 ksi)·(13.7 in.)·(22 in.) 

 = 769 kip < 739 kip NG! 
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BACK FACE  

Factored Load:  Fu = 895 kip + 896 kip = 1791 kip 

Efficiency:   β = 0.80 

Concrete Capacity:  fcu = 0.85·β·fc′ = (0.85)·(0.8)·(5 ksi) = 3.4 ksi 

φ·Fn = (0.75)·(3.4 ksi)·(11.5 in.)·(22 in.) 

 = 645 kip < 1791 kip NG! 

STRUT-TO-NODE INTERFACE  

 Factored Load:  Fu =1992 kip 

 Efficiency:   β = 0.75 

Concrete Capacity:  fcu =0.85·β·fc′ =(0.85)·(0.75)·(5 ksi) = 3.2 ksi 

φ·Fn = (0.75)·(3.2 ksi)·(16.8 in.)·(22 in.) 

 = 887 kip < 1992 kip NG! 

According to ACI 318-08, the back face of Node E is the most critical location. In 

order to properly design this region, the bent is proportioned such that the back face of 

Node E has adequate capacity. In addition to providing the maximum 30-inch bearing 

plate, the depth of the bent must be increased by 25 in. and the depth of the back face of 

Node E must be increased by 6 in. The width of the beam was not increased because 

triaxial confinement is not permitted in the ACI 318-08 specifications.  Since the bearing 

plate is still less than the width of the member, an increase in beam width does not 

increase the width of the nodes.  Strut proportions and forces associated with these 

changes are illustrated in Figure A.10. 
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Figure A.10: Strut proportions and forces associated with a 25-inch increase in bent 

height and 6-inch increase in depth of Node E (ACI 318 factored loads) 

BACK FACE OF NODE E: PER FIGURE A.10 

Factored Load:  Fu = 739 kip + 592 kip = 1331 kip 

Efficiency:   β = 0.80 

Concrete Capacity:  fcu = 0.85·β·fc′ = (0.85)·(0.8)·(5 ksi) = 3.4 ksi 

φ·Fn = (0.75)·(3.4 ksi)·(17.5 in.)·(30 in.) 

 = 1339 kip > 1331 kip OK 

Thus, the capacity of the bent illustrated in Figure A.10 meets the requirements of 

ACI 318-08. 

Minimum Transverse Reinforcement 

ACI 318-08 does not stipulate a minimum amount of transverse reinforcement. 

However, in order to use the higher strut efficiency factor, the following minimum 

amount of reinforcement must be provided: 
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003.0sin
sb

A
i

is

si >
⋅

∑ α  

If it is assumed that the vertical and horizontal reinforcement ratios are identical, 

003.052sin38sin >°⋅+°⋅ ρρ  

Thus, 

ρv = ρvh > 0.0021  

Provide #5 vertical stirrups at 6 in. and #6 horizontal bars at 8.5 in. on center.  

A summary of the preceding ACI 318-08 results is presented in Figure A.12 along 

with the other provisions. Next, Strut EK and respective nodal regions are designed 

according to AASHTO LRFD. 

 

A.2.3.3 Design of Region with a/d Ratio Equal to 2.05: AASHTO LRFD 

Refer to Figure A-8 for preliminary forces, strut and nodal proportions. By 

inspection, Node E is the most critical nodal zone. Therefore, design of Strut EK is based 

on the design of Node E. 

Node E (CCT Node) 

BEARING FACE  

Factored Load:  Fu = 924 kip 

Efficiency:   ν = 0.75 

Concrete Capacity:  fcu = ν·fc′ = (0.75)·(5 ksi) = 3.8 ksi 

φ·Fn = (0.7)·(3.8 ksi)·(13.7 in.)·(22 in.) 

 = 802 kip < 924 kip NG! 

BACK FACE  

Factored Load:  Fu = 947 kip + 948 kip = 1895 kip 

Efficiency:   ν = 0.75 

Concrete Capacity:  fcu = ν·fc′ = (0.75)·(5 ksi) = 3.8 ksi 

φ·Fn = (0.7)·(3.8 ksi)·(11.5 in.)·(22 in.) 

 = 673 kip < 1895 kip NG! 

STRUT-TO-NODE INTERFACE  
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 Factored Load:  Fu = 2108 kip 

Solve set of four equations simultaneously: 

Concrete Efficiency:  85.0
1708.0
1

1

≤
⋅−

=
ε

ν   =  0.39 

 Tensile Strain Term:  °++= 5.29cot)002.0( 2
ss1 εεε  =  0.0103 

Tie Tensile Strain:  ( ) ( )ksi000,29in8.21
5.29cosF

2
n

s ⋅
°⋅

=ε   = 0.0010 

Strength of Nodal Face: Fn= ν·(5 ksi)(16.3 in.)(22 in.) =  705 kip 

    φ·Fn = (0.7)(705 kip) 

      = 722 kip < 2108 kip NG! 

The strut-to-node interface at Node E is the most critical location. Therefore, the 

size of the bent is increased in order to provide Node E with adequate capacity. As a 

preliminary check, evaluate whether or not the bent dimensions required per ACI 318-08 

(Figure A.10) meet the requirements of AASHTO LRFD (2008). Recall, the loads 

illustrated in Figure A.10 are ACI 318-08 factored loads. AASHTO LRFD (2008) load 

factors are slightly higher, so the loads are multiplied by a factor of 1.059 (i.e. 

Pu_AASHTO/Pu_ACI = 1480/1398 = 1.059). 

NODE E STRUT-TO-NODE INTERFACE, PER FIGURE A.10 

 Factored Load:  Fu = 1683 kip 

Solve set of four equations simultaneously: 

Concrete Efficiency:  85.0
1708.0
1

1

≤
⋅−

=
ε

ν   =  0.46 

 Tensile Strain Term:  °++= 5.37cot)002.0( 2
ss1 εεε  =  0.0080 

Tie Tensile Strain:  ( ) ( )ksi000,29in1.28
5.37cosF

2
n

s ⋅
°⋅

=ε   = 0.0017 

Strength of Nodal Face: Fn= ν·(5 ksi)(25.4 in.)(30 in.) = 1761 kip 

    φ·Fn = (0.7)(1761 kip) 

      = 1233 kip < 1683 kip NG! 
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In order for the bent to meet the requirements of AASHTO LRFD, the bent depth 

must be increased by 35 in. and the depth of Node E must be increased by 10.5 in. from 

the original cross-section. The width of the beam was not increased because triaxial 

confinement is not permitted in the AASHTO LRFD STM specifications.  Since the 

bearing plate (30”) is still less than the width of the member (45”), an increase in beam 

width does not increase the width of the nodes.  Strut proportions associated with this 

increase and applied loads are illustrated in Figure A.11. 

759 kip537 kip 17”
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924 kip

22”22”

18.7”

1592 kip

1592 kip

28”
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(CCT)

28.9”28.9”

31.0”31.0”

per global 
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7’
–

9.
5”

759 kip

 
Figure A.11: Strut proportions and forces associated with a 35-inch increase in bent 

depth and 10.5-inch increase in depth of Node E (AASHTO LRFD factored loads). 

NODE E STRUT-TO-NODE INTERFACE, PER FIGURE A.11 

 Factored Load:  1592 kip 

Solve set of four equations simultaneously: 
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Concrete Efficiency:  85.0
1708.0
1

1

≤
⋅−

=
ε

ν   =  0.53 

 Tensile Strain Term:  °++= 0.40cot)002.0( 2
ss1 εεε  =  0.0064 

Tie Tensile Strain:  ( ) ( )ksi000,29in6.40
0.40cosF

2
n

s ⋅
°⋅

=ε   = 0.0015 

Strength of Nodal Face: Fn= ν·(5 ksi)(28.9 in.)(30 in.) =  2287 kip 

    φ·Fn = (0.7)(2287 kip) 

      = 1601 kip > 1592 kip OK 

Thus, the capacity of the bent illustrated in Figure A.11 meets the requirements of 

AASHTO LRFD (2007). 

 

Minimum Transverse Reinforcement 

AASHTO LRFD requires a vertical and horizontal reinforcement ratio of 0.3% of 

the gross area for the purpose of controlling cracking. So, based on this requirement, 

provide #6 vertical stirrups at 6.5 in. and twenty #8 horizontal bars distributed evenly 

across the height of the section (resulting in a spacing of 7 in.).  

A summary of the preceding AASHTO LRFD results is presented along with the 

other provisions in the following section. 

