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ABSTRACT

Design methods for beam-columns in unbraced frames were
investigated both theoretically and experimentally. Theoretical
studies were conducted to determine the strength of the beam-columns
in symmetrical portal frames and frames containing some columns with
pinned connections (leaned frames). The variables in the studies
were the slenderness ratio, the relative column-to-beam stiffness,
the effect of bending axis, the effect of the residual stress, and
the effect of axial load on the pinned-end column in leaned frames.
Exact interaction curves were developed for these cases. The
results obtained were used as the basis for the comparison with
design interaction equations. Three full size two-bay unbraced
ffames were tested to study the interaction of beam-columns within
a frame. The first two specimens were subjected to column loads
only and the third specimen was tested under the combined gravity

and lateral load.

Another set of tests was conducted to study the spatial
behavior and the strength of restrained beam-columns in unbraced
frames where there is no experimental data currently available.
Three full size biaxially loaded restrained beam-column specimens
were tested under the loading and support conditions simulating the
actual condition in unbraced frames. The test results were compared

with a theoretical prediction and design interaction equations.

The studies indicate that a proposed interaction equation
provides an accurate prediction of the strength of a beam-column in
planar unbraced frames. The method was also verified by comparing
the predicted value with the frame test results. The test results

on biaxially loaded restrained beam~-columns are in good agreement
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with the theoretical prediction. It was found that the current
design methods are satisfactory for columns subjected to uniform
moment but are very conservative for moment gradient cases. Based
on the theoretical and experimental investigation in this study,

recommendations for the design of beam-columns in unbraced frames

are outlined.
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dl;dz,

dy,d
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NOMENCLATURE

area of cross section

= undetermined coefficients in the equation for

determining the strain on a plane surface
flange width

amplification factor for end moment arising from
loading that does not cause sway

amplification factor for end moment arising from
loading that causes sway

distance between dial gages across the flange of
biaxially loaded restrained beam-column specimens

distance parallel to the strong axis of the cross
section measured from the weak axis to the point of
contact with dial gages

factor applied to the uniform critical moment of a
beam to account for the moment gradient for the
lateral torsional buckling behavior

the slenderness ratio corresponding to the start of
inelastic buckling

factor applied to the larger end moment in a beam-
column to account for the moment gradient for the
in-plane behavior

warping constant of cross section

half depth or half width of cross section, for bend-
ing about the strong or weak axis, respectively

distance of the center of element i from the cen-
troidal axis of cross section

depth of cross section

distance between dial gages across the web of
biaxially loaded restrained beam-column specimens

distance parallel to the weak axis of cross section
measured from the strong axis to the point of contact
with dial gages

= dial gage readings at flange tips of biaxially loaded

restrained beam~-column specimens
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Young's modulus of elasticity
strain hardening modulus
tangent modulus

axial force in beam-columns

allowable buckling stress for centrally loaded
columns (the prime denotes the quantity being based
on the effective length factor; otherwise it is
based on the actual column height)

allowable bending stress of member considered as a
beam

allowable critical bending stress for lateral tor-
sional buckling of member considered as a beam

buckling stress, not including the factor of safety

Euler buckling stress, based on the actual column
height, divided by the factor of safety

Euler buckling stress, based on the effective
slenderness ratio in a sway mode, divided by the
factor of safety

maximum compressive residual stress in the flanges
yield strength of material
computed axial stress

computed bending stress

= modulus of elasticity in shear
= relative column-to-beam stiffness

modified relative column-to-beam stiffness to
account for inelasticity of columns

applied wind load (x and y denote the strong and
weak directions, respectively)

moment of inertia of cross section (subscripts b and
c denote beam and column, respectively)

moment of inertia about the weak axis of cross section
index

torsional constant of cross section

effective length factor

stiffness factor = EI/L (subscripts b and c denote
beam and column, respectively)
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elastic first order sway stiffness of an unbraced
bent

elastic first order sway stiffness contributed by
column '"i" in an unbraced bent

length of member (subscripts b and c denote beam and
column, respectively)

half of the total length of beam-column specimens
first order end moment

second order end moment

smaller first order end moment

moments at the joint of biaxially loaded restrained
beam-column specimens (x and y indicate that the
moments are about the strong and weak axes,
respectively)

larger first order end moment

moments at the midlength of biaxially loaded restrained
beam-column specimens (x and y indicate that the
moments are about the strong and weak axes,
respectively)

moment at end A and end B, respectively, of member AB
in a slope deflection equation

end moments in beam and column, respectively, in the
inelastic analysis of unbraced portal frames and
leaned frames

critical moment of beam, accounting for the moment
gradient, due to lateral torsional buckling

elastic critical moment of beam, in pure bending,
due to lateral torsional buckling

second order end moment for which a girder and a
connection in unbraced frames should be designed

equivalent uniform moment in beam-column, for the
lateral torsional buckling behavior

applied joint moments about the strong and weak axes,
respectively, of biaxially loaded restrained beam-
column specimens

inelastic critical moment of beam, in pure bending,
due to lateral torsional buckling
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coordinates

XxXvi

first order end moment due to loading which does not
cause sway

plastic moment capacity

reduced plastic bending strength, due to the presence
of axial load

plastic moment capacity about the strong and weak
axes of section, respectively

moments in restraining beams, in the strong and weak
directions, respectively, of biaxially loaded b
restrained beam-column specimens

first order end moment due to loading which causes
sway

torsional moment

= first order moment, about the strong axis of member
= moment about the strong axis in the X~y system of

coordinates, transformed from M, and M
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= first order moment, about the weak axis of member

moment about the weak axis in the x-y system of
coordinates, transformed from M, and M
moment corresponding to first yield = n&:y

moment about the weak axis in the £-n system of

moment about the strong axis in the g-n system of
coordinates

moment nondimensionalized by M
integer
applied axial load

applied axial load on rigidly jointed column and on
pinned-end column, respectively

buckling strength of column based on the actual
height

buckling strength of column based on the effective
length factor

buckling strength, accounting for inelasticity of
column, determined by applying the ratio of the
tangent modulus at a particular level of axial load

to the modulus of elasticity, to P%
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Euler load (x and y indicate that the buckling loads
are about the strong and weak axes, respectively)

elastic buckling load based on the effective length
factor (x and y indicate that the buckling loads are
about the strong and weak axes, respectively)

stub loads in the strong and weak directions,
respectively, of biaxially loaded restrained beam-
column specimens

axial load at complete yielding of cross section
axial load nondimensionalized by P

ratio of the smaller to the larger first order end
moments

forces in the restraining bars, in the strong and
weak directions, respectively, of biaxially loaded
restrained beam-column specimens

radius of gyration of cross section (subscripts x
and y denote the strong and weak axes, respectively)

elastic section modulus

stability functions accounting for the reduction of
stiffness due to axial load in the slope deflection
equations

displacement of centroid and the average displacement
of flange tips of cross section, respectively, in

the strong direction with respect to the untwist
coordinates, measured from the unloaded position of
biakially loaded restrained beam-column specimens

shear resistance of the rigidly jointed column in
leaned frames

shear resistance required for the stability of leaned
column

shear resistance contributed by column i in an
unbraced bent

displacement of centroid and the average displacement
of flange tips of cross section, respectively, in the
weak direction with respect to the untwist coordinates,
measured from the unloaded position of biaxially loaded
restrained beam-column specimens
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plastic section modulus

ratio of the axial load on leaned column to the
axial load on the rigidly jointed column

twist of cross section about the centroid measured
from the unloaded position of biaxially loaded
restrained beam-column specimens

a parameter defined as B = LCA/P/EIc

sway deflection at the column top in portal frames
and leaned frames

deflection at the midlength of columns in unbraced
frame specimens, measured from the unloaded position

sway at the column top in portal frames and leaned
frames determined by a first order elastic analysis

sway at the column top in portal frames and leaned
frames determined by a second order elastic analysis

sway at the column top in portal frames and leaned
frames during the ith and the i-1*" iterations of a
second order elastic analysis

incremental area i of cross section
strain
strain at element i of cross section

strain at the centroid of cross section

residual strain at element i of cross section
strain at the start of strain hardening
strain at first yielding

exponent on the moment terms in Chen's strength-type
interaction equation

distance along the weak axis, in the £-T system of
coordinates, to a point on cross section

end rotation (subscripts b and ¢ denote beam and
column, respectively) -

rotation at end A and end B of a member in a slope-
deflection equation

angle between a tangent to the top of the column and
the chord connecting the ends of column

= ratios of the actual factor of safety to the basic

factor of safety of 1,67
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factor applied to moment terms in Pillai's
interaction equation

exponent on the moment terms in Chen's stability-
type interaction equation

distance along the strong axis, in the £-n system of
coordinates, to a point on cross section

symbol for summation
normal stress at element i of cross section
maximum compressive residual stress in the flanges

maximum tensile residual stress in flanges, uniform
tensile cooling stress in web

ultimate strength of material
static yield strength of material

ratio of the tangent modulus to Young's modulus of
elasticity

curvature nondimensionalized by the curvature at
initial yielding, ¢y

average curvature about the strong axis, determined
from the measured strain data in biaxially loaded
restrained beam-column specimens

curvature corresponding to first yielding of cross
section

average curvature about the weak axis, determined
from the measured strain data in biaxially loaded
regtrained beam-column specimens







CHAPTER 1

INTRODUCTION

In modern steel buildings, the structural frame serves to |
support the load which is transmitted from the functional elements
of the structure. The load acting on the structure may be classi-
fied as the static gravity force arising from the dead load and the
live load and the dynamic force due to wind or earthquake. The
latter is usually acting laterally and for design purposes is con-
sidered as an equivalent static load applied at the joints. The
applied load on the building is resisted by the frame which is an
assemblage of beams and columns interconnected at the joints. Beéméy
are the members which resist the load primarily in bending. On the
other hand, columns carry predominantly the axial load transmitted
from the beams and may also carry bending moments arising from

unbalanced gravity load or from the wind load.

A frame may be classified as braced or unbraced. Braced
frames are ones in which the resistance to the lateral load and the
lateral stiffness are provided by the vertical bracing system con-
taining diagonal X or K bracing and/or shear walls. It is usually
assumed that bending moments are not introduced into the frame by
the lateral loads. The other class of frames called unbraced
frames do not contain any lateral supporting system and must rely
on the bending stiffress of the columns and beams to resist the

load and to provide the lateral stiffness of the frames.

Braced and unbraced frames may be further classified as
planar or space frames. A planar frame is constrained to deform in

the plane of the frame by the out-of-plane bracing; in this case,
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all the connections in the perpendicular direction to the plane of
the frame are flexible connections so that no bending moment can
be transmitted to the columns. The space frame behavior arises if
the girder-to-column connections in the out-of-plane direction are
rigid. 1In this case, the columns are subjected to combined gravity
load and biaxial moments. The sway movement of the joints in the
out-of-plane direction depends on the presence of bracing in that

direction.