A.2.3.4 Comparison of Design Provisions for Shear Region with a/d = 2.05 

A comparison between the results obtained from the three design methodologies 

(i.e. Project 5253 method, ACI 318-08, and AASHTO LRFD) for the portion of the bent 

with an a/d ratio equal to 2.05 (Figure A.2, Cross-Section B) is presented in Figure A.12. 
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 Increase plate to 30” Increase plate to 30”  Increase plate by 30” 
 Increase height by 6” Increase height by 25”  Increase height by 35” 
 Increase width by 6” Increase node depth by 4.5” Increase node depth by 10.5” 

 

Ratio of Capacity over Applied Load, 
φVn Vu

Ratio of Capacity over Applied Load, 
φVn Vu

φVn Vu

 
 

   

Proposed = 0.74
ACI 318 = 0.36
AASHTO = 0.34      

Proposed = 1.07
ACI 318 = 0.51
AASHTO = 0.50    

ACI 318 = 1.09
Proposed = 1.62
AASHTO = 0.80   

AASHTO = 1.01
Proposed = 1.94
ACI 318 = 1.29  

 
Figure A.12: Comparison of required cross-section per the Project 5253 method, ACI 318-08, and AASHTO LRFD (2007): 

a/d ratio = 2.05. 
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Based on a comparison of the three provisions, the following observations can be 

made: 

The Project 5253 method results in a much higher capacity than the ACI 318-08 

and AASHTO LRFD (2008) provisions. As a result, the cross-section required by the 

Project 5253 procedure is significantly smaller. One reason for the difference can be 

attributed to the fact that the Project 5253 procedure considers the increase in concrete 

compressive strength provided by triaxial confinement of the bearing plate. Neither the 

ACI 318-08 nor the AASHTO LRFD (2008) provisions consider the beneficial effects of 

triaxial confinement. In addition, according to the AASHTO LRFD (2008) provisions, 

the efficiency of the node-to-strut interface decreases as the shear span-to-depth ratio 

increases. It follows that excessively conservative results can be expected when using 

AASHTO LRFD (2008) for D-regions with an a/d ratio in the range of two.  Despite the 

differences in the results of the three methods, they are similar in the fact that the results 

suggest that the dimensions of the original cross-section are inadequate to resist the 

application of the factored loads.  This finding agrees with the extensive amount of 

diagonal cracking present in the actual structure in service. 

Since this portion of the bent has an a/d ratio slightly greater than 2.0, the capacity 

of this region may be determined according to sectional shear provisions. The sectional 

shear strength of this region is determined according to ACI 318-08 and AASHTO LRFD 

(2008). A discussion on the implications of using a sectional analysis rather than a deep 

beam analysis is presented in Section A.3.   

It is also of interest to examine the ratio of service load to diagonal cracking 

strength applied to this portion of the bent.  The service load diagonal cracking check is 

performed on the region of the bent cap with an a/d ratio of 2.05 in the next section.   

A.2.3.5 Serviceability Behavior for Region with a/d = 2.05 

By comparing the amount of service shear to the diagonal cracking strength of 

concrete, it is possible to estimate the likelihood that the structure will crack while in 

service. The shear force due to service loads for the portion of the bent with an a/d ratio 

of 2.05 is as follows: 
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Vsrv = (856 kip)·(1072kip/1480kip) = 620 kip 

According to Section 5.3.4, for an a/d ratio of 2.05, the shear at which the first 

diagonal crack will form with the original section dimensions can be estimated as the 

following: 

( )( )in63in4550002db'f2V wccr =⋅⋅=  = 401 kip 

The cracking capacity of this portion of the structure is less than the full service 

level loading. As a result, it is expected that diagonal cracks will exist under full service 

loads.  In fact, diagonal cracks are expected to form under the application of 65% of the 

service-level loading (i.e. 401/620 = 0.65) or 88% of the DL (i.e. (856/1480)*792 = 458 

kips DL; 401/458 = 0.88).  In the actual structure, a number of parallel, diagonal cracks 

existed in this portion of the structure (a/d = 2.05).  The significant amount of cracking 

agrees with the above calculation regarding the expectancy of the member to crack under 

only 88% of the DL. 

In order to prevent cracking from occurring under the application of service loads, 

bent dimensions or the compressive strength of concrete must be increased such that Vcr 

≥ Vsrv.  For the section satisfying the Project 5253 STM provisions, the diagonal cracking 

load can be estimated as:  

( )( )inindbfV wccr 695150002'2 =⋅⋅=  = 498 kip 

The cracking capacity of this portion of the structure is less than the full service 

level loading.  However, diagonal cracks are not expected to form until the full dead load 

and approximately 25-percent of the live load is on the structure (i.e. 498-458 = 40 kips 

of LL; 40/(856/1480*280) = 0.25).  To further reduce the likelihood of diagonal cracking 

under service, the design of the cross-section can be altered as before.  

A.3 SECTIONAL SHEAR DESIGN 

The purpose of calculating the sectional shear capacity for the portion of the beam 

with an a/d ratio of 2.05 (Figure A.2, Section B) is to compare the results to those 

determined from a strut-and-tie model. The discrepancy in the shear capacity at an a/d 
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ratio near 2 determined by deep beam and sectional shear provisions is a topic of interest 

to the current project. 

The ACI 318-08 and AASHTO LRFD (2008) provisions require that a designer 

use deep beam provisions for structures with a shear span-to-depth ratio less than or equal 

to two. For structures whose a/d ratio is near two, it is logical to expect that the capacity 

determined from a strut-and-tie model to be similar to that determined from a sectional 

model. In other words, the calculated capacity of a member should not significantly vary 

for an a/d ratio of 2.1 or 1.9. However, the difference in the allowable shear capacity 

according to sectional shear or a STM is often quite drastic (Section 5.2). 

A.3.1 Shear Region with a/d Ratio Equal to 2.05 

Refer to Figure A.3 for the critical shear force in Section A. The AASHTO LRFD 

(2008) factored shear is 856-kip; the ACI 318-08 factored shear is 809-kip. The ACI 318-

08 and AASHTO LRFD (2008) reduction factors for sectional shear are 0.75 and 0.9, 

respectively. The nominal shear capacity according to ACI 318-08 and AASHTO LRFD 

(2008) is presented as follows. 

A.3.1.1 ACI 318-08 §11.1, Shear Strength 

Factored Load:  Vu = 809 kip 

Sectional Capacity:  Vn = Vc + Vs 

Where, 

( ) ( )in63in45psi50002db'f2V wcc ⋅⋅=⋅⋅=   = 401 kip 

( ) ( ) ( )
in5.5

in63ksi60in44.04
s

dfAV
2

vv
s

⋅⋅⋅=⋅⋅=  = 1210 kip 

 φVn = (0.75)·(1611 kip)= 1208 kip > 809 kip OK 

According to ACI 318-08, the strength of the bent is adequate. However, recall 

that according to the STM design previously presented, the depth of the bent had to be 

considerably increased in order to meet the requirements of ACI 318-08 Appendix A. 

The degree of discontinuity between sectional shear and STM provisions is discussed in 
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Section A.3.2. Next, the sectional shear capacity according to the AASHTO LRFD 

(2008) provisions is presented.  

A.3.1.2 AASHTO LRFD§5.8.3, Sectional Design Model (General Procedure) 

Factored Load:  Vu = 856 kip 

Sectional Capacity:  Vn = Vc + Vs 

Where, 

vvcc db'f0316.0V β=  

θtans
dfAV vyv

s ⋅=  

and, 

β = factor indicating the ability of diagonally cracked concrete to 

transmit tension and shear.  

According to AASHTO LRFD (2008), the factor, β, is determined based on the 

longitudinal strain, shear stress, spacing and inclination of cracking across the web. For 

non-prestressed beams, sufficiently reinforced, the factor, β, may be determined 

according to Equation A.1: 

( )s
s 7501

8.4
ε

β
+

=  (A.1) 

And the angle of inclination of the cracking, θ, is determined according to 

Equation A.2: 

θ = 29 + 3500εs (A.2) 

Where the longitudinal strain, εs, in the web is determined according to Equation 

A.3. 

( )ss

uu
v

u

s AE2

cotV5.0N5.0
d
M

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

=

θ
ε  (A.3) 

Where, 

Mu  =  Factored moment at critical section, kip-in. 
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Vu  = Factored shear at critical section, kip 

Nu =  Factor axial force at critical section, kip 

θ = Angle of inclination of diagonal cracking, radian 

dv = distance between longitudinal top and bottom reinforcement, in. 

Es = Modulus of elasticity of steel reinforcement 

As = Area of flexural tension reinforcement, in2  

Based on a linear analysis of the multiple-column bent, the factored moment at 

the critical section is 51,750-kip·inches and the factored shear force is 856-kip. The 

longitudinal strain and angle of inclination terms are simultaneously calculated as 

follows: 

( )

( )2s in1.28ksi000,292

4.32cotkip8565.0kip05.0
in57

inkip750,51

⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
°++

⋅

=ε  = 0.00097 

θ = 29 + 3500·(0.00097)     = 32.4º 

Thus, 

( )00097.07501
8.4

s ⋅+
=β      = 2.78 

Therefore, the nominal shear capacity can be calculated as follows: 

( )( ).in57.in45ksi57.20316.0Vc ⋅⋅=    = 489 kip 

( ) ( ) ( )
( ) °

⋅⋅= 4.32tan.in5.5
in57ksi60in44.04V

2

s   = 1724 kip 

 

φVn = (0.90)·(2214 kip)= 1992 kip > 856 kip OK 

 
According to AASHTO LRFD (2008), the strength of the bent is adequate. Yet, 

recall that the depth of the bent had to be considerably increased in order to meet the 

requirements of the strut-and-tie provisions of AASHTO LRFD (2008). The discontinuity 

between sectional shear and deep beam provisions is discussed in the following section. 
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A.3.2 Comparison of Deep Beam and Sectional Shear Provisions 

The capacity of the bent at Section B (Figure A.2) has been determined according 

to the Project 5253, ACI 318-08 Appendix A, and AASHTO LRFD (2008) STM 

provisions; and the ACI 318-08 and AASHTO LRFD (2008) section-based provisions. A 

comparison between the results of these analyses is presented in Table A.1. 