1.1 Behavior of Structural Frames
under Loads

The response of a planar frame can be described by refer-
ring to a load-displacement relationship, as shown in Fig. 1.1. %
The frame is subjected to the gravity and lateral loads applied |
proportionally. A point on the load displacement curve represents
an equilibrium configuration of the frame. As the load increases,
the axial force and moments increase. The increase in bending
moment is due to two effects; the first part arising from the

applied load is called primary moment whereas the second part,

called the secondary moment, is attributed to the effect of the
axial force acting through the deflected shape of the columns in
braced frames or through the relative displacement of the joints in
unbraced frames (see Fig. 1.2). For loading below the elastic limit,
the frame will return to the undeformed state if the loads are

removed. As the load increases beyond the elastic limit, yielding

occurs at some location in the frame which results in a reduction i
in the stiffness of the frame. This causes the deflection to z
increase at a faster rate than the load until the maximum load is ;
reached. Beyond the maximum load, the P-delta effect is signifi- !
cantly increased and the frame has to unload to maintain the equi-
librium. This type of failure is called in-plane inelastic

instability and commonly occurs in a frame that carries high axial
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loadlshin which the P-delta effect is significant.

, Two other extreme modes of failure of a frame are mechanism
failure and frame buckling. The former occurs in a frame which car-
ries low axial load and relatively high beam loads. 1In this case,
moment redistribution takes place after the first plastic hinge has
formed in a highly stressed region. As the load increases, more
plastic hinges develop until the frame fails as a mechanism. Frame
buckling, on the other hand, occurs in a symmetrical frame subjected
to symmetrical gravity load. Figure 1.3 shows the load displacement

characteristics of braced and unbraced frames subjected to gravity

load with and without the presence of primary bending moment.

As discussed above, for braced and unbraced frames subjected
to high axial load, failure is generally due to in-plane instability
of the beam-columns and usually occurs before the plastic strength

of the frame is attained. Another kind of instability of a beam-

column may occur when it is not fully braced laterally. When the
load is increased to the critical level, lateral torsional buckling
may occur before the in-plane instability is reached. The beanm-

column which has been deflecting in the plane of the frame starts

to move laterally and is accompanied by twist of the cross section

(Fig. 1.4). A more general case is for an unbraced space frame; in
this case, the beam-column may sway in any direction. If the frame
is loaded in the strong plane, there is the possibility that, at

the critical load, lateral torsional buckling of a beam column may

occur which is analogous to sidesway buckling of an unbraced planar
frame. If the space frame is loaded in a proportional manner, a

joint will start to displace obliquely from the beginning of loading.

The failure of a beam-column may be due to instability with combined

deflection and twist of the member along the column height. In

addition to inelastic instability and lateral torsional buckling,

*Superscript numbers indicate references in the Bibliography.

|
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local buckling of the plate element of the cross section may be the
cause of failure of the member and the frame. However, this phe-
nomenon usually takes place when the moment approaches the plastic
moment. For beam-columns subjected to high axial load, inelastic
instability and lateral torsional buckling are the more general

causes of fajilure.

Any form of instability reduces the maximum strength and
the ductility of the frame. In the plastic design method, where
the maximum load of the frame is of interest, beam-columns must be
designed so that instability does not occur before the strength of
the frame is attained. On the other hand, in the allowable stress
design method, the maximum strength of a member corresponds to the
limit of structural usefulness. This may be attributed to insta-
bility in the beam-column or a plastic hinge having formed in a beam
with some partial redistribution of moment beyond the first hinge.
Therefore, for economic consideration, beam-columns should be
designed so that instability does not occur before the beam reaches
its plastic strength. Instability of beam-columns is caused by the

P-delta effect and yielding which is more significant in an unbraced

frame than in a braced frame. This study is concerned with the
design of columns in unbraced frames. However, the next sections
will discuss the previous work relating to the strength and design
of columns in both braced and unbraced frames,

1.2 Previous Studies on the Strength

and Design of Beam-Columns in
Braced Frames

1.2.1 1In-plane Behavior. Therehave been extensive theoreti-

cal studies on the strength of isolated beam-columns and these
studies were summarized by Johnston.28 The problems of pinned-end
columns loaded with equal end moments and with the moment applied
at one end were studied by Galambos and Ketter.19 The method of

solution was based on integrating the moment-thrust-curvature




relationship using a Newmark integration scheme to satisfy the

equilibrium and boundary conditions. The effect of residual stress

was considered and the results were presented in the form of inter-
action curves relating the axial force and the applied end moment
which causes instability. The analytical results were compared
with the available test results and the approximate interaction
equations. Additional study on similar problems was conducted by
Ketter.30 Analytical results were obtained for columns subjected
to equal and unequal end moments with the ratio varying from

-1.0 €« ¢ <« 1.0 (q is the ratio of the smaller end moment to the

larger end moment, being positive when the end moments cause the ]
column to bend in single curvature). In addition to the loading
condition with end moments, the solution of pinned-end columns sub-
jected to a concentrated load at midspan was also studied. All the
results were presented in the form of interaction curves. Within
the elastic limit, Ketter also developed the expression for deter-
mining the maximum elastic second order moment within the span of
the member for various ratios of end moments and this was presented

in the form of a chart (see Fig. 1.5). This figure shows the varia-

tion of the amplification factor as the ratio P/PE increases (PE is
the Euler load). The amplification factor is the ratio of the maxi-
mum second order moment within the span of the member to the larger

end moment.

In 1960, Ojalvo46 developed a method to determine the strength
of beam-columns based on the restrained column theory. The response
of the column subjected to end moments was presented in the form of
end moment-end rotation curves and the nomograph47 and the ultimate

strength tables of these beam-columns were also available.20

Besides the loading with unequal end moments, beam-columns k
that are subjected to a concentrated load at the midspan and to
uniformly distributed load with both ends pinned or fixed were solved

40
by Lu and Kamalvand’ using the restrained column theory technique. i




The results were presented in the form of interaction curves

between the axial force and the ultimate lateral load. Chen10 has
conducted further studies on pinned-end beam-columns subjected to
equal end moments and a concentrated lateral load. The solutions

were obtained for wide flange columns bent about the strong and the

weak axes with and without the presence of residual stresses.

All the studies discussed except Lu and Kamalvand's study 40

have considered only isolated beam-columns with simply supported
ends, while columns in real structures occur as part of the frame.
Levi, Driscoll, and Lu35 studied the strength of coiumns in con-~
tinuous frames which led to the subassemblage method of plastic
design for no-sway frames. In this method the response of the
joint is constructed from the response of the columns and the
restraining beams based on equilibrium of moments and compatibility
of the joint rotation. The strength of the subassemblage is ade-
quate if the resisting moment of the joint is larger than the

applied joint moment,

With regard to experimental studies, there were extensive
tests on eccentrically loaded beam-columns with equal and unequal
end moments. Part of these results has been used to compare with
the theoretical studies.19 Tests on restrained beam-columns were
conducted by Lay and Galam.bos33 to verify the validity of the sub-
assemblage method. The column was subjected to a constant axial
load and increasing joint moments. AIl the specimens were bent in
single curvature and the results confirmed the validity of the sub-
assemblage method. Experiments on restrained columns subjected to
a constant axial load and a concentrated lateral load were con-
ducted by English and Adamé4 and Carpenter.9 The test results
were compared with the theoretical prediction using the elastic-
plastic method of analysis and with the design interaction equations.

The comparison was found to be in good agreement. Sheninger and

Lu55 conducted tests on no-sway subassemblages with three-story




continuous columns. The loading was designed so that the middle

column was bent in single and double curvatures.

The strength of isolated beam-columns in the previous
theoretical studies was generally presented in the form of inter-
action curves which relate the axial force and the end moment at
failure for a given slenderness ratio. The in-plane failure results
from inelastic instability or due to the plastic strength being

reached. The failure is controlled by instability when the maximum

moment occurs within the span of the member for a beam~column sub-

jected to end moments. 1In this case, as the axial load increases,

the moment will increase due to the P-delta effect. As yielding
takes place, the stiffness of the member reduces which causes the
column to deflect further and this results in a larger P-delta
moment. On the other hand, for the loading that causes the maxi-

mum moment to occur at the end of the beam-column, there is no

P-delta effect and the member can develop its maximum plastic
strength, Mp , at the end. Regardless of which type of failure
c

occurs, the column must have been loaded into the inelastic range

resulting in an extensive degree of yielding.

For design application, interaction equations provide a
convenient means of expressing the relationship between the axial
load and the moment. To apply this method for the design of an
isolated column, the second order moment is estimated from the end

. , . . . 28
moment and is then checked with the interaction equations:

P %
§—+%—=1.0 (1.1)
cY P
Cm
where M* = 5 M (1.2)
1 - i;"'

=




and P 0.85 M
L - = 1.3
et 1.0 (1.3
y P

In Eqs. 1.1 and 1.3, P and M are the axial load and the
larger end moment ; PCr is the buckling strength of the column; Py
is the yield load; and MP is the fully plastic strength. Equa- %
tion 1.3 controls when M* occurs at the end; that is, M* = M (see
Fig. 1.6). 1In fact, Eq. 1.3 implies that the end cross section
develobs the reduced plastic hinge capacity. It is noted that
Eq. 1.2 has been derived initially for an elastic beam-column sub-

jected to equal end moments causing the column to bend in single

curvature. In this case, Cm can be expressed more accurately as

cC =1+ 0.23P/PE;4 however, it is considered to be unity in most
design specifications. For columns subjected to unequal end moments,
c, = 0.6 + 0.4 q. 1In the current AISC Specification,1 a limit of
Cm to be not less than 0.4 is specified. The comparison of the pre-
dicted second order moments determined from Eq. 1.2 with the chart
derived from the exact elastic second order analysi330 is shown in
Fig. 1.5 for various ratios of end moments. It may be seen that

the predicted second order moment is conservative for double curva-
ture and is unconservative for single curvature. Therefore, the
limitation of C 4 0.4 for q < - 0.5 (double curvatufe) yields the
predicted second order moment to be more conservative for the in-
plane behavior. In fact, this limit applies for lateral torsional
buckling (to be discussed later). 1In Fig. 1.5 it may also be noted
that for columns subjected to unequal end moments, the maximum
moment occurs at the end of the member (i.e., M* = M) at low level

of the axial load.

The accuracy of interaction equation 1.1 has been compared
with theoretical analysis and experimental results and it was found
that it predicts the actual strength accurately.28 It should be
observed that M in Eqs. 1.1 and 1.3, as well as in the interaction
curves,lg’30 is the end moment at failure. Therefore, for the struc- !

ture that is designed by the plastic design method, these two




equations can also be used to
In fact, Eqs. 1.1 and 1.3 are
Specification for the plastic

Eq. 1.1 modified to take into

check the strength of the column.
recommended by the current AISC
design procedure (Sec. 2.4) with

account the possibility of lateral

torsional buckling.