Table A.1. Shear Capacity of Original Cross-Section B (a/d = 2.05) 

Design 
Procedure 

Capacity / Factored 
Load 

cV
sV

 
Ratio 

STMV
SectionalV

n

n

φ
φ

 STM, 

u

n

V
V⋅φ

 

Sectional, 

u

n

V
V⋅φ

 

Project 5253 0.74 1.49† 3.0 2.01 

ACI 318 0.36 1.49 3.0 4.14 
AASHTO LRFD 0.34 2.33 3.5 6.85 

† ACI 318-08 sectional shear capacity 
The information presented in Table A.1 illustrates the relative discontinuity in 

nominal capacity as determined by sectional shear and deep beam provisions. This 

phenomenon is especially apparent for a structure with an a/d ratio equal to 2.05. As an 

example, according to the AASHTO LRFD (2008) sectional shear provisions, the 

capacity of the structure under investigation is estimated to be 6.85 times greater than the 

capacity as determined per the deep beam provisions. The implication of such a 

discrepancy is that a bent over nine feet deep is required per AASHTO LRFD (2008) for 

an a/d ratio less than 2 (Figure A.12), yet a 6.5-foot deep bent is sufficient if the a/d ratio 

is slightly greater than 2. 

The Project 5253 strut-and-tie modeling procedure addresses this discontinuity to 

a large extent.  The ratio of the capacity according to a sectional shear model and that of 

the Project 5253 STM provisions is 2.01.  That is, the sectional shear strength is 2.01 

times the STM strength.  While this amount of discrepancy is still large, it is a substantial 

improvement relative to the factors of 4.14 and 6.85 that result with the use of the STM 

provisions in ACI 318-08 and AASHTO LRFD (2008), respectively (Table A.1).   
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The discrepancy is increased by the large ratio of Vs/Vc as calculated in sectional 

shear.  As noted in Section 5.2.3, the Vs/Vc ratio should be limited to a value of 2 to help 

reduce the discrepancy between sectional shear and deep beam shear capacity.  For the 

AASHTO LRFD (2008) and the ACI 318-08 sectional shear provisions, the ratio of Vs/Vc 

was 3.5 and 3.0, respectively.  It is not recommended to account for such a large 

percentage of shear capacity through stirrup contribution for members with an a/d ratio of 

2.  Also, additional STM capacity can be obtained without increasing the sectional shear 

strength by increasing the size of the nodal regions.   

Completely eliminating the discrepancy between shear strength calculated with 

sectional shear and STM provisions is unlikely.  The design models are completely 

different and a function of many variables.  However, it was shown through this example 

and in Section 5.2 that with the use of the Project 5253 STM provisions, the discrepancy 

is largely reduced relative to the STM provisions in AASHTO LRFD (2008) and ACI 

318-08.  Also, limiting the Vs/Vc ratio to a value of 2 may help reduce the discrepancy in 

shear strength at an a/d ratio of 2.     

A.4 SUMMARY 

In this section, a multiple-column bent cap was evaluated.  Several findings of 

Project 5253 were specifically implemented in the re-design or analysis of the structure.  

First and foremost, the Project 5253 STM provisions were used to check the capacity of 

the original cross-section.  While the shear span with an a/d ratio of 0.85 was found to be 

satisfactory from a strength point of view, the shear span with an a/d ratio of 2.05 was 

not.  Using the Project 5253 STM provisions, it was determined that one of the node-to-

strut interfaces was overstressed by approximately 36% (2108/1552).  It was determined 

that an increase in width of 6 in. and an increase in the bearing plate dimensions were 

necessary to increase the design strength.  These parameters are directly related to node 

size and thus, directly affect deep beam strength (Tuchscherer, 2008).  Also, the depth of 

the section was increased by 6 in.  While it was shown that an increase in depth does not 

directly increase the strength of a deep beam (Section 4.4), it can in the case of fixed span 
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lengths by increasing the strut angle (decreasing the a/d ratio) and thus, reducing the 

force in the strut.     

When the original bent cap was checked with the STM provisions in AASHTO 

LRFD (2008) and ACI 318-08 Appendix A, it was found to be too small.  In fact, the use 

of the AASHTO LRFD (2008) and ACI 318-08 provisions recommended substantially 

larger cross-sections (Figure A.7 and Figure A.12).  From a strength standpoint, it is 

unlikely that such a dramatic change is warranted.  The reason for the amount of 

inefficiency in the designs according to AASHTO LRFD (2008) and ACI 318-08 was the 

treatment of bond stresses that require checking at the back face of CCT nodes and the 

lack of consideration of triaxial confinement.   

To limit the width of diagonal cracks at service loads, minimum reinforcement 

can be provided.  In addition, a simple serviceability check may be used to reduce the 

likelihood of diagonal cracking under service loads. In the example problem, it was 

shown that the recommended minimum reinforcement was actually less than that 

provided in the original cross-section.  When practical, providing additional 

reinforcement in excess of the minimum is satisfactory and will reduce the width of 

diagonal cracks (with some diminishing returns) should they form.  When service load 

shear checks were performed on the original cross-section, it was found that the member 

was expected to crack under service loads.  For the span with an a/d ratio of 0.85, the 

load at first diagonal cracking was estimated to occur under full service load and 

approximately 29-percent of the live-load.  For the span with an a/d ratio of 2.05, the load 

at first diagonal cracking was estimated to occur at only 88-percent of the dead load.  

From this check, it is clear that the original section was expected to crack in service.  The 

amount of distress present in the bent cap in service (Figure A.1) seems to be fairly 

consistent with the level of distress implied by this serviceability check.  After 

performing these checks on the sections proposed with the Project 5253 STM provisions, 

it was found that diagonal cracking was expected to occur under full dead loads and 

approximately 25-percent of the live load for both shear spans.  Depending on the 

situation, this may not be satisfactory from a serviceability perspective.  The designer has 
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the option to increase the size of the section and specify higher concrete strength to 

reduce the risk of diagonal cracking in service.  

Since one portion of the structure was loaded at an a/d ratio of 2.05, it can be 

designed with a sectional shear model.  In the example problem, it was illustrated that 

due to the unnecessary conservatism of the STM provisions in ACI 318-08 and AASHTO 

LRFD (2008) and the relatively high ratios of Vs/Vc, there was a large discrepancy 

between the sectional capacity and the STM capacity according to these provisions.  

When the capacity according to the Project 5253 STM provisions was compared to the 

sectional shear capacity, a more reasonable discrepancy was observed.  This discrepancy 

can likely be further reduced by limiting the Vs/Vc ratio to a value of 2.   

In short, the example problem presented in this section was a unique case study in 

which several of the findings of the Project 5253 could be applied directly.  It is believed 

that the results of this example problem further support the recommendations of TxDOT 

Project 5253. 
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APPENDIX B.     

Evaluation Database 

 

B.1 OVERVIEW 
The following details are presented in Table 0.1 for the 179 specimens in the 

evaluation database: 

b  = beam width, in. 

h  =  beam height, in. 

d  =  distance form extreme compression fiber to centroid of tensile 

reinforcement, in. 

fc′  = compressive strength of concrete at the time of testing, psi. 

  Note: if the compressive strength was measured based on the test of a 

standard 100 or 150-mm cube, then it was converted to the equivalent 6-

inch cylinder strength according to fib (1999). 

fy  = yield strength of tensile reinforcement, ksi. 

fyv  = yield strength of vertical transverse reinforcement, ksi. 

ρl  = ratio of longitudinal tensile reinforcement to effective area, db
As

⋅  

ρl′  = ratio of long. compression reinforcement to effective area, db
'As
⋅  

ρv  = ratio of vertical transverse reinforcement to effective area, 
1

v
sb

A
⋅  

ρh  = ratio of horizontal transverse reinforcement to effective area, 
2

vh
sb

A
⋅  

s  = spacing of vertical stirrups, in. 

Load Plate  = dimensions of the load bearing plate measured in the 

longitudinal and transverse direction (l x w), in. 

Support Plate  = dimensions of the support bearing plate measured in the 

longitudinal and transverse direction (l x w), in. 
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a/d ratio  = shear span-to-depth ratio 

Vtest  = maximum shear carried in test region, including the estimated 

self weight of the specimen, kips 

Vcrack  = shear in test region at first diagonal cracking, including the 

estimated self weight of the specimen, kips 
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Table 0.1: Evaluation Database (1 of 10) 

Beam I.D. b 
in. 

h 
in. 

d 
in. 

f′c 
psi 

fy 
ksi 

fyv 
ksi ρl′ ρl ρv ρh s 

in. 

Load 
Plate 
l x w 
in. 

Suppor
t Plate 
l x w 
in. 

a/d 
ratio 

Vtest 
kips 

Vcrack 
kips 

Current Study (2008) 
M-03-4-CCC2436 36 48 40 4100 67 61 0.0043 0.0293 0.0031 0.0030 11 24x36 16x36 1.85 1128.3 354.0 
M-09-4-CCC2436 36 48 40 4100 67 61 0.0043 0.0293 0.0086 0.0030 4 24x36 16x36 1.85 1426.0 - 
M-02-4-CCC2436 36 48 40 2800 65 63 0.0043 0.0293 0.0022 0.0022 10 24x36 16x36 1.85 1102.0 256.0 
M-03-4-CCC0812 36 48 40 3000 65 63 0.0043 0.0293 0.0031 0.0030 11 8x12 16x36 1.85 930.0 - 
M-03-2-CCC2436 36 48 40 4900 68 62 0.0022 0.0293 0.0031 0.0027 11 24x36 16x36 1.85 1096 - 
I-03-2 21 44 38.5 5240 73 67 0.0116 0.0229 0.0029 0.0033 6.5 20x21 16x21 1.84 569.2 144.0 
I-03-4 21 44 38.5 5330 73 73 0.0116 0.0229 0.0030 0.0033 7 20x21 16x21 1.84 657.4 - 
I-02-2 21 44 38.5 3950 73 67 0.0116 0.0229 0.0020 0.0020 9.5 20x21 16x21 1.84 453.7 121.0 
I-02-4 21 44 38.5 4160 73 73 0.0116 0.0229 0.0021 0.0020 10 20x21 16x21 1.84 528.1 - 
II-03-CCC2021 21 42 38.6 3290 64 65 0.0115 0.0231 0.0031 0.0045 9.5 20x21 10x21 1.84 499.5 139.0 
II-03-CCC1007 21 42 38.6 3480 64 65 0.0115 0.0231 0.0031 0.0045 9.5 10x7 10x21 1.84 477.4 - 
II-03-CCT1021 21 42 38.6 4410 66 71 0.0115 0.0231 0.0031 0.0045 9.5 36x21 10x21 1.84 635.4 - 
II-03-CCT0507 21 42 38.6 4210 66 71 0.0115 0.0231 0.0031 0.0045 9.5 36x21 5x7 1.84 597.4 146.0 
II-02-CCT0507 21 42 38.6 3120 69 64 0.0115 0.0231 0.0020 0.0019 15 36x21 5x7 1.84 401.4 94.0 
II-02-CCC1007 21 42 38.6 3140 69 64 0.0115 0.0231 0.0020 0.0019 15 10x7 10x21 1.84 334.8 - 
II-02-CCC1021 21 42 38.6 4620 69 67 0.0115 0.0231 0.0020 0.0019 15 10x21 10x21 1.84 329.0 132.0 
II-02-CCT0521 21 42 38.6 4740 69 67 0.0115 0.0231 0.0020 0.0019 15 20x21 5x21 1.84 567.4 - 
III-1.85-02 21 42 38.6 4100 66 64 0.0115 0.0231 0.0020 0.0019 14.5 20x21 16x21 1.84 487.8 112.0 
III-1.85-025 21 42 38.6 4100 66 64 0.0115 0.0231 0.0024 0.0014 12 20x21 16x21 1.84 515.6 - 
III-1.85-03 21 42 38.6 4990 69 64 0.0115 0.0231 0.0029 0.0029 10 20x21 16x21 1.84 412.3 137.0 
III-1.85-01 21 42 38.6 5010 69 63 0.0115 0.0231 0.0010 0.0014 18 20x21 16x21 1.84 272.6 - 
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Table 0.1: Evaluation Database (2 of 10) 

Beam I.D. b 
in. 

h 
in. 

d 
in. 

f′c 
psi 

fy 
ksi 

fyv 
ksi ρl′ ρl ρv ρh s 

in. 

Load 
Plate 
l x w 
in. 

Suppor
t Plate 
l x w 
in. 

a/d 
ratio 

Vtest 
kips 

Vcrack 
kips 

Current Study (2008), continued… 
III-1.85-03b 21 42 38.6 3300 69 62 0.0115 0.0231 0.0031 0.0029 6 20x21 16x21 1.84 471.1 114.0 
III-1.85-02b 21 42 38.6 3300 69 62 0.0115 0.0231 0.0020 0.0018 9.5 20x21 16x21 1.84 467.6 - 
III-1.2-02 21 42 38.6 4100 66 60 0.0115 0.0231 0.0020 0.0018 9.5 20x21 16x21 1.84 846.5 165.0 
III-1.2-03 21 42 38.6 4220 66 68 0.0115 0.0231 0.0031 0.0029 9.5 20x21 16x21 1.84 829.2 - 
III-2.5-02 21 42 38.6 4630 66 62 0.0115 0.0231 0.0020 0.0018 9.5 20x21 16x21 1.84 298.3 105.0 
III-2.5-03 21 42 38.6 5030 66 65 0.0115 0.0231 0.0031 0.0029 9.5 20x21 16x21 1.84 516.0 - 
IV-2175-1.85-02 21 74.5 68.9 4930 68 66 0.0129 0.0237 0.0020 0.0018 9.5 29x21 16x21 1.85 762.7 216.0 
IV-2175-1.85-03 21 74.5 68.9 4930 68 66 0.0129 0.0237 0.0031 0.0029 9.5 29x21 16x21 1.85 842.4 218.0 
IV-2175-2.5-02 21 74.5 68.9 5010 68 64 0.0129 0.0237 0.0021 0.0021 14.3 24x21 16x21 2.50 509.9 144.0 
IV-2175-1.2-02 21 74.5 68.9 5010 68 64 0.0129 0.0237 0.0021 0.0021 14.3 24x21 16x21 1.2 1222.8 262.0 
IV-2123-1.85-03 21 22.5 19.5 4160 66 66 0.0232 0.0232 0.0030 0.0030 6.3 16.5x21 16x21 1.85 328.5 60.0 
IV-2123-1.85-02 21 22.5 19.5 4220 66 81 0.0232 0.0232 0.0020 0.0017 5.3 16.5x21 16x21 1.85 347.0 65.0 
IV-2123-2.5-02 21 22.5 19.5 4570 65 58 0.0232 0.0232 0.0020 0.0017 5.3 15.5x21 16x21 2.50 160.7 51.0 
IV-2123-1.2-02 21 22.5 19.5 4630 65 58 0.0232 0.0232 0.0020 0.0017 5.3 18x21 16x21 1.20 591.6 124.0 

Rogowsky, MacGregor, and Ong (1986) 
1/1.0N 7.9 39.4 37.4 3785 55 83 0.0000 0.0094 0.0015 0.0000 7.4 11.8x7.9 7.9x7.9 1.05 136.3 79.7 
2/1.0N 7.9 39.4 37.4 3887 55 83 0.0003 0.0094 0.0015 0.0006 7.4 11.8x7.9 7.9x7.9 1.05 169.6 113.4 
2/1.5N 7.9 23.6 21.1 6150 66 83 0.0005 0.0112 0.0019 0.0011 5.9 11.8x7.9 7.9x7.9 1.87 78.8 62.4 
2/2.0N 7.9 19.7 17.9 6266 66 83 0.0006 0.0088 0.0014 0.0012 7.9 7.9x7.9 7.9x7.9 2.20 46.3 27.5 
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Table 0.1: Evaluation Database (3 of 10) 

Beam I.D. b 
in. 

h 
in. 

d 
in. 

f′c 
psi 

fy 
ksi 

fyv 
ksi ρl′ ρl ρv ρh s 

in. 

Load 
Plate 
l x w 
in. 

Support 
Plate 
l x w 
in. 

a/d 
ratio 

Vtest 
kips 

Vcrack 
kips 

Brown, Sankovich, Bayrak, Jirsa, Breen, and Wood (2006) 
I-CL-8.5-0 6 30 27 2584 68 73 0.0195 0.0014 0.0043 0.0000 8.5 6x6 6x6 1.11 79.9 41.9 
I-2C-8.5-0 6 30 27 3208 68 73 0.0195 0.0014 0.0043 0.0000 8.5 12x6 6x6 1.67 121.6 55.4 
II-N-F-5.8-3 18 18 16 2880 68 73 0.0219 0.0008 0.0041 0.0000 3 10x18 6x18 1.69 180.8 51.2 

Moody, Viest, Elstner, and Hognestad (1954) 
III-30 7 24 21 3680 44 47 0.0425 0.0213 0.0052 0.0000 6 8x7 8x7 1.52 108.1 25.6 
III-31 7 24 21 3250 44 44 0.0425 0.0213 0.0095 0.0000 6 8x7 8x7 1.52 114.6 25.6 

Oh and Shin (2001) 
N42A2 5.1 22.1 19.7 3440 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 0.85 64.1 13.2 
N42B2 5.1 22.1 19.7 3440 60 60 0.0156 0.0022 0.0022 0.0043 8.7 7.1x5.1 5.1x5.1 0.85 84.9 28.1 
N42C2 5.1 22.1 19.7 3440 60 60 0.0156 0.0022 0.0034 0.0043 5.7 7.1x5.1 5.1x5.1 0.85 80.6 27.2 
H41A2(1) 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 0.50 160.3 55.9 
H41B2 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0022 0.0043 8.7 7.1x5.1 5.1x5.1 0.50 158.7 48.1 
H41C2 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0034 0.0043 5.7 7.1x5.1 5.1x5.1 0.50 159.3 45.4 
H42A2(1) 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 0.85 109.9 45.4 
H42B2(1) 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0022 0.0043 8.7 7.1x5.1 5.1x5.1 0.85 102.7 47.4 
H42C2(1) 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0034 0.0043 5.7 7.1x5.1 5.1x5.1 0.85 94.7 26.8 
H43A2(1) 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 1.25 78.2 28.2 
H43B2 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0022 0.0043 8.7 7.1x5.1 5.1x5.1 1.25 85.8 38.4 
H43C2 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0034 0.0043 5.7 7.1x5.1 5.1x5.1 1.25 90.6 30.0 
H45A2 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 2.00 47.6 17.1 
H45B2 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0022 0.0043 8.7 7.1x5.1 5.1x5.1 2.00 53.6 23.7 
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Table 0.1: Evaluation Database (4 of 10) 

Beam 
I.D. 

b 
in. 

h 
in. 

d 
in. 

f′c 
psi 

fy 
ksi 

fyv 
ksi ρl′ ρl ρv ρh s 

in. 