In a braced frame that is designed by the allowable stress
design method, the column end moments are obtained from a first
order analysis of the frame at the service load level. The current

AISC Specification (Sec. 1.6) recommends the use of Egs. 1.1 and

1.3 written in the allowable stress formg as

fa Cmfb
3 ——Fa + ‘—‘———fa < 1.0 (1.4)
(r - 7 )Fb
e
£ f
a b
0. 6F + Fb < 1.0 (1.5)

Usually for no sway columns, the buckling strength, Fa’ and Fe in

Eq. 1.4 are based on the actual column height (K = 1.0). The v
determination of the second order bending stress .
Cmfb
1 - fa/Fe
is based on the assumption that the first order bending stress fb
does not change as axial load is applied. 1In fact, as the axial
load on the column increases, the column end moment is reduced. A
study on the amplification factor for restrained no sway columns

subjected to joint moments and for columns with different boundary

‘e . 69
conditions subjected to lateral load was conducted and some

results are shown in Fig. 1.7 and Table 1.1. It can be seen that
for restrained columns the column end moment, M, decreases as the
axial load increases and the girder moment increases; this is differ-

ent from an unrestrained column where the column end moment remains




10

constant. The amplification factor gives a reasonable prediction
of the maximum second order column moment if PE is based on the
effective length (K-{ 1.0). Therefore, using PE based on the actual
column height overestimates the extent of the elastic second order
moment. For restrained columns loaded laterally, both the end
moment and the interior moment increase due to the P-delta effect;
in the cases studied, the moment at the end is the maximum. This

is in contrast with the simply supported beam-column where the

interior moment always controls.

The buckling strength PCr in Eq. 1.1 is based on the actual
column height. However, for restrained columns, the buckling
strength increases due to the effect of restraint. It is felt that
using Pcr based on K = 1 does not change the result significantly.
The slenderness ratio of columns commonly encountered is in the
range that buckling occurs inelastically. In this zone the buckling
strength is not very sensitive to the effective length factor.
Therefore, the design of no sway columns according to the allowable
stress design method with the use of Eqs. 1.4 and 1.5, is generally

conservative.

1.2.2 Ldateral Torsional Buckling Behavior. When a beam-

column is bent about its strong axis and is laterally unbraced,
lateral torsional buckling may occur before the in-plane plastic
strength is attained. The theoretical and experimental research
that is available considered only the cases of no sway columns.

The early theoretical work on the elastic lateral torsiomal buckling
was attributed to Timoshenko60 who derived the differential equa-
tions and solved the problem of a beam-column subjected to equal

end moments. The ends of the column were simply supported with
respect to bending and torsion. Salvadori” ’~ applied the energy
method to solve beams and beam-columns of I cross section subjected

to equal and unequal end moments. The effect of weak axis restraint

was also investigated. It was found that the difference in the
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elastic critical moment due to the effect of weak direction
restraint was not significant for all column lengths and end moment
ratios under consideration, except for the complete double curva-
ture (q = -1) case where the weak axis restraintincreases the

critical moment appreciably.

The elastic critical moment of I shape beams subjected to

uniform moment may be expressed as60
1T TT2
* = e + 1.6
Mcr KL EIyGJ ( )2 EIy ECW ’ ( )

where G = modulus of elasticity in shear, J = torsional constant,

and Cw = warping constant.

Based on Salvadori's study, the critical moment for beams
subjected to other ratios of end moments causing a straight line,
moment gradient is larger than the case of uniform moment and this

may be determined from

M = g M¥ (1.7
cr b cr

where Cb is a modifying factor. Salvadori found that Cb is fairly
constant for most of the practical length and the degree of weak
axis restraint and depends mainly on the end moment ratio of the

beam. C, may be expressed as

b
C, = 1.75 - 1.05q + 0.3q" < 2.5 (1.8a)
or 1
c < 2.5 (1.8b)

b~ 0.6 + 0.4q

The relationship between C, and q is shown in Fig. 1.8. The dashed

b
and broken curves correspond to the maximum and the minimum values

of Cb considering the various combination of length and boundary

conditions. It may be seen that for q> 0, C, has a single relation-

b

ship. However, for q < 0, C, is sensitive to the length and the

b
condition of support in the lateral direction. The solid curve
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appears to be the average values of Cb in the double curvature
range. It may be seen that the limit 2.5 in Eq. 1.8 is the average
value of Cb for -1.0 < q < -0.5. The AISC Specification specifies
this limit to be 2.3, which corresponds to the minimum value of

Cb in this range.

Salvadori's study of elastic lateral torsional buckling was
also extended to beam-columns and the results were presented in the
form of interaction curves between the axial load and the larger first
order end moment for various ratios of q (= Mlle). It was well
understood that for beam-columns with the I shape cross sections,
the compressive stress reduces the torsional rigidity of the member
which is commonly known as the Wagner effect.25 Salvadori took this
into consideration when he compared two sets of solutions in which
the Wagner effect was and was not considered. The relationship of
the axial load and the larger end moment at the onset of lateral
torsional buckling was reasonably proportional for most values of q
when the Wagner effect is considered. Massonnet42 also studied the
elastic lateral torsiomal buckling of beam-columns subjected to
unequal end moments using the energy method as Salvadoridid. He
recommended the following interaction equation, based on Salvadori's
and his results:

P Meq
+ 1.0 (1.9)
P’ q+1 P
* - jl—
By My @ 7 )

is the elastic buckling strength based on the effec~-

7

In Eq. 1.9, PEy

tive slenderness ratio (K < 1.0) about the weak axis of the member;
and M*r is the elastic critical moment of the member considered as
c

a beam and subjected to uniform moment. Meq is the equivalent uni-

form first order moment about the strong axis of the member and the

factor 1

+ 1.P
e
E
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is intended to account for the action of the axial load acting
through the transverse deflection prior to buckling. This factor
is empirically adjusted for the moment gradient by introducing
@+1D/2 as the coefficient of P/PE. Massonnet has recommended that

the equivalent moment factor may be expressed as

M
M—eﬂ = /0.301 + ¢®) + 0.4q (1.10)
2

It has been shown that Meq/MZ in Eq. 1.10 is very close to the

reciprocal of Salvadori's expression for Cb (Eq. 1.8).

The interaction equation for elastic lateral torsional -
buckling given by Eq. 1.9 was confirmed by tests conducted by Hill
and Clark.z5 Aluminum column specimens were tested with equal end
eccentricity about the strong axis. The boundary conditions were
pinned about the strong axis and fixed about the weak axis. All
specimens failed by lateral torsional buckling at a stress below
the proportional limit. From the experimental study, it was evident
that the Wagner effect was significant and must be considered in
the theoretical prediction. The test results were found to be in
good agreement with the predicted strength using Eq. 1.9 (with
q = 1.0 and Meq = M) when the P-delta effect prior to buckling

was accounted for.

The theoretical studies and the design equation discussed
were limited to elastic lateral torsional buckling. In real
structures, a member may fail by lateral torsional buckling after
partial yielding has occurred in the member as a result of in~plane
bending; this is called inelastic lateral torsional buckling.
Galambos 10 and Fukumoto15 have investigated the problems of wide
flange columns subjected to equal end moments and one end moment
respectively. In their studies, the effect of residual stress

was considered and the member ends were simply supported with res-

pect to the strong axis and the weak axis and warping was
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permitted. The critical moment at the onset of lateral torsional
buckling was based on the tangent modulus theory. More extensive
theoretical studies on inelastic lateral torsional buckling of
beam-columns with single span and three span continuous columns
were conducted.37 The critical moment was predicted based on the
tangent modulus and the reduced modulus theories and the post
buckling strength was also determined. The parameters included
in the study were the effect of weak axis bending and warping
restraints and the end moment ratios. It was found that the
presence of warping restraint slightly improves the critical
moment of the columns with pinned ends about the strong axis. The
effect of weak axis bending restraint is not significant for
columns withL/rX < 60; however for longer columns, the weak axis
restraint may increase the critical moment appreciably. It was
observed that short columns with L/rx'<40 may develop a larger

degree of post buckling strength.

The strength of beam-columns which fail by lateral torsional
buckling in the inelastic range was given by Massonnet42 and may
be expressed in the form

M

L &4 _ 1.0 (1.11)
P/ P
cr (I-—) M
PE m

Equation 1.11 is similar in form with the previous Eq. 1.9 except
for the terms Pér and Mﬁ. The coefficient, ﬂ;g*l, for P/PE was
removed for simplicity, being on the conservative side. Massonnet
suggested that Pér be based on the largest slenderness ratio con-
sidering the effective length factor and using the tangent modulus
buckling load. For steel columns, the basic column strength defined

by CRC, which includes the effects of residual stresses can be used

to calculate Pér’ The critical moment Mm, being the inelastic
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lateral buckling strength of a beam under pure bending may be

determined as the product of the inelastic critical stress and the

plastic section modulus.

Equation 1.11 has been compared with test results on I-shape
columns subjected to unequal end moments which failed by inelastic
lateral torsional buckling.42 The comparison was found to be
reasonable and Eq. 1.11 predicted results which were mostly on the
safe side. Galambos in his discussion to the paper by Massonnet
made a comparison between Eq. 1.11 and his exact analysis on
columns of W8x31 and W14x142 shapes with the slenderness ratios

16

varying from 20 <« L/rx < 120. For these cases, Eq. 1.11 pre-

dicted more conservative results as L/rx increased.

Lay, Aglietti and Galamb0334 conducted a series of tests on
unrestrained unbraced beam-columns and one restrained unbraced
specimen. The axial load was applied and held constant while the
joint loading was increased until failure occurred. The test
result on the restrained unbraced column was compared with the
similar specimen which was braced to prevent lateral torsional
buckling. There was a 15 percent reduction in the unbraced column
end moment at failure. The comparison of the test results with
the prediction from Eq. 1.11 was also examined. 1In the comparison,
Pér was computed from the CRC basic column strength curve based on
the largest effective slenderness ratio. The results were found to

be in good agreement.

The AISC Specification recommends Eq. 1.11 for the design
of no-sway unbraced beam-columns for plastic design, but it is

written in the form
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Pcr - %i) Mm < 1.0 (1.12)
E

In this equation Cm=0.6+0.4q, but not less than 0.4. Austin4

examined the Cm factor which was used in conjunction with the in -

plane behavior and found a close relationship with Massonnet's

expression for the equivalent moment factor and with the reciprocal

of Salvadori's Cb factor if the limit 0.4 is imposed. The deter-

mination of PCr is based on CRC basic column strength considering

the largest slenderness ratio (K = 1) and Mm is based on the straight

line critical moment of the beam under pure bending and is expressed

as

wlﬁ

F_
M= (L.07 - 3750 M (1.13)

316 P

‘It should be noted that Eq. 1.12 controls when the maximum
second order moment occurs within the span of the member. When
the maximum moment occurs at the end, AISC recommends the design

to be based on Eq., 1.3.