Load 
Plate 
l x w 
in. 

Support 
Plate 
l x w 
in. 

a/d 
ratio 

Vtest 
kips 

Vcrack 
kips 

Oh and Shin (2001), continued… 
H45C2 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0034 0.0043 5.7 7.1x5.1 5.1x5.1 2.00 53.1 32.4 
N33A2 5.1 22.1 19.7 3440 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 1.25 51.5 21.3 
N43A2 5.1 22.1 19.7 3440 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 1.25 57.5 24.2 
N53A2 5.1 22.1 19.7 3440 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 1.25 46.9 15.3 
H31A2 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 0.50 167.6 50.1 
H32A2 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 0.85 119.1 39.6 
H33A2 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 1.25 85.0 34.6 
H51A2 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 0.50 157.9 45.1 
H52A2 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 0.85 127.8 39.2 
H53A2 5.1 22.1 19.7 7121 60 60 0.0156 0.0022 0.0012 0.0043 16 7.1x5.1 5.1x5.1 1.25 81.8 28.3 

Foster and Gilbert (1998)  
B1.2-3 4.9 47.2 44.2 11603 58 62 0.0134 0.0017 0.0067 0.0028 3 9.8x4.9 9.8x4.9 0.76 292.9 - 
B2.0-1 4.9 27.6 24.6 12038 58 62 0.0241 0.0030 0.0067 0.0037 3 9.8x4.9 9.8x4.9 1.32 179.0 - 
B2.0-2 4.9 27.6 24.6 17404 58 62 0.0241 0.0030 0.0067 0.0037 3 9.8x4.9 9.8x4.9 1.32 185.8 - 
B2.0-3 4.9 27.6 24.6 11313 58 62 0.0241 0.0030 0.0067 0.0037 3 9.8x4.9 9.8x4.9 1.32 157.7 - 
B2.0A-4 4.9 27.6 24.6 12473 58 62 0.0241 0.0030 0.0067 0.0037 3 3.9x4.9 9.8x4.9 0.88 213.9 - 
B2.0C-6 4.9 27.6 24.6 13489 58 62 0.0241 0.0030 0.0100 0.0000 2 9.8x4.9 9.8x4.9 1.32 164.4 - 
B2.0D-7 4.9 27.6 24.6 15084 58 62 0.0241 0.0030 0.0067 0.0000 3 9.8x4.9 9.8x4.9 1.32 162.2 - 
B3.0-1 4.9 27.6 24.6 11603 58 62 0.0241 0.0030 0.0067 0.0037 3 9.8x4.9 9.8x4.9 1.88 115.2 - 
B3.0-2 4.9 27.6 24.6 17404 58 62 0.0241 0.0030 0.0067 0.0037 3 9.8x4.9 9.8x4.9 1.88 118.5 - 
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Table 0.1: Evaluation Database (5 of 10) 

Beam 
I.D. 

b 
in. 

h 
in. 

d 
in. 

f′c 
psi 

fy 
ksi 

fyv 
ksi ρl′ ρl ρv ρh s 

in. 

Load 
Plate 
l x w 
in. 

Support 
Plate 
l x w 
in. 

a/d 
ratio 

Vtest 
kips 

Vcrack 
kips 

Foster and Gilbert (1998), continued…  
B3.0-3 4.9 27.6 24.6 11168 58 62 0.0241 0.0030 0.0067 0.0037 3 9.8x4.9 9.8x4.9 1.88 118.5 - 
B3.0A-4 4.9 27.6 24.6 12763 58 62 0.0241 0.0030 0.0067 0.0037 3 3.9x4.9 9.8x4.9 1.28 174.7 - 
Clark (1951) 
A1-1 8 18 15.3 3575 47 48 0.0310 0.0018 0.0038 0.0000 7.2 3.5x8 3.5x8 2.35 50.4 - 
A1-2 8 18 15.3 3430 47 48 0.0310 0.0018 0.0038 0.0000 7.2 3.5x8 3.5x8 2.35 47.4 - 
A1-3 8 18 15.3 3395 47 48 0.0310 0.0018 0.0038 0.0000 7.2 3.5x8 3.5x8 2.35 50.4 - 
A1-4 8 18 15.3 3590 47 48 0.0310 0.0018 0.0038 0.0000 7.2 3.5x8 3.5x8 2.35 55.4 - 
B1-1 8 18 15.3 3388 47 48 0.0310 0.0018 0.0037 0.0000 7.5 3.5x8 3.5x8 1.96 63.1 - 
B1-2 8 18 15.3 3680 47 48 0.0310 0.0018 0.0037 0.0000 7.5 3.5x8 3.5x8 1.96 58.1 - 
B1-3 8 18 15.3 3435 47 48 0.0310 0.0018 0.0037 0.0000 7.5 3.5x8 3.5x8 1.96 64.4 - 
B1-4 8 18 15.3 3380 47 48 0.0310 0.0018 0.0037 0.0000 7.5 3.5x8 3.5x8 1.96 60.7 - 
B1-5 8 18 15.3 3570 47 48 0.0310 0.0018 0.0037 0.0000 7.5 3.5x8 3.5x8 1.96 54.7 - 
B2-1 8 18 15.3 3370 47 48 0.0310 0.0018 0.0073 0.0000 3.8 3.5x8 3.5x8 1.96 68.1 - 
B2-2 8 18 15.3 3820 47 48 0.0310 0.0018 0.0073 0.0000 3.8 3.5x8 3.5x8 1.96 72.8 - 
B2-3 8 18 15.3 3615 47 48 0.0310 0.0018 0.0073 0.0000 3.8 3.5x8 3.5x8 1.96 75.7 - 
B6-1 8 18 15.3 6110 47 48 0.0310 0.0018 0.0037 0.0000 7.5 3.5x8 3.5x8 1.96 85.7 - 
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Table 0.1: Evaluation Database (6 of 10) 

Beam 
I.D. 

b 
in. 

h 
in. 

d 
in. 

f′c 
psi 

fy 
ksi 

fyv 
ksi ρl′ ρl ρv ρh s 

in. 

Load 
Plate 
l x w 
in. 

Support 
Plate 
l x w 
in. 

a/d 
ratio 

Vtest 
kips 

Vcrack
kips 

Clark (1951) continued… 
C1-1 8 18 15.3 3720 47 48 0.0207 0.0018 0.0034 0.0000 8 3.5x8 3.5x8 1.57 62.8 - 
C1-2 8 18 15.3 3820 47 48 0.0207 0.0018 0.0034 0.0000 8 3.5x8 3.5x8 1.57 70.3 - 
C1-3 8 18 15.3 3475 47 48 0.0207 0.0018 0.0034 0.0000 8 3.5x8 3.5x8 1.57 55.7 - 
C1-4 8 18 15.3 4210 47 48 0.0207 0.0018 0.0034 0.0000 8 3.5x8 3.5x8 1.57 64.7 - 
C2-1 8 18 15.3 3430 47 48 0.0207 0.0018 0.0069 0.0000 4 3.5x8 3.5x8 1.57 65.6 - 
C2-2 8 18 15.3 3625 47 48 0.0207 0.0018 0.0069 0.0000 4 3.5x8 3.5x8 1.57 68.1 - 
C2-3 8 18 15.3 3500 47 48 0.0207 0.0018 0.0069 0.0000 4 3.5x8 3.5x8 1.57 73.2 - 
C2-4 8 18 15.3 3910 47 48 0.0207 0.0018 0.0069 0.0000 4 3.5x8 3.5x8 1.57 65.2 - 
C3-1 8 18 15.3 2040 47 48 0.0207 0.0018 0.0034 0.0000 8 3.5x8 3.5x8 1.57 50.7 - 
C3-2 8 18 15.3 2000 47 48 0.0207 0.0018 0.0034 0.0000 8 3.5x8 3.5x8 1.57 45.4 - 
C3-3 8 18 15.3 2020 47 48 0.0207 0.0018 0.0034 0.0000 8 3.5x8 3.5x8 1.57 42.7 - 
C4-1 8 18 15.3 3550 47 48 0.0310 0.0018 0.0034 0.0000 8 3.5x8 3.5x8 1.57 69.9 - 
C6-2 8 18 15.3 6560 47 48 0.0310 0.0018 0.0034 0.0000 8 3.5x8 3.5x8 1.57 95.7 - 
C6-3 8 18 15.3 6480 47 48 0.0310 0.0018 0.0034 0.0000 8 3.5x8 3.5x8 1.57 98.2 - 
C6-4 8 18 15.3 6900 47 48 0.0310 0.0018 0.0034 0.0000 8 3.5x8 3.5x8 1.57 96.7 - 
D1-1 8 18 15.5 3800 49 48 0.0163 0.0018 0.0046 0.0000 6 3.5x8 3.5x8 1.16 68.1 - 
D1-2 8 18 15.5 3790 49 48 0.0163 0.0018 0.0046 0.0000 6 3.5x8 3.5x8 1.16 80.6 - 
D1-3 8 18 15.5 3560 49 48 0.0163 0.0018 0.0046 0.0000 6 3.5x8 3.5x8 1.16 58.1 - 
D2-1 8 18 15.5 3480 49 48 0.0163 0.0018 0.0061 0.0000 4.5 3.5x8 3.5x8 1.16 65.6 - 
D2-2 8 18 15.5 3755 49 48 0.0163 0.0018 0.0061 0.0000 4.5 3.5x8 3.5x8 1.16 70.6 - 
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Table 0.1: Evaluation Database (7 of 10) 

Beam 
I.D. 

b 
in. 

h 
in. 

d 
in. 

f′c 
psi 

fy 
ksi 

fyv 
ksi ρl′ ρl ρv ρh s 

in. 