69
For the allowable stress design method, Yura recommended
the same form of the equation to be used irrespective of where the

maximum second order moment occurs. These equations may be

expressed as f C £
4 ;. mb = -1.0 (maximum (1.14)
Fa fa moment
(1_5;)Fb,cr within span)

a fb :
£ L b = 1.0 (maximum (1.15)
Fa Cbe,cr moment at

end)

where Fa is the critical stress based on the largest slenderness

ratio and Fe is the elastic Euler stress about the strong axis.
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1.2.3 Biaxial Behavior. As discussed earlier, in a no-

sway space frame, the gravity load on the beams which are framed
rigidly to the columns in the strong and weak axes causes biaxial
moments in the column in addition to the axial load. Up to the
present time, most of the theoretical and experimental researches
have been conducted on isolated pinned-end columns subjected to
eccentrically applied load about the strong and the weak axes.

Chen and Santathadaporn11 summarized the previous research prior

to 1968. The ultimate capacity of wide flange columns subjected

to biaxial eccentric loadings was studied at New York University
by Birnstiel and Michalos.6 The theory was improved to reduce

the amount of work necessary to obtain a solution by Harstead,
Birnstiel and Leu.24 Columns were assumed to be initially straight
and untwisted. Residual stress present prior to loading and strain
reversal were considered in the study. The end cross sections may
be either free to warp or prevented from warping. The results

show that in one example, the end warping restraint increases the
ultimate load by 12 percent. The residual stress was found to have
a significant influence on the deformational response and the ulti-
mate carrying capacity of the columns. Marshall and Ellis41 and
Pillai and Ellisso have presented the results of the ultimate load
capacity of eccentrically loaded tubular columns. Santathadaporn
and Chen54 have used the tangent stiffness method to analyze
biaxially loaded columns with end rotational restraints. The ini-
tial curvature of the column and the presence of residual stress
were taken into account. Milner and Gent23’44 presented both
analytical and experimental studies on no-sway restrained columns
subjected to initial beam loads and an increase in axial load. The
effect of strain hardening, strain reversal, and consideration of
torsional moment were studied in the anmalysis and verified with

the experimental investigation; however, the effect of residual

stress was not taken into account. It is concluded that strain
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hardening and strain reversal must be considered in the analysis
if a reliable esfimate of the collapse load is to be obtained.

The effect of torsional moment is found to be not significant,
Vinnakota6l mentioned that he has developed a computer program
capable of solving biaxially loaded beam-columns with rotational,
directional, and torsional end restraints. Recently Mitchell45

has developed a method of analysis using three-dimensional

discrete element models to analyze biaxially loaded beam-columns.
Rotational, directional, and torsional restraints may be input at
the ends of the member and along the nodes within the member ;

therefore, sway columns may be analyzed. However, the effects of

residual stress, strain reversal, and the end warping restraint
are not considered. The internal torsional moment is assumed to F

be proportional to the St. Venant torsional rigidity only.

There have not been many experimental studies on the

behavior of biaxially loaded restrained beam-columns. Most of the
available tests were limited to only study the behavior and strength

of beam-columns of H and I shaped sections subjected to biaxially
7512,31 Some experiments on biaxially eccentrically

41
loaded square tubular columns have been conducted in Canada.

eccentric load.

44
Milner and Gent conducted experiments on small-scale no-sway
columns restrained by elastic beams in two directioms and the test
results were used to corroborate their theoretical prediction, as

was discussed earlier. 1In all of these test programs, the speci-

ments failed by excessive bending about the weak axis.
For design application, CRC28 recommended the plane surface
equation for predicting the strength of isolated columns subjected

to biaxially eccentric load

. cC M
— + ;‘xx + “‘YPY < 1.0 (1.16)
cr (1—-1;—--)Mm (1-§~—)M

Ex Ey PY
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This equation is basically an extension of the recommenda-
tion for uniaxial unbraced no-sway columns bent about the strong
axis. The addition of the weak axis bending term does not consider
the presence of any torsional moment in the member. The amplifi-
cation terms are calculated with respect to the respective planes
of bending and PCr is based on the largest slenderness ratio.

Equation 1.16 produces inconsistent results for the case
of tubular columns. Pillai”9 has modified the CRC equation to the
following form which was reported to give good correlation with

the test results on square tubular columns

p C M C M
7+ v “‘; % + ‘“Y;j = 1.0 (1.17)
cr (].—F—— ) Mm (1_P—) M
Ex Ey Py

where

2 2
=11£meMx + (CmyMy)
v C M +C M
mx X my y

Equations 1.16 and 1.17 give identical results for the case of

uniaxial bending. The difference in the prediction is attributed

mx x
the ratio of the equivalent uniform moments about the strong and the

to the value v which depends on the ratio of C M /CmyMy’ that is,

weak axes not considering the effect of axial load acting through
the deflection. When meMx/CmyMy is unity so that y = 1//2, the
largest difference in the predicted strength results. Recently,
Tebedge and Chen59 have proposed new interaction equations in the
form of curved surfaces for the loading that causes the maximum
moment to occur within the span of the member (stability control)
and at the end of the member (strength control). The equations may

be expressed as, for stability control,

- c M § c M .
| m

= mx X = + 5 y v 5 =1.0
1-5)1 -5 1-57)10 -3

P PE m Pcr PE Py

cr X y (1.18)
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and, for strength control,

X + | — = 1.0 (1.19)

In these equations M and M are the reduced plastic moments
pcx pcy

about the strong and the weak axes in the presence of axial load,

respectively, n is the exponent which depends on P/Py level and

£ depends on P/Py and the width-to-depth ratio of the cross section.

The other terms have the same meaning as before. 1In view of

Eq. 1.19, which is actually the equation for the biaxial plastic

strength of the cross section, the recommendation allows the column

to develop a plastic hinge when the loading causes the maximum
moment at the end of the member. This is applicable for a struc-
ture designed by the plastic design method. For structures

designed according to the allowable stress method, Eq. 1.19 is

not applicable because an elastic analysis is used to determine
the end moments. The 1969 AISC provision on plastic design has

no recommendation related to biaxial bending in beam-columns

because the research work leading to the design equations such as

Egqs. 1.18 and 1.19 was not completed at that time. It recommended
the following interaction equations to be used in the allowable

stress design provision; for stability control

fa mefbx Cmyfby
—_— + =
F + £ . 1.0 (1.20)
<1”F )Fbx (1—F )Fby
ex ey
and for strength control,
f fb f
5 2 + F—§ + FBX = 1.0 (1.21)
: Fy bx by

The comparison of the predicted strength using different
recommended interaction equations with the test results on eccen-

trically loaded unrestrained columns was conducted by Springfield
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and Hegan.58 It was found that the CRC equation is generally
conservative and using Pillai's equation improved the result signifi-
cantly. Chen's equation is found to be reliable for most of the
specimens having H-shape sections and tends to be conservative for
specimens having I-shape sections.

1.2.4 Summary. This section discussed the previous
theoretical and experimental research that are available regarding
the strength of no-sway beam-columns and the development of the
design recommendations. The design equations for planar behavior
and lateral torsional buckling were developed independently but
were found to be similar in form. For laterally unbraced beam-
columns, lateral torsional buckling usually controls the design.
The extension to biaxial bending problems did not consider the
effect of torsional moment. The interaction equations are appli-
cable to beam—columns in plastically designed planar frames because
at the ultimate load, a plastic hinge usually forms in the beam
and has no restraining effect on the column. On the other hand,
the beam-column in the structure designed according to the allow-
able stress design procedure is restrained by an elastic beam.

As a result, there is a relaxation of the column end moment back
to the beam. To be proper, the determination of Fa’ Fex and Fey
should be based on the effective length factor (K<l). However,
the specification suggests that the design be based on the column
height which leads to a conservative result. It is felt that this

is reasonable (using K=1) provided that the slenderness ratio is

in the zone that the buckling strength is inelastic. There are
extensive theoretical and test results that have been used as the
basis for comparison with the design equations for in-plane insta-
bility, lateral torsional buckling, and biaxial behavior of no-sway

beam~columns.
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1.3 Previous Studies on the Strength
and Design of Beam-Columns in
Unbraced Frames

1.3.1 General Review. In unbraced frames where relative

sway between the column ends may occur during loading, the P-delta
effect results in a more adverse effect in terms of the stiffness

and the strength of the columns than in braced frames. Since the

stability of unbraced frames depends solely on the stiffness of
the columns and the framing girders, the reduction of stiffness

due to P-delta effect is an important consideration in column

designin unbraced frames. There has not been much theoretical and
experimental study on the strength and behavior of columns in
unbraced frames and on the development of design equations for
predicting the strength of the columns. Some previous research
investigated the stability of unbraced portal frames with and with-

8,39

out primary bending moments in the columns? Lu developed a

numerical method to solve the sidesway frame buckling problem

assuming that no strain reversal occurs in the partially yielded
beam. The frame was solved initially as a no-sway frame subjected E
to trial values of gravity load and the stiffnesses of the beam

and the columns were determined. The frame was then assumed to
deflect laterally for a small amount of sway and, with the instan-

taneous stiffness computed, a horizontal force required for the equi-

librium could be determined. Several values of gravity load were

tried and the stability load was determined as the limit load at

43
which no horizontal force is present. McNamee and Lu ~ considered
the effect of strain reversal in the solution of inelastic sidesway

buckling of multistory frames. Laosirichon32 conducted theoretical

and experimental studies on the effect of beam yielding on the sta-
bility of columns in frames loaded by gravity load and on the strength
of beam-columns in frames subjected to combined gravity and lateral
load. It was confirmed that there is no significant reduc-

tion of the buckling load or the strength of the columm if

E;
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the beam is loaded slightly above the yield moment level. Only
when the beam is loaded to the plastic moment level did a severe

reduction in column strength occur. However the reduction is

gradual because of the effect of inelastic unloading on the wind-

ward end of the beam and the strain hardening on the leeward end.