Load 
Plate 
l x w 
in. 

Support 
Plate 
l x w 
in. 

a/d 
ratio 

Vtest 
kips 

Vcrack 
kips 

Clark (1951) continued… 
D2-3 8 18 15.5 3595 49 48 0.0163 0.0018 0.0061 0.0000 4.5 3.5x8 3.5x8 1.16 75.6 - 
D2-4 8 18 15.5 3550 49 48 0.0163 0.0018 0.0061 0.0000 4.5 3.5x8 3.5x8 1.16 75.7 - 
D3-1 8 18 15.5 4090 49 48 0.0244 0.0018 0.0092 0.0000 3 3.5x8 3.5x8 1.16 89.2 - 
D4-1 8 18 15.5 3350 49 48 0.0163 0.0018 0.0122 0.0000 2.3 3.5x8 3.5x8 1.16 70.6 - 

Alcocer and Uribe (2008) 
MR 13.8 47 43.3 5134 65 62 0.0158 0.0079 0.0053 0.0029 6 15.8x13.8 15.8x13.8 1.27 363.4 58.8 
MT 13.8 47 43.3 5076 65 62 0.0158 0.0079 0.0053 0.029 6 15.8x13.8 15.8x13.8 1.27 358.3 64.6 

Tanimura and Sato (2005) 
2A 11.8 17.7 15.8 3365 66 54 0.0214 0.0033 0.0021 0.0000 3.9 3.9x11.8 3.9x11.8 0.50 184.9 - 
3A 11.8 17.7 15.8 3365 66 56 0.0214 0.0033 0.0048 0.0000 3.9 3.9x11.8 3.9x11.8 0.50 187.6 - 
4A 11.8 17.7 15.8 3365 66 53 0.0214 0.0033 0.0084 0.0000 3.9 3.9x11.8 3.9x11.8 0.50 195.7 - 
6A 11.8 17.7 15.8 4206 66 54 0.0214 0.0033 0.0021 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 164.7 - 
7A 11.8 17.7 15.8 4206 66 56 0.0214 0.0033 0.0048 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 169.0 - 
8A 11.8 17.7 15.8 4206 66 53 0.0214 0.0033 0.0084 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 181.1 - 
11A 11.8 17.7 15.8 3336 66 56 0.0214 0.0033 0.0048 0.0000 3.9 3.9x11.8 3.9x11.8 1.50 110.9 - 
12A 11.8 17.7 15.8 3408 66 53 0.0214 0.0033 0.0084 0.0000 3.9 3.9x11.8 3.9x11.8 1.50 128.6 - 
14B 11.8 17.7 15.8 4641 66 54 0.0214 0.0000 0.0021 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 169.2 - 
15B 11.8 17.7 15.8 4641 66 56 0.0214 0.0000 0.0048 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 174.4 - 
16B 11.8 17.7 15.8 4641 66 53 0.0214 0.0000 0.0084 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 191.3 - 
17C 11.8 17.7 15.8 4540 66 54 0.0214 0.0033 0.0021 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 128.5 - 
18C 11.8 17.7 15.8 4569 66 56 0.0214 0.0033 0.0048 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 174.2 - 
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Table 0.1: Evaluation Database (8 of 10) 

Beam 
I.D. 

b 
in. 

h 
in. 

d 
in. 

f′c 
psi 

fy 
ksi 

fyv 
ksi ρl′ ρl ρv ρh s 

in. 

Load 
Plate 
l x w 
in. 

Support 
Plate 
l x w 
in. 

a/d 
ratio 

Vtest 
kips 

Vcrack
kips 

Tanimura and Sato (2005), continued 
19C 11.8 17.7 15.8 4612 66 53 0.0214 0.0033 0.0084 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 170.4 - 
20D 11.8 17.7 15.8 3524 102 138 0.0214 0.0033 0.0048 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 149.9 - 
21D 11.8 17.7 15.8 3902 102 152 0.0214 0.0033 0.0084 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 149.0 - 
22D 11.8 17.7 15.8 3800 102 138 0.0214 0.0033 0.0048 0.0000 3.9 3.9x11.8 3.9x11.8 1.50 121.2 - 
23D 11.8 17.7 15.8 3814 102 152 0.0214 0.0033 0.0084 0.0000 3.9 3.9x11.8 3.9x11.8 1.50 127.7 - 
28A 11.8 17.7 15.8 3698 66 56 0.0214 0.0033 0.0048 0.0000 3.9 3.9x11.8 3.9x11.8 0.75 145.8 - 
29A 11.8 17.7 15.8 3800 66 53 0.0214 0.0033 0.0084 0.0000 3.9 3.9x11.8 3.9x11.8 0.75 150.0 - 
30A 11.8 17.7 15.8 3829 66 56 0.0214 0.0033 0.0088 0.0000 5.9 3.9x11.8 3.9x11.8 0.75 157.9 - 
31A 11.8 17.7 15.8 3858 102 56 0.0214 0.0033 0.0048 0.0000 3.9 3.9x11.8 3.9x11.8 2.00 94.1 - 
32A 11.8 17.7 15.8 3974 102 53 0.0214 0.0033 0.0084 0.0000 3.9 3.9x11.8 3.9x11.8 2.00 99.5 - 
33A 11.8 17.7 15.8 3582 66 56 0.0214 0.0033 0.0095 0.0000 2.0 3.9x11.8 3.9x11.8 1.00 145.9 - 
34A 11.8 17.7 15.8 3597 66 54 0.0214 0.0033 0.0095 0.0000 7.9 3.9x11.8 3.9x11.8 1.00 134.8 - 
36E 11.8 17.7 15.8 3553 193 56 0.0042 0.0033 0.0048 0.0000 3.9 3.9x11.8 3.9x11.8 0.50 121.5 - 
37E 11.8 17.7 15.8 3742 193 53 0.0042 0.0033 0.0084 0.0000 3.9 3.9x11.8 3.9x11.8 0.50 124.8 - 
39E 11.8 17.7 15.8 3684 193 56 0.0042 0.0033 0.0048 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 106.1 - 
40E 11.8 17.7 15.8 3756 193 53 0.0042 0.0033 0.0084 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 106.1 - 
41A 11.8 17.7 15.8 2988 109 56 0.0214 0.0033 0.0048 0.0000 3.9 3.9x11.8 3.9x11.8 2.50 73.5 - 
42A 11.8 17.7 15.8 3104 109 53 0.0214 0.0033 0.0084 0.0000 3.9 3.9x11.8 3.9x11.8 2.50 85.2 - 
46F 11.8 17.7 15.8 14141 109 139 0.0214 0.0033 0.0021 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 279.8 - 
47F 11.8 17.7 15.8 13967 109 138 0.0214 0.0033 0.0048 0.0000 3.9 3.9x11.8 3.9x11.8 1.00 292.7 - 
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Table 0.1: Evaluation Database (9 of 10) 

Beam 
I.D. 

b 
in. 

h 
in. 

d 
in. 

f′c 
psi 

fy 
ksi 

fyv 
ksi ρl′ ρl ρv ρh s 

in. 

Load 
Plate 
l x w 
in. 

Support 
Plate 
l x w 
in. 

a/d 
ratio 

Vtest 
kips 

Vcrack 
kips 

Tanimura and Sato (2005), continued… 
48F 11.8 17.7 15.8 13706 109 139 0.0214 0.0033 0.0021 0.000 3.9 3.9x11.8 3.9x11.8 1.50 210.0 - 
49F 11.8 17.7 15.8 13663 109 138 0.0214 0.0033 0.0048 0.000 3.9 3.9x11.8 3.9x11.8 1.50 220.8 - 
L6 7.9 41.3 39.4 4525 147 56 0.002 0.004 0.0029 0.000 9.8 5.9x7.9 5.9x7.9 1.00 150.7 - 
L7 15.8 80.7 78.7 4424 147 54 0.0005 0.004 0.0029 0.000 19.7 11.8x15.8 11.8x15.8 1.00 589.9 - 

Matsuo, Lertsrisakulrat, Yanagawa, and Niwa (2002) 
D604 5.9 25.6 23.6 4960 146 48 0.0176 0.0006 0.0042 0.0000 3.9 5.9x5.9 5.9x5.9 1.00 132.1 - 
D608 5.9 25.6 23.6 5120 146 48 0.0176 0.0006 0.0084 0.0000 2.0 5.9x5.9 5.9x5.9 1.00 149.5 - 

Brown, Sankovich, Bayrak, and Jirsa (2006) 
G 6 36 36 4300 0 73 0.0005 0.0000 0.0031 0.0031 6 12x6 12x6 0.00 264.5 - 
L 6 36 36 5290 0 73 0.0005 0.0000 0.0000 0.0031 0 12x6 12x6 0.00 366.8 - 
M 6 36 36 4300 0 73 0.0005 0.0000 0.0000 0.0031 0 12x6 12x6 0.00 283.2 - 
N 6 36 36 4300 0 73 0.0005 0.0000 0.0000 0.0031 0 6x6 6x6 0.00 202.1 - 
O 6 36 36 5500 0 73 0.0002 0.0000 0.0000 0.0027 0 12x6 12x6 0.00 352.4 - 
P 6 36 36 5500 0 73 0.0005 0.0000 0.0000 0.0061 0 12x6 12x6 0.00 377.0 - 
Q 6 36 36 4200 0 73 0.0000 0.0000 0.0000 0.0010 0 12x6 12x6 0.00 224.0 - 
T 6 36 36 5290 0 73 0.0000 0.0000 0.0000 0.0046 0 12x6 12x6 0.00 343.1 - 
U 6 36 36 4350 0 73 0.0000 0.0000 0.0000 0.0023 0 6x6 6x6 0.00 189.0 - 
V 6 36 36 4350 0 73 0.0000 0.0000 0.0046 0.0015 4 12x6 12x6 0.00 259.7 - 
W 6 36 36 4350 0 73 0.0005 0.0000 0.0000 0.0031 0 16x6 16x6 0.00 370.1 - 
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Table 0.1: Evaluation Database (10 of 10) 

Beam I.D. b 
in. 

h 
in. 

d 
in. 

f′c 
psi 

fy 
ksi 

fyv 
ksi ρl′ ρl ρv ρh s 

in. 