The studies on the stability of unbraced frames discussed

so far were conducted on symmetrical frames subjected to symmetrical
gravity load. Salem51 has studied the elastic stability of
unbraced frames where columns have unequal stiffnesses and are
subjected to unequal column loads. Some of the frames studied
contained a "leaned" column, which is a column framed to the
beam by means of a flexible connection (see Fig. 1.9). In this
case, the leaned column has no lateral stiffness and the frame
must depend on the rigidly framed column for its stability. The
studies by Salem provide the evidence that in an unbraced frame,
columns with larger stiffness can provide potential bracing to
other columns in the same story with less stiffness. Based on
Salem's work, Yura67 has illustrated that the assessment of the
stability of an unbraced frame must consider the total buckling
strength of each individual column in the story. There is one
limitation, however, that a column cannot carry a load higher than
its own capacity in the no-sway mode. If this is the case, the
individual column failure will occur before sidesway buckling of
the frame. The other feature of Yura's study is the effect of
yielding in the columns prior to buckling. Based on the CRGC basic
column strength, inelastic buckling occurs when the effective
slenderness ratio is in the range that results in a buckling load
of P/P_ > 0.5. The restraining effect of the beam offered to the
joint iay be characterized by the parameter G
= EIC/LC 3

ET /L, ) -

As the column is partially yielded uniformly along the length, the

beam becomes more effective in restraining the joint; therefore, the
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effective length of the column is reduced. As a result the
buckling load of the column is higher than that calculated on the
basis of elastic G. It was suggested that in determining the
effective length factor, G should be adjusted for the inelasticity

of the columns such that

E
= _t

G, =% G (1.22)
where Et is the tangent modulus of elasticity which may be approxi-
mated from the basic column strength curve (Fig. 1.10)

E

t

—_— 1.23

- (1.23)

~

o s

A theoretical study on the strength of beam-columns in
single story unbraced frames with pinned bases subjected to com-
bined gravity and lateral loadswas conducted by Yura and Galam.bos.7
An algebraic expression for the moment rotation relationship of a
no-sway column subjected to one end moment was obtained by curve
fitting to exact data. The equation for the shear resistance-
sway relationship was established to satisfy the equilibrium and
compatibility conditions; this relationship was then differentiated
to obtain the strength and the corresponding sway at the maximum
load. The results were obtained for strong axis columns with
different slenderness ratios and two extreme values of G. Levi,
Driscoll and Lu36 determined the behavior of restrained columns
in multi-bay frames permitted to sway by constructing the shear
resistance-sway relationship using the moment-rotation of the no-
sway restrained columns. This is essentially the basic step for
what is called the sway subassemblage method for designing umbraced
frames according to plastic design procedures.

The inelastic behavior of frames is generally complicated
because of the nonlinear effects due to material yielding and due

to the geometric nonlinearity. To predict the behavior accurately,
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all the mechanical properties of steel must be considered, including

the effects of residual stress, strain hardening and strain rever- |
sal. 1In the past, the behavior of a frame or its subassemblage
was predicted by the elastic-plastic method of analysis. This

method assumes all the members are elastic except at the plastic |
hinge locations which are confined to a point. With the use of |
discrete element models,as was investigated by Ora148, the spread }
of yielding and several characteristics of steel can be considered |

and a more accurate prediction of the frame behavior can be

~developed.

The experimental studies on unbraced frames are limited in

number. Yen, et 31.66 conducted tests to determine the buckling

strength of single story unbraced frames with the presence of primary

moments. The purpose was to verify the theoretical studies by Lu.38
Later, McNamee and Lu43 investigated the stability of multi-story
frames. Arnold, Adams and Lu2 studied the behavior and strength

of a single story, one bay fixed base frame subjected to a constant
gravity load and an increasing lateral load. Yarimci64 carried

out experiments on three story, one bay and three story, two bay
unbraced frames subjected to combined gravity and lateral loads.

In these specimens the magnitude of load on each column is equal;
therefore, the effect of potential bracing by the other columns
cannot be examined. In fact,the level of column loads in the

test frames under combined loading is small so that the P-delta
effect is relatively insignificant. These few tests were used

to verify methods of inelastic structural analysis rather than 1

.check design procedures.

1.3.2 Present Design Procedures for Columns in Unbraced

Frames. The design procedure for beam-columns in unbraced frames
depends on whether the plastic design method or the allowable
stress design method is used. The procedure based on the plastic

design method will be discussed briefly whereas more details will
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be given for design by the allowable stress procedure. In the
plastic design method, the frame is generally designed story by
story. Each story is subdivided into exterior and interior sub-
assemblages. The columns are designed so that the strength of the
story is adequate to resist the ultimate load with an acceptable
sway limit. This is achieved by determining the response of the
story based on the ultimate strength and stiffness of the sub-
assemblages. The details of the method may be found in the

references on the plastic design method.B’13

In the allowable stress design procedure, only the strength
of an individual beam-column is of interest, since redistribution
of moment is not considered when axial loads are significant. The
moments and axial loads are obtained from an elastic structural
analysis. Interaction equations are used to design the beam-columns
and are expected to account for material nonlinearities (residual

stfess, initial imperfection).

1.3.2.1 Unbraced Planar Frames. AISC Method. The 1969
AISC specification recommends the same interaction equations for

both no-sway columns and columns permitted to sway. Equations 1.4

and 1.5 may be expressed in terms of strength of the member as:
P 0.8
—+ = (1.24)
cr (1-57) M
E

P M

-_— = =

- ty = L.0 (1.25)
y p

In the AISC method, first order elastic analysis is used
to determine bending moments in the frame. P and M in Egqs. 1.24,
1.25 are the axial load and the larger first order end moment in
the columns respectively. AISC recommends Cm = 0.85 for beam-
columns permitted to sway. Pér and Pé are the buckling strength
and the elastic buckling strength based on the effective length

factor in a sway mode (K > 1.0). When the column is braced only

|
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at the joints, laterai torsional buckling must be considered. As
has been shown for no-sway columns, the interaction equation for
lateral torsional buckling has the same form as the equation for
the in-plane behavior except that Pér is based on the largest
effective slenderness ratio and Pé is always the elastic buckling
load in the plane of bending; Mp is replaced by the critical moment
for beam under pure bending. It should be noted that the AISC
equations for sway columns are not derived and the concept of the
buckling strength of the story is not considered. The first order
moment is used to design the girder; this leads to unconservative
design since the P delta effect increases the moment in the column

as well as in the beam.

P-delta Method. A new design method for beam-columns in

unbraced frames, called the P-delta method, was proposed by Wood,

62,63 and has been recommended in the 1976 SSRC

Beaulieu, and Adams
Guide.29 In this method, the P-delta effect is taken into account

by using an elastic second order analysis to determine the

moments in the frame. 1In a true elastic second order analysis, com-
plication arises because the reduction in the bending stiffness of
the member due to the presence of axial force must be considered.
An approximate second order analysis is proposed whereby the frame
is initially analyzed using the first order elastic analysis to
obtain the sway displacement. The overturning effect of PA is
represented as a sway force of YPA/L which is applied to the frame
as a fictitious wind load, and the frame is reanalyzed in this
manner until convergence is obtained. The moments that are deter-
mined fromthe second order analysis have included the secondary
moment due to the P-delta effect. It is recommended that the
columns be designed in the same way as the no-sway column. In

the previous section, it has been discussed that for braced frames,
columns may be conservatively designed by considering K to be

unity. Therefore, the design of a sway column may be based on the
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following equations written in terms of the strength of the member:

P CmM*

E“'* P = 1.0 (1.26)
cr (1—5—) M

E p

P M*x

P + 0.85 Yl 1.0 .27
y P

where Cm = 0.6 +0.4q 20.4

In these equations, M* is the larger column end moment determined
from the second order analysis. It should be noted that where

Eq. 1.27 controls, M* will correspond to the plastic moment of the
cross section (M* = MPC). It is felt that this will lead to uncon-
servative design because the analysis to determine M* is based on
the elastic analysis; therefore, the P-delta effect has been under-
estimated. Figure 1.11 shows the envelope obtained by analyzing
the frame at the load corresponding to the strength of the column
using an elastic second order analysis. Therefore, the following

equation should be used for the case of strength control:

P M*
“E-'+ vl 1.0 (1.28)
y P

The justification of Eqs. 1.26 and 1.28 needs to be verified by
comparison with exact theoretical results. The design for lateral
torsional buckling is the same as in Sec. 1.2.2 for no-sway

columns.

The P-delta method recommends the design of the girder be
based on the second order moment which is more proper than the AISC

method.
Effective Length Method. In the investigation on the

strength of single story frames70 subjected to combined gravity
and 1ateral loads, it was observed that, for bending about the
strong axis, the column end moment curve at the instability limit

follows the Mbc curve closely until the buckling load is approached.

__#
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Therefore, there is not much interaction between the buckling and
the bending strength. Furthermore, it was understood from the study
on the stability of unbraced frames that the maximum load that can
be carried by a column is the buckling load in the no-sway mode and
the stability of unbraced frames should be assessed from the
buckling strength of the system. Based on the results of these

. . . . . . .6
studies, Yura proposed the following .linear interaction equation: 9

*
}¢P—+ ﬁ— = 1.0 (1.29)
cr p
where
Mk = — M
P _
1 - /
ZPE

where PCr is based on K = 1.0, ZPé is the sum of the elastic buck-
ling load of ail the columns in the bent considering K as in a sway

mode (K> 1.0), and M is determined from the first order elastic

analysis of the frame. The method described above is similar to

the treatments in the current ACI Code72 and in Ref. 73. 1Imitially,

the inelasticity of the columns67 due to high axial load was taken

into account by adjusting ZPé in the amplification term of Eq. 1.29

such that
* = !
ZPcr ):[PE T(P)] (1.30)
where Et(P)
T(P) = 5

being the tangent modulus of elasticity corresponding to the axial

load on the column to the elastic modulus of elasticity. 1If ZPir;

is used in Eq. 1.29 for ZPé, the equation also checks the buckling

strength of the frame as well as the limit where YP = 0. However,

it was felt that the consideration of the adjustment for inelastic-
ity of the column may lead to confusion in the deslgn practice.

Therefore, a separate check for the stability of the system is

I



30

suggested as follows:

P = EPér (1.31)

when Pér is the buckling strength of individual columns considering
the effective length factor in a sway mode. The amplification

factor
1

TP
(1- )
Py

for the larger end moment (first order) has been derived for a frame
subjected to a lateral load. For frames that are subjected to con-
current beam load and wind load, this factor may overestimate the
extent of the second order moment. Isbell27 has conducted an
investigation of the approximate second order moments. It was

found for the combined loading case that the first order end

moments may be separated into two components, those resulting from
loads which do not cause sway and from loads which cause sway dis-

placement. This may be expressed as

% = + .
M BlMNS BZMSW (1.32)
where
Cm
B1 = p = 1.0
N
E
py
B, = 1-Z=
2 EPE
The first term of Egq. 1.32 is intended to represent the maximum

second order moment due to gravity load which may occur at the end
or within the span of the member. The second term is due to wind
load which always occurs at the end of the member; M* may be

slightly conservative for B, > 1.0. Further it is recommended that

1
the girder design be based on the amplified end moment, i.e.,
* o=
Mend MNS + BZMSW (1.33)

To design for lateral torsional buckling, it is speculated that
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P , P’ are based on the largest slenderness ratio and C M is
cr cr b'm

used in place of Mb in Eq. 1.29.

1.3.2.2 Unbraced Space Frames. An unbraced space frame is

one in which there is no bracing in any direction and the column-to-

beam connections are moment resisting so that the columns are sub-

jected to biaxial moments, For design, the currently available
recommendation is the AISC method. The AISC Specification has
extended the same interaction equations for columns in no-sway

frames to columns in sway frames. These equations may be referred

to again, as follows:

0.85M 0.85M |
P,P + 5 X4 S Y - =1.0 (1.34)
cr (l—§7~)Mh (1“57“9Mpy
Ex Ey
P Mx MX )
—_ 2 = 1, 1.35
sty ot w 1.0 ( -

y px Py

In these equations, M% and M& are the larger end moments obtained &

from first order elastic analyses; Pér is the buckling load based
on the largest slenderness ratio (K> 1.0, usually the weak axis

controls). The other terms have the same meaning as before. Equa-

tion 1.34 is based on the CRC equation (Eq. 1.16), except that me

and Cmy are specified to be 0.85 and the effective length factors in

: ’ ’ ’
a sway mode are used to determine Pcr’ PEx’ and PEy

Recently, Springfield56 suggested a design recommendation
which is essentially using the same concept as the P-delta method
in planar frames combined with Chen's biaxial interaction equations.
It is suggested that the frame be analyzed by a second order elastic
analysis to obtain the column moments about the strong.and the weak

axes. These second order moments are substituted into Chen's equa-

tions as in the design of columns in no-sway frames (see Egqs. 1.18

and 1.19).
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1.3.3 Summary. The previous theoretical and experimental
studies on the strength of beam-columns in unbraced frames were
discussed in this section., The studies that were available were
limited to planar behavior and adequate bracing was assumed out of
the plane so that no failure due to lateral torsional buckling was
possible. Three design approaches were discussed (the current AISC
method, P-delta method, and the effective length method), all of
which use interaction equations. It was mentioned that the AISG
equations as currently used for columns in unbraced frames are not
derived and are merely extended from the case of no-sway columns.
The AISC method does not consider the increase in girder moments due
to second order effects. In the P-delta method, the second order
moments are obtained from an elastic second order analysis. The
P-delta method does consider the secondary girder moments in a very
efficient manner. The effective length method correctly considers
the concept of the buckling strength of the story for determining

the second order moments.,

1.4 Scope

Based on the discussions in Secs. 1.2 and 1.3, it may be
seen that the design of beam-columns in no-sway frames is well under-
stood. There have been numerous theoretical and experimental studies
that have been used to verify the design interaction equations for
all modes of behavior. Although these equations were developed for
unrestrained beam~columns, they have been applied satisfactorily for

the design of beam-columns in continuous braced frames.

On the other hand, the design of beam-columns in unbraced
frames is the subject of controversy even for planar behavior. The
complication arises because the design cannot just consider an indi-
vidual column as in no-sway frames. Referring to Egqs. 1.24, 1.26,
and 1.28, the intent of the moment term is to determine the elastic
second order moment. Whether the first order moment with an ampli-

fication factor or an approximate second order analysis is used is
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immaterial; the main problem relates to the form of the interaction

equations to be used. The justification of any equations can be

established by comparing the equationswith theoretical and experi-
mental results which are currently very meager. For planar behavior,
only the solution of a single restrained column permitted to sway

36,70 These studies only considered bending about the

is available.
strong axis of the column. The behavior about the weak axis of the
member should be investigated if the design method is general and
is to be developed for biaxial bending. Tests on biaxially loaded
beam-columns, at least in no-sway frames, show that the specimens
always fail about the weak axis. A study of unbraced frames

with columns of unequal stiffnesses and subjected to combined
gravity and lateral loadsis necessary. A special case concerns the
problem of leaned frames where a rigid frame has to provide the
stability to the frames with flexible connections. These types of
frames are becoming increasingly popular in construction practice

and they may be represented by the model, as shown in Fig. 1.9.

Theoretical studies on lateral torsional buckling of

restrained columns in unbraced frames with and without sway bracing

in the perpendicular direction to the plane of the frame and on
the behavior of beam-columns in unbraced space frames are necessary
before rational design equations may be proposed. Referring to the

experimental studies, few experiments have been conducted on

unbraced frames. The loading condition did not show the effect of
columns with unequal stiffnesses. There have been no experimental
studies on the behavior and strength of sway restrained columns in

unbraced space frames.

1.5 Objective
It may be seen that there are several areas regarding the
behavior and strength of columns in unbraced frames required to

justify any design method. The main purpose of this study is to
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provide theoretical solutions and experimental results for use in
developing future design recommendations for beam-columms in unbraced

frames. The theoretical study will be focused on two aspects:

(1) The development of ultimate strength curves for a
variety of unbraced frames so that the accuracy of any suggested

interaction equations can be evaluated.

(2) The determination of exact second order elastic moments
for comparison with the P-delta analysis and the amplification

factor approach.

Experimental studies will be conducted on full-size speci-

mens in the following areas:

(1) Unbraced frames with columns having unequal stiffnesses.
Two loading conditions will be studied, gravity load only and com-
bined gravity load and wind load. The purpose is to verify the
concept that the buckling strength of an unbraced frame is approxi-
mately equal to the summation of each individual column strength in
the sway mode and to justify the current recommended design

equations.

(2) Biaxially loaded restrained beam-columns permitted to
sway. The purpose is to provide data on the behavior of beam-
columns in unbraced space frames and to justify the current design

recommendation.




CHAPTER 2

THEORETICAL STUDIES

2.1 General

In continuous frames proportioned according to the
allowable stress design procedure, the limit of structural useful-
ness ~occurs when the strength of a critical member is reached. The
additional load-carrying capacity of a frame due to the redistribu-
tion of moment beyond the first plastic hinge formation is not
considered (except that a partial redistribution of moment is
allowed according to AISC Specification Sec. 1.5.1.4). The strength
of a beam~column is attained when the moment at a cross section
reaches M o OF when instability (either in-plane or lateral torsional
buckling) occurs. For design application, the strength 6f the beam-
column is represented By interaction equations which relate the
axial load and the first order column end moment. It has been indi-
cated that the interaction equations for beam~columns in unbraced
frames are merely extended from the case of beam-columns in no-sway
frames. There are limited theoretical solutions70 that can be used
for comparison with the design equations. The purpose of this
chapter is first to provide extensive results on the strength of
beam-columns in some unbraced frames, and second to evaluate the
accuracy of the design interaction equations. The results of the
analysis of example frames are used as the basis for such comparison.

Only the in-plane behavior of the frame is considered.

Consider the portal frame in Fig. 2.1, which represents a
lower story of multistory unbraced frames. The frame is symmetrical

in geometry and all connections are rigid. Two equal axial loads

35
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are applied at the column tops as well as a concentrated lateral

load at the beam—to—coluﬁn joint. The axial loads represent gravity
load from the upper stories and the lateral load simulates wind load.
The stability of the frame is controlled by sidesway buckling. Since
the geometry and the loading are symmetrical, the columns reach their
individual buckling capacity simultaneously. Figure 2.2 shows a
typical leaned frame consisting of a column rigidly comnected to the
beam and a column with a pinned connection. The load on the pinned
column represents the load on all the leaned columns in the system
(see Fig. 1.9). 1In a sway buckling mode, the column with the .simple
connection has no lateral stiffness and the stability of the system
must rely on the stiffness of the rigidly framed column and beam.
This type of framing system is found to be economical and has been
used frequently in practice.57 Yet, the current AISC Specification

has no provision for the design of columns in this type of frames.

The unbraced frame models in Figs. 2.1 and 2.2 are used
throughout this study. In these models, moment redistribution does
not occur because the frame will become a mechanism as soon as a
plastic hinge is formed. Therefore, the maximum load of the frame
is the load at which the strength of the beam-column is reached.
Yura and Galambos70 determined the strength of frames similar to
those shown in Fig. 2.1. In their studies, the columns were bent
about the strong axis and the results were presented mainly for the
slenderness ratio of 40. In this study, the strength of beam-
columns will be determined for various slenderness ratios and rela-
tive column-to-beam stiffnesses for both strong and weak axes. The
presence of residual stress is considered. The effect of loads on

the leaﬁed column on the strength of frames will be examined.

2.2 Method of the Analysis

The columns in unbraced frames shown in Figs. 2.1 and 2.2

ére made of W8x31 section conforming to ASTM A36 steel. This
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column shape has been used extensively by previous researchers.18

The stress-strain relationship of the material is shown in Fig. 2.3,
where the yield strength, Gy = 36 ksi and the modulus of elasticity,
E = 29000 ksi. The idealized residual stress distribution that is
used in this study is shown in Fig. 2.4. This pattern of residual
stress is typical for rolled W shapes and is a result of uneven

" cooling process.26 The beam is assumed to remain elastic because
the strength of the beam-column is of interest in this study. It
is not desirable that the frame fails due to a plastic hinge formed

in the beam.

Figure 2.5 shows a beam-column in a deformed configuration.
The geometry of the sway displacement and the end rotation of the
column and the compatibility condition of the joint may be expressed

as
B = —%: - & (2.1a)

= 06
and Gb . (2.1b)
in which Gb and GC are the angles between the tangent at the end of
the beam and column with the original position; & is the rotation
between the tangent at the column top and the chord; A is the sway

displacement; and LC is the column length.

Referring to Fig. 2.6, assume that if the beam is very long
compared to the length of the column, the difference in the column
loads which is attributed to the overturning effects of the wind
and the P-delta effect of the column loads is not significant.
Therefore, the axial loads in both columns may be considered to be
equal to the applied load at the column top. The shear force in each
column is . H/2 due to symmetry, where H is the applied wind load.
The equilibrium condition of the columns under the action of end
moment, axial force, and shear force, and the joint equilibrium

condition require that
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M= VL_+ PA (2.2a)

C

Il

and M Mb (2.2b)

(o]

The idealized moment-rotation characteristic of the beam
subjected to equal end moments causing reverse curvature is (see

Fig. 2.7):

Mb =-——0 (2.3)

In Eqs. 2.2 and 2.3, MC and My are end moments in the

column and the beam; V and P are the shear force and the axial
force in the column, respectively; Ib is the moment of inertia; and i

Lb is the length of the beam.

In view of Eqs. 2.2b, 2.3, and 2.1b, the sway displacement

may be determined from Eq. 2.la, as follows:

A M

=—5— 4 ¢ (2.4)
L, ~ 6EL /L

Nondimensionalizing all the terms in Eq. 2.2a by Mb, the
plastic moment of the cross section, and with some manipulation of

the axial load term leads to

§£§.= XES = gﬁ _ | XA B EE A (2.5)
2M M M Z /P r L )
P 3 p y c

where all section properties are related to the bending axis.