Load 
Plate 
l x w 
in. 

Support 
Plate 
l x w 
in. 

a/d 
ratio 

Vtest 
kips 

Vcrack
kips 

Brown, Sankovich, Bayrak, and Jirsa (2006), continued 
X 6 36 36 4350 0 73 0.0005 0.0000 0.0000 0.0031 0 12x6 12x6 0.00 246.7 - 
Y 10 36 36 4350 0 73 0.0010 0.0000 0.0000 0.0037 0 12x4 12x4 0.00 299.5 - 
Z 10 36 36 4350 0 73 0.0010 0.0000 0.0000 0.0037 0 12x4 12x4 0.00 303.8 - 

Walraven and Lehwalter (1994) 
V411/4 9.8 31.5 29.9 3083 60 60 0.0107 0.0000 0.0017 0.0000 7.5 7.5x9.8 7.5x9.8 0.97 105.7 - 
V022/3 9.8 15.8 14.2 3554 60 60 0.0113 0.0000 0.0035 0.0000 3.9 3.5x9.8 3.5x9.8 1.00 85.6 - 
V511/3 9.8 23.6 22.1 3861 60 60 0.0112 0.0000 0.0033 0.0000 5.9 5.5x9.8 5.5x9.8 1.01 130.8 - 
V411/3 9.8 31.5 29.9 3590 60 60 0.0107 0.0000 0.0033 0.0000 7.5 7.5x9.8 7.5x9.8 0.97 150.2 - 
Zhang and Tan (2007) 
1DB70bw 6.3 27.6 25.3 4104 76 54 0.0111 0.0010 0.0021 0.0000 5.9 4.1x6.3 4.1x6.3 1.10 96.2 31.7 
1DB100bw 9.1 39.4 35.6 4162 75 66 0.0123 0.0007 0.0021 0.0000 5.9 5.9x9.1 5.9x9.1 1.10 174.9 77.1 
Deschenes (2009) 
VALID 21 42 36.1 5061 66 65 0.0310 0.0100 0.0030 0.0058 9.5 20x21 16x21 1.85 576.6 151.2 
NR1 21 42 36.1 7250 66 65 0.0310 0.0100 0.0030 0.0058 9.5 20x21 16x21 1.85 560.8 - 
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APPENDIX C.   

Project 5253 Crack Width Data 

 

C.1 OVERVIEW 
For the tests in Project 5253, the maximum width of a diagonal crack was 

recorded on each side of the test region at first cracking and at each load increment 

thereafter.  The data was obtained with crack comparator cards and is the average of two 

independent measurements.  In some of the Series II and M specimens, only the 

maximum crack width for the entire test region, regardless of which side face it was 

measured on, was recorded.  The crack width data is listed in Table C.1 for 34 tests 

conducted within Project 5253.  No crack width data was obtained for test III-2.5-0 

because it failed shortly after first cracking.  The crack width data from tests II-02-

CCC1007 and M-03-2-CCC2436 was unreliable.  The variables presented in Table C.1 

are defined as follows:  

a/d  = shear span-to-depth ratio 

ρv  = ratio of vertical web reinforcement to effective area, 
v

v
sb

A
⋅  

ρh  = ratio of horizontal web reinforcement to effective area, 
h

h
sb

A
⋅  

R = percentage of maximum applied load, % 

wmax = maximum width of diagonal crack as average of two independent 

measurements 

SF = side face of the member 
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Table 0.1: Measured crack width data for test specimens (1 of 6) 

Beam Details 
  
I-03-2 
a/d = 1.85 
ρv = 0.0029 
ρh = 0.0033 
 

R 
(%) 

wmax (in.)  

Beam Details 
  
I-03-4 
a/d = 1.85 
ρv = 0.0030 
ρh = 0.0033 

R 
(%) 

wmax (in.) 
SF 1 SF 2  SF 1 SF 2 

23 0.005 0.006  20 0.012 0.006 
33 0.009 0.013  29 0.016 0.007 
43 0.016 0.020  37 0.023 0.010 
53 0.020 0.025  46 0.030 0.013 
63 0.030 0.025  54 0.035 0.020 
73 0.035 0.030  63 0.040 0.020 
83 0.048 0.035  72 0.050 0.025 
93 0.060 0.050  79 0.060 0.038 

    88 0.080 0.050 

         

Beam Details 
  
I-02-2 
a/d = 1.85 
ρv = 0.0020 
ρh = 0.0020 

R 
(%) 

wmax (in.)  

Beam Details 
  
I-02-4 
a/d = 1.85 
ρv = 0.0021 
ρh = 0.0020 

R 
(%) 

wmax (in.) 

SF 1 SF 2  SF 1 SF 2 
29 0.016 0.016  25 0.018 0.016 
42 0.030 0.035  36 0.023 0.020 
54 0.045 0.045  46 0.028 0.023 
67 0.060 0.060  57 0.030 0.030 
80 0.080 0.076  68 0.035 0.033 
92 0.080 0.085  79 0.050 0.035 

    90 0.060 0.045 

         

Beam Details 
 
II-03-CCC2021 
a/d = 1.85 
ρv = 0.0031 
ρh = 0.0045 

R 
(%) 

wmax (in.)  

Beam Details 
  
II-03-CCC1007 
a/d = 1.85 
ρv = 0.0031 
ρh = 0.0045 

R 
(%) 

wmax (in.) 

SF 1 SF 2  SF 1 SF 2 

26 0.009 -  16 0.008 - 
31 0.012 -  27 0.010 - 
41 0.015 -  34 0.013 - 
52 0.018 -  44 0.016 - 
64 0.023 -  53 0.018 - 
77 0.028 -  63 0.025 - 
91 0.050 -  72 0.035 - 

    80 0.038 - 
    90 0.040 - 
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Table 0.1 (cont.): Measured crack width data for test specimens (2 of 6) 

Beam Details 
  
II-03-CCT1021 
a/d = 1.85 
ρv = 0.0031 
ρh = 0.0045 
 

R 
(%) 

wmax (in.)  

Beam Details 
  
II-03-CCT0507 
a/d = 1.85 
ρv = 0.0031 
ρh = 0.0045 
 

R 
(%) 

wmax (in.) 
SF 1 SF 2  SF 1 SF 2 

12 0.012 -  22 0.013 - 
20 0.016 -  31 0.019 - 
31 0.023 -  37 0.023 - 
38 0.030 -  45 0.028 - 
47 0.035 -  54 0.033 - 
55 0.040 -  61 0.040 - 
66 0.040 -  69 0.048 - 
73 0.040 -  76 0.060 - 
82 0.045 -  91 0.080 - 
91 0.050 -     
99 0.070 -     

         

Beam Details 
  
II-02-CCT0507 
a/d = 1.85 
ρv = 0.0020 
ρh = 0.0019 
 

R 
(%) 

wmax (in.)  

Beam Details 
  
II-02-CCT0521 
a/d = 1.85 
ρv = 0.0020 
ρh = 0.0019 
 

R 
(%) 

wmax (in.) 

SF 1 SF 2  SF 1 SF 2 
19 0.005 0.005  14 0.013 0.013 
29 0.020 0.016  20 0.016 0.020 
38 0.030 0.028  27 0.020 0.025 
48 0.038 0.038  33 0.030 0.030 
57 0.050 0.050  40 0.035 0.040 
66 0.060 0.060  46 0.040 0.050 
76 0.081 0.077  54 0.045 0.055 
85 0.090 0.090  74 0.060 0.080 
95 0.105 0.103  81 0.085 0.090 
    93 0.100 0.110 

         

Beam Details 
 
II-02-CCC1021 
a/d = 1.85 
ρv = 0.0020 
ρh = 0.0019 
 

R 
(%) 

wmax (in.)  
Beam Details 
  
III-1.85-025 
a/d = 1.85 
ρv = 0.0024 
ρh = 0.0014 
 

R 
(%) 

wmax (in.) 

SF 1 SF 2  SF 1 SF 2 

36 0.010 0.016  48 0.035 0.028 
47 0.016 0.030  60 0.050 0.040 
58 0.025 0.045  70 0.060 0.050 
71 0.035 0.060  81 0.078 0.060 
82 0.050 0.085  92 0.100 0.098 
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Table 0.1 (cont.): Measured crack width data for test specimens (3 of 6) 

Beam Details 
  
III-1.85-02 
a/d = 1.85 
ρv = 0.0020 
ρh = 0.0019 
 

R 
(%) 

wmax (in.)  