The equilibrium and compatibility conditions for leaned
frames in Fig. 2.2 are formulated in a similar manner, except that
the rotational stiffness of the beam is BEIb/Lb and that part of the
shear resistance of the rigidly jointed column is used up to over-
come the overturning effect of axial load on the pinned column.
Consider the structure in Fig. 2.8 in a sway configuration defined

by A, the axial force on the leaned column produces an overturning

—_i
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moment of PZA. Thus, the shear resistance that must be provided by

the rigidly jointed column becomes

>

P

2
V2 = I (2.6)
c

In view of Eq. 2.4, the sway displacement of the leaned frame is

given by
M
A c ’
- = == + B 2.7)
Lc 3EIb/Lb

For the shear resistance of the rigidly joint colummn V, the wind
load that can be applied to the frame is equal to the effective

shear resistance defined by the following equation:
H = V-V (2.8)

Equation 2.8 may be expressed in nondimensionalized form, in view

of Eq. 2.5, as

HLC_VLC_PZA—E_ _réiL_cé_
M M M Z /P r L
i P P P y c
P_A (2.9)
. 2
M
P

It is to be noted that in the development of Eq. 2.9, it

has also been assumed that L, >> Lc so that the change of the axial

force due to the overturningbeffect is not significant.

In order to determine A and H in Eqs. 2.4, 2.5, 2.7, and
2.9, the moment-rotation characteristics (Mc vs 6') of the columns
must be known. This relationship can be obtained for a given
slenderness ratio and a specified axial load by numerically inte-
grating the moment-thrust-curvature relationship of the cross
section and satisfying the boundary conditions. The details of the

procedure may be found in Ref. 19. The moment-thrust-curvature
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relationship can be determined numerically by dividing the cross
section into a series of grid elements. The axial force and moment
are computed by integrating the elemental force and moment over the
cross section using the assumed stress-strain relationship and
residual stress distribution, and satisfying the equilibrium and
compatibility conditions. The details for calculating the moment-
thrust-curvature relationship are given in Appendix A. Figures 2.10
and 2.11 show typical moment-thrust-curvature relationships for
strong and weak axis bending. The moment and the curvature are non-
dimensionalized by the moment at initial yielding My(My =S x Uy)
and the curvature at initial yielding ¢§(¢§ = qu/c), respectively.
It may be observed that the reduction in flexural rigidity of the
cross section due to the presence of residual stressés is more pro-
nounced for weak axis bending than for strong axis bending. The
results of the computed relationship are in good agreement with

others.lg’48

After the moment-rotation characteristics of the column
have been established, the shear resistance (or the effective shear
resistance)-sway relationship may be determined for a particular
value of G from Eqs. 2.4 and 2.5 for portal frames and from Egs. 2.7
and 2.9 for leaned frames. These relationships represent the
equilibrium positions of the frame. For the portal frames and the
leaned frames in the present study, the applied wind load H produces
an elastic first order moment at the column top equal to HLC/Z and
HLC, respectively. Therefore, Eqs. 2.5 and 2.9 may be interpreted
as being the relationship between the first order column end moment
and the sway deflection. The typical solutions of the .portal frames
are shown in Figs. 2.12 and 2.13 for the columns bent about the
strong and the weak axes, respectively. The maximum strength of
beam-columns corresponds to the peak of the shear resistance-sway
relationship. This peak is defined as the instability limit if

the column end moment, Mc, does not reach MpC at the maximum load.
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For columns with low slenderness ratio and low axial load,
instability may not occur. Instead, a plastic hingé- (moment-reaches
M ) may form at the top of the column and the frame fails by a

pc
plastic mechanism.

The results that are shown in Figs. 2.12 and 2.13 are for
frames éubjected to a constant level of axial loads. If the first
order moment corresponding to the peak value of theghear resistance-
sway relationship is plotted as a function of the axial load, an
interaction curve is obtained. Typical interaction curves are shown
in Fig. 2.14a and 2.14b for frames with columns bent about the
strong and the weak axes, respectively. 1In these plots, the solid
curves represent the nondimensionalized column end moment, Mé/M ,
and the dashed curves show the nondimensionalized first order end
moment, HLc/ZMf' It may be observed that for low axial load
(P/Py < 0.15), the frames fail as a plastic mechanism. Inelastic

instability governs for the higher level of axial load.

2.3 Results on the Strength of
Beam-Columns in Unbraced
Frames

The portal frames and the leaned frames shown in Figs. 2.1
and 2.2 were analyzed for a wide range of column slenderness ratios
and two extreme values of G corresponding‘to a rigid and a very
flexible beam restraints. For leaned frames, the analysis was con-
ducted for several values of @, which is defined as the ratio of
the load on the pinned-end column to the load on the rigidly jointed
column. 1In both classes of frames, bending about the strong and the
weak axes of the column is considered. The effect of residual
stresses on the strength of beam-columns is examined in some of the
portal frames. The results of the ultimate strength analysis are
presentea in the form of interaction curves where the nondimension-

alized first order moment, HLC/ZMb or HLc/Mp’ at the maximum




42

strength of the beam~columns is plotted against the nondimensionalized

axial load, P/Py

Results on the strength of beam-columns in portal frames are

given in Figs. 2.15 to 2.19. The slenderness ratio is a parameter
20 to

]

in these interaction curves and it varies between LC/r
Lc/r = 80. Two values of G considered are G = 0 and G = 3.0. The
effective length factors corresponding to these extreme values of

G with the bottom end of the column pinmed (G = Q) are 2.0 and 2.92,
respectively. This gives a range of the effective slenderness ratios
from KLC/r =40 (K = 2.0, LC/r = 20) to KLC/r = 234 (K = 2.92,
Lc/r = 80). For the results shown in Figs. 2.15 and 2.16, the
residual stress is taken into account. In order to examine the
effect of residual stress on the strength of beam-columns, an
analysis was conducted on portal frames with Lc/r = 40 and Lc/r =
60. In this analysis, the moment-thrust-curvature relationship with
no residual stress was input. The results of this study are com-

pared with those that consider the effect of residual stress in

Figs. 2.18 and 2.19.

Results on the strength of the rigidly framed column in
leaned frames are given in Figs. 2.20 to 2.27. 1In each plot, G and
Lc/r are constant and the variable is ¢. 1In these results, the
residual stress is considered in the analysis. The slenderness
ratio and G vary from LC/r = 20 to Lc/r =60, and G =0 to G = 2.0.
The effective length factors corresponding to this range of G are
K=2.0 to K= 3.25. It should be noted that the results for
colums in leaned frames for the case where there is no load on the
pinned-end célumn, a = 0, are the same for columns in portal frames,
provided that one-half of the G value in leaned frames is used in
portal frames. This results from the fact that the stiffnesses of
the restraining beams are 3EIb/Lb for leaned frames and 6EIb/Lb

for portal frames.
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In portal frames and leaned frames in the present study,
it has been assumed that the beam is very long compared with the

height of the column. Consider a leaned frame subjected to con-

stant column loads P and OP and a lateral load H (see Fig. 2.2).

At the equilibrium position, suppose that the sway deflection of
the frame is A, the overturning moment due to the column loads and
the lateral load is HLC + (1 + 0)PA. This results in an increase
in the axial load in the leeward column and a decrease in the axial
load in the windward column of equal magnitude. The change of
axial load due to the overturning moment is [HLc + (1 + a)PA]/Lb.
Therefore, the axial load in the leeward column is P + [HLC +

1+ a)PA]/Lb. In usual design practice, an elastic first order
analysis is used to analyze the frame. This neglects the over-
turning effect due to the column loads; therefore, the axial load
in the leeward column is P + HLC/Lb' It may be seen that the plots
of interaction curves depend on the definition of the axial load.
With the assumption that Lb = LC, the change of axial load due to
the overturning effect is small and the axial load may be considered
to be equal to the applied column load. The effect of beam length

will be discussed later in Sec. 2.8.

2.4 Discussion of Analytical Results

Figures 2.15 and 2.16 show the effect of slenderness ratios
on the strength of beam-columns for bending about the strong and
the weak axes, Generally the strength decreases as the slenderness

ratio increases. It may be observed in these figures that for

HLC/ZMb larger than 0.1, and for LC/r larger than 40, the relation-
ship between the first order moment and the axial load is approxi-
mately linear. In the vicinity of the stability load, the change in
moment occurs faster, especially for weak axis bending than for
strong axis bending. This behavior can also be seen in Fig. 2.17,

which shows the comparison of the strength of beam-columns having

the same LC/r and G and are bent about the strong and the weak axes.
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Generally, the stfength is lower when bending occurs about the weak
axis. This is attributed to the deterioration of bending stiffness,
which is faster for weak axis bending than for strong axis bending.
For columns with a small slenderness ratio, the strength with
respect to the plastic moment of the cross section is higher for
weak axis bending when the column load is less than about 65 percent

of the buckling load.

The effect of residual stresses can be seen in Figs. 2.18
and 2.19. The reduction of strength due to residual stress is larger
for the weak axis and for stiff restraint. For Lc/r =40 and G = 0,
the effective slenderness ratio is 80. The reduction 1in buckling
strengths is 15 percent and 23 percent of Py for strong and weak axis
bending, respectively. The residual stress effect decreases as the

level of axial load decreases and as the slenderness ratic increases.

Referring again to Figs. 2,12 and 2.13, which show typical
shear resistance-sway relationships for strong and weak axis bending
for Lc/r = 40, it can be observed that the shear stiffness reduces
considerably as G increases from 0 to 3.0. For strong axis bending,

the nondimensionalized shear stiffnesses

(ﬁLc A )
oM [ L
p C

0.2 for G = 0 and G = 3.0 are 53.1 and 16.6, respectively;

It

at P/Py
at P/Py = 0.5, the stiffnesses for G = 0 and G = 3.0 are 37.6 and 3.6.
The sway at the maximum strength also is affected by G. With ¢ = 0,
the strength at P/Py = 0.2 is reached at A/LC less than 0,02, while
A/Lc is about 0.04 for G = 3.0, This range of sway is similar for
strong and weak axis bending. The significant effect of residual
stress for weak axis bending at high axial load may be seen in Fig,
2.13. The typical relationship between the axial for and primary and
secondary moments at the maximum strength for the case of LC/r = 40

is shown in Fig. 2.14. The plots also show the plastic moment of




45

the cross section in the presence of axial load. At a given axial
load level, the difference between the column end moment and the
primary moment is the moment that is caused by the P-delta effect.
This is more significant for weak axis bending with small restraint;
for example, at P/Py = 0.3 with G = 3.0, the P-delta moment for
strong and weak axis bending amounts to 0.4M and 0.54M , respec-
tively'(ME is with respect to the bending axis). A siggificant
difference in the behavior of the frames with respect to the bending
axis can also be observed. For strong axis bending, the column end-

moment curves follow the MpC curve for most of the axial load level.