Beam Details 
  
III-1.85-0 
a/d = 1.85 
ρv = 0 
ρh = 0 
 

R 
(%) 

wmax (in.) 
SF 1 SF 2  SF 1 SF 2 

27 0.020 0.020  21 0.009 - 
39 0.033 0.035  27 0.030 - 
51 0.048 0.050  33 0.038 - 
62 0.055 0.060  38 0.050 - 
74 0.061 0.063  51 0.063 - 
85 0.065 0.070  61 0.094 - 
96 0.090 0.090  71 0.100 - 
    91 0.160 - 

         

Beam Details 
  
III-1.85-03 
a/d = 1.85 
ρv = 0.0029 
ρh = 0.0029 
 

R 
(%) 

wmax (in.)  
Beam Details 
  
III-1.85-01 
a/d = 1.85 
ρv = 0.0010 
ρh = 0.0014 
 

R 
(%) 

wmax (in.) 

SF 1 SF 2  SF 1 SF 2 
32 0.013 0.013  29  - 0.005 
47 0.025 0.023  44 0.015 0.017 
61 0.033 0.033  59 0.035 0.038 
75 0.040 0.038  72 0.053 0.055 
89 0.055 0.050  88  - 0.098 

         

Beam Details 
 
III-1.85-03b 
a/d = 1.85 
ρv = 0.0031 
ρh = 0.0029 
 

R 
(%) 

wmax (in.)  

Beam Details 
  
III-1.85-02b 
a/d = 1.85 
ρv = 0.0020 
ρh = 0.0018 
 

R 
(%) 

wmax (in.) 

SF 1 SF 2  SF 1 SF 2 

25 0.008 0.009  16 0.017 0.016 
33 0.016 0.014  25 0.023 0.023 
40 0.025 0.020  33 0.028 0.028 
49 0.030 0.028  41 0.033 0.033 
57 0.033 0.033  49 0.038 0.035 
65 0.040 0.038  57 0.040 0.040 
73 0.040 0.038  65 0.040 0.043 
81 0.045 0.043  73 0.048 0.050 
89 0.048 0.050  80 0.058 0.055 
    89 0.078 0.080 
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Table 0.1 (cont.): Measured crack width data for test specimens (4 of 6) 

Beam Details 
  
III-1.2-02 
a/d = 1.2 
ρv = 0.0020 
ρh = 0.0018 
 

R 
(%) 

wmax (in.)  

Beam Details 
  
III-1.2-03 
a/d = 1.2 
ρv = 0.0031 
ρh = 0.0029 
 

R 
(%) 

wmax (in.) 
SF 1 SF 2  SF 1 SF 2

20 0.012 0.010  21 0.005 -  
28 0.020 0.018  31 0.010 0.009 
36 0.028 0.026  41 0.016 0.016 
45 0.033 0.033  51 0.020 0.020 
52 0.035 0.035  61 0.030 0.025 
60 0.040 0.038  71 0.040 0.030 
70 0.045 0.043  81 0.046 0.035 
80 0.045 0.045  92 0.058 0.040 
90 0.048 0.050     

         

Beam Details 
  
III-2.5-02 
a/d = 2.5 
ρv = 0.0020 
ρh = 0.0018 
 

R 
(%) 

wmax (in.)  

Beam Details 
  
III-2.5-03 
a/d = 2.5 
ρv = 0.0031 
ρh = 0.0029 
 

R 
(%) 

wmax (in.) 

SF 1 SF 2  SF 1 SF 2
38 0.010 0.010  13 0.016 0.016 
50 0.020 0.025  20 0.023 0.023 
63 0.030 0.035  27 0.028 0.028 
74 0.043 0.050  33 0.033 0.033 
87 0.063 0.075  40 0.035 0.035 
    53 0.038 0.040 
    60 0.043 0.043 
    67 0.045 0.045 
    73 0.050 0.048 
    80 0.053 0.055 

         

Beam Details 
 
IV-2175-1.85-
02 
a/d = 1.85 
ρv = 0.0020 
ρh = 0.0018 
 

R 
(%) 

wmax (in.)  

Beam Details 
  
IV-2175-1.85-
03 
a/d = 1.85 
ρv = 0.0031 
ρh = 0.0029 
 

R 
(%) 

wmax (in.) 

SF 1 SF 2  SF 1 SF 2 

27 0.016 0.015  24 0.013 0.008 
37 0.018 0.025  33 0.018 0.015 
51 0.033 0.033  45 0.028 0.023 
62 0.048 0.053  55 0.033 0.033 
71 0.053 0.060  64 0.035 0.035 
82 0.060 0.065  73 0.048 0.043 
95 0.080 0.085  85 0.058 0.055 
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Table 0.1 (cont.): Measured crack width data for test specimens (5 of 6) 

Beam Details 
  
IV-2175-2.5-02 
a/d = 2.5 
ρv = 0.0021 
ρh = 0.0021 
 

R 
(%) 

wmax (in.)  

Beam Details 
  
IV-2175-1.2-02 
a/d = 1.2 
ρv = 0.0021 
ρh = 0.0021 
 

R 
(%) 

wmax (in.) 
SF 1 SF 2  SF 1 SF 2 

30 0.005 0.009  26 0.023 0.018 
39 0.015 0.017  34 0.025 0.023 
49 0.020 0.025  43 0.033 0.033 
59 0.030 0.035  51 0.040 0.035 
69 0.035 0.040  61 0.055 0.053 
78 0.040 0.043  68 0.071 0.068 
87 0.053 0.060  76 0.090 0.088 
98 0.088 0.088  85 0.098 0.098 
       

         

Beam Details 
  
IV-2123-1.85-
03 
a/d = 1.85 
ρv = 0.0030 
ρh = 0.0030 
 

R 
(%) 

wmax (in.)  

Beam Details 
  
IV-2123-1.85-
02 
a/d = 1.85 
ρv = 0.0020 
ρh = 0.0017 
 

R 
(%) 

wmax (in.) 

SF 1 SF 2  SF 1 SF 2 
29 0.012 0.015  29 0.012 0.018 
41 0.016 0.018  38 0.016 0.023 
51 0.020 0.023  48 0.020 0.024 
63 0.025 0.028  58 0.023 0.028 
73 0.030 0.030  69 0.028 0.033 
85 0.038 0.035  79 0.030 0.040 
95 0.043 0.038  90 0.035 0.043 

         

Beam Details 
 
IV-2123-2.5-02 
a/d = 2.5 
ρv = 0.0020 
ρh = 0.0017 
 

R 
(%) 

wmax (in.)  

Beam Details 
  
IV-2123-1.2-02 
a/d = 1.2 
ρv = 0.0020 
ρh = 0.0017 
 

R 
(%) 

wmax (in.) 

SF 1 SF 2  SF 1 SF 2 

27  - 0.006  18  - 0.005 
47 0.010 0.020  24 0.005 0.005 
64 0.018 0.033  31 0.009 0.009 
82 0.030 0.048  39 0.013 0.013 
98 0.060 0.095  48 0.018 0.018 
    55 0.023 0.023 
    63 0.028 0.025 
    70 0.030 0.030 
    78 0.033 0.035 
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Table 0.1 (cont.): Measured crack width data for test specimens (6 of 6) 

Beam Details 
  
M-03-4-
CCC2436 
a/d = 1.85 
ρv = 0.0031 
ρh = 0.0030 
 

R 
(%) 

wmax (in.)  

Beam Details 
  
M-09-4-
CCC2436 
a/d = 1.85 
ρv = 0.0086 
ρh = 0.0030 
 

R 
(%) 

wmax (in.) 
SF 1 SF 2  SF 1 SF 2 

34 0.013 -  24 0.005 - 
38 0.016 -  29 0.005 - 
41 0.020 -  34 0.009 - 
45 0.025 -  39 0.010 - 
48 0.025 -  44 0.010 - 
49 0.025 -  49 0.020 - 
51 0.030 -  53 0.020 - 
54 0.030 -  58 0.025 - 
58 0.030 -  63 0.030 - 
62 0.035 -  68 0.030 - 
64 0.040 -     
68 0.040 -     
71 0.040 -     
74 0.045 -     
77 0.050 -     
80 0.050 -     
83 0.060 -     
86 0.060 -     
92 0.060 -     

         

Beam Details 
  
M-02-4-
CCC2436 
a/d = 1.85 
ρv = 0.0022 
ρh = 0.0022 
 

R 
(%) 

wmax (in.)  

Beam Details 
  
M-03-4-
CCC0812 
a/d = 1.85 
ρv = 0.0031 
ρh = 0.0030 
 

R 
(%) 

wmax (in.) 

SF 1 SF 2  SF 1 SF 2 
19 0.005 -  26 0.013 0.020 
27 0.013 -  35 0.016 0.025 
32 0.020 -  43 0.020 0.025 
39 0.025 -  48 0.020 0.030 
45 0.030 -  60 0.025 0.035 
51 0.035 -  67 0.030 0.040 
57 0.045 -  71 0.035 0.040 
64 0.055 -  79 0.040 0.050 
71 0.060 -  87 0.050 0.060 
76 0.070 -  95 0.060 0.060 
83 0.080 -     
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