The deviation from the Mpc curve is rather sudden as the buckling
load is approached. The deviation occurs at a rather low level of

axial load for weak axis bending.

The effect of load on the leaned column is shown in Figs.

2.20 to 2.27. 1In general, the reduction in shear strength of the

frames is appreciable. The reduction in axial load capacity of the
rigidly jointed column at the frame stability limit can be deter-
mined by considering the shear equilibrium of the structure in

Fig. 2.8. At the instant of buckling, an infinitesimal sway dis-
placement, A, is assumed. The shear required for equilibrium of
the pinned column is QPA/LC which must be supplied by the rigidly
jointed column. The frame reaches the stability limit when the
initial shear stiffness (V/A)A_)O is equal to GP/LC. This may be

illustrated by referring to Fig. 2.28, where the initial shear

stiffness and the load on the pinned column are plotted as a func-
tion of the load on the rigidly jointed column. All the quantities
are nondimensionalized by Py, It may be noted that in the inelastic
zone (P/Py > 0.7), the shear stiffness depends on the axis of bend-
ing. The frame reaches the stability limit at the axial load level
defined by the intersection of the aP/Py line (radial 1ine) and the
VLC/PyA line (sloping line). As an example, for a frame having

Lc/r = 40 and G = 0 and with o = 2.0, the critical axial load that

*I*




46

can be carried by the rigidly jointed column is P/P = Q.47 (the
ordinate of point A). This result can be verifiedyby considering
Salem's solution in Fig. 2.29. For the example considered, Pl/P2 =
0.5, giving (P1 + Pz)/ZPE = 0.141 or Pl/Py = 0.47 «TY = 36 ksi and

E = 29000 ksi are used for computing the results in Fig. 2.28). The
results in Fig. 2.28 may be presented in another form, as shown in
Fig. 2.30, where the buckling strength (such as point A) is plotted
as a function of a. The buckling strength, P, is nondimensionalized
by P’, the elastic buckling load in which the effective length
factor is taken into account. In the elastic range and the case for
large G, the result coincides with the solution ZP/EP% = 1.0.67 For
curve A with G = 0 and LC/r = 40, inelastic buckling starts at P/P% =

0.57, which corresponds to P/Py = 0.7.

2.5 Second Order Analysis of
Example Frames

As mentioned in Chapter 1, the current AISC Specification
takes into account the P-delta effect in columns in frames permitted
to sway indirectly by amplifying the larger column end moment
obtained from the first order analysis by the expression of
0.85/(1 - P/P%). On the other hand, in the P-delta method of design,
the secondary effect is considered directly in the second order
analysis. For leaned frames, the direct application of the AISC
procedure leads to an unconservative prediction of the second order
moment because the P-delta effect due to the axial load on the
pinned column is not considered. The secondary effects in leaned
frames can be taken into account if the second order analysis is
performed, or if the effective length method is used; that is, to
consider the strength of the story in the amplification factor.

The purpose of the study in this section is to examine the accuracy
of the approximate methods (P-delta method and the effective length

method) for determining P-delta effects in portal frame and leaned
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frame examples. An exact elastic second order analysis is used as

the basis for the comparison.

2.5.1 Exact Second Order Analysis. Consider an elastic

beam-column, as shown in Fig. 2.31. The deformation of the members
are end rotations and the relative end translation. By means of
the slope deflection equations? in which the effect of axial force
on the stiffness of the member is considered, the end moments MAB

and MBAare expressed in terms of deformations as

A

Myp= S1K.8, + S,K 0y - (5, +5,) K_ —LC— (2.10a)
and
=S K68 + 8.K 8 - (S, + 58 ) K A (2.10b)
Mpy = S,K.6, + 5;K 6y 1 ¥ %) R T :
where s - 1 -8 cot B
17 2 tan B/2
2 tan Ple g
B
s - BcosecB - 1
2 2 tan g/2 _.
p = ’
B = Lc ET
C
EIC
and KC = I
C

.For the case that end B is pinned, MEA= 0 and GB can be
solved in terms of BA and A/Lc; Eq. 2.10a then becomes

AB 3¢

g2 5, °
where 83 = i—j—g—zgz7§ = 1 - EI s1

A
M = S3KCGA - S_.K Lc (2.11)

For every member in a rigid frame, end moments can be
expressed in terms of end deformations; compatibility requires that

the end rotations of members that frame into a common joint are the
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same. Equilibrium conditions, i.e., joint moment equilibrium and
shear equilibrium for the story, are used to solve for the unknown

joint displacements.

For the portal frames shown in Fig. 2.1, the unknown joint
displacements are GB and A/LC, considering antisymmetric bending in
the beam. The joint moment equilibrium and the shear equilibrium

of the story are

Y0 * Mpe

HLc A
2 * MEA + PLC LC

Expressing moments MﬁA and MBC in terms of joint displace-

]
o

(2.12)

[}
(@]

(2.13)

ments and substituting into the equilibrium equations leads to two

simultaneous stiffness equations which can be written in matrix

form as
- r
S, K + 6 -S. K 6 0
3¢ Kb 3¢ B _ (2.14)
A HL
-S.K S —c
3¢ S.K - PL L 2
3c c c
L }

In Eq. 2.14, K = EIb/Lb' Solving Eq. 2.14 for GB and A/Lc and
substituting into the slopedeflection equations yields the end
moments. Because the axial force in the column is not exactly

equal to the applied axial load, due to the shear force in the beamn,
a few cycles of iteration are required to adjust the level of axial

force, but the change is usually not significant.

‘The problem can be approached similarly for the leaned
frames in Fig. 2.2. Consider the equilibrium of the whole frame;
knowing that there is no moment at the real hinge leads to two
unknown joint displacements, BB and A/LC. The stiffness of the
beam with one end hinged is 3Kb' In view of the equilibrium

equations

——L
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g+ My - 0 2.15)
and HL + + 2PL L. 0 2.16
_ c MBA c LC (2.16)
‘the problem is reduced to the following matrix equations
85K, + 3K ~SK GB 0
A = (2.17)
—SBKC S3KC - X?Lc LC HLC

and the end moments are.obtained the same way as in portal frames.

2.5.2 P-delta Method of Analysis. In the P-delta method

of elastic second order analysis, the reduction of member stiffness
due to axial load is not considered. Referring to Fig. 2.32 which
shows an unbraced frame subjected to combined gravity and lateral
loads, the P-delta analysis starts by analyzing the structure by

first order elastic theory to obtain sway displacement AO.

With this sway displacement, a fictitious lateral load which is
equal to ):'PAO/Lc is added to the applied lateral load. The struc-
ture is reanalyzed, also by first order elastic theory, each time

a new fictitious load is computed. The analysis continues until

the sway displacement does not change from the previous cycle within
a specified tolerance. The final end moments obtained include the
P-delta effect. When the axial load approaches the stability load
of the frame or when the frame is flexible, the convergence is

usually slow.62

The formulation of the equilibrium equations is the same
as in the exact second order analysis except that 83 is equal to 3,
the value for members in flexure, and the overturning moment is
transposed to the load side. Thus for the portal frame examples,

the equilibrium equations become
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- -
3Kc + 6Kb -31(.C 0
(2.18)
HLC
-3K 3K —= 4+ PA
c c 2 i-1
L ° *

in which Ai and Ai 1 denote the sway displacement in the current and
the previous iterations,resPectively. For the first iteration,

PAi_l is not considered.

Similarly, equilibrium equations for the leaned frames are

3Kt + 3Kb -3KC GB 0
A = (2.19)
-3K 3K ~= HL + YPA.
c c LC c i-1

Alternatively, since the approximate analysis uses first
order theory and the fictitious lateral load simulating the over-
turning effect due to gravity load is added to the applied load,
results from successive iterations are proportional to those from the
first order analysis under the applied lateral load alone. Therefore,
an expression to determine the second order moments can be formu-
lated readily. Consider the unbraced bent in Fig. 2.32b, under the
application of H. Define the sway displacement of the bent as
determined by first order elastic theory by AO, the sway stiffness

of the bent is

H
K, = -— (2.20)
Ao

S
The fictitious load due to gravity load and sway Ao is EPAO/LC. In

the second cycle, the sway displacement of the bent becomes

(ZPA /L )
A=A + o ¢

1 o KS

(2.21)

cycle

Similarly, for the ith
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(ZPA, /L) .
h, = A 4 —l (2.22)
i o] K
S
When the solution converges, Ai:w Ai-l = A; in view of

Eq. 2.22, the final sway can be expressed as

Ao
A = ;T————EET— (2.23)
KSLc

The actual loading on the frame is adjusted to the modified

lateral load H* = (H + ZPA/LC), or using Eq. 2.23

H
H% = ——f——
1 - P (2.24)
KSLc

Therefore, if shear force on column i produced by the
applied load H is Vi’ so that the first order moment in the column
is ViLc’ then the second order moment becomes

V.L
ic

*—_—_.__.__
MT = X (2.25)

KSLC

It should be noted that the true shear in the column is not
equal to Vi(l - ZP/KSLC); instead, it is obtained frg& equilibrium
of the column taken as a free body with end moment M given by
Eq. 2.25. The buckling load of the frame is the load at which the
stiffness of the bent vanishes. The sway stiffness of the bent in

the presence of axial load is H/A and, in view of Eq. 2.20 can be

expressed as

H _ _H Y T _ P
=3 ( KL)_KS(l KL) (2.26)
o S ¢ S ¢

Therefore, in the P-delta method of analysis, the frame reaches

the stability limit when
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¥P = K_ L (2.27)

For example frames used in this chapter, the full sway
stiffnesses for the cases of portal frames and leaned frames are
KS = 6EIC/(G + 2)Lc3 and KS = BEIC/(G + 1)LC3, respectively; the

second order moments at the column tops for portal frames are

. HL
M" = <
2[1 - (G + 2)LC2 P/6EI_]
HL (2.28)
= C
Trz(G + 2 P
[1 - 2 5]
6K E

and for leaned frames

HL
M = <
[1 - (G + l)ch TP/3EL_]
HL_ (2.29)
= (G + 1) TP
3K E

In Eqs. 2.28 and 2.29, K is the effective length factor and P% is

the elastic buckling load based on the effective column length.

2.5.3 Effective Length Approach. Consider the bent in

Fig. 2.32c being subjected to gravity load only. At the instant
of sidesway buckling, the nomograph method for determining effec-
tive length1 assumes that the beam deforms antisymmetrically from
which the stiffness is known to be 6EIb/Lb. If it is assumed
further that the deformation configuration of the frame due to the
lateral load is similar in shape to the case at the instant of
bifurcation, then the first order sway displacement of the frame

and shear force at column i, V, is related by

i
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3
Lc G+ 2)

v,
i
Ao = = 6EIC (2.30)

Si

in which RSi is the sway stiffness contributed by column i.
Equilibrium in the horizontal direction requires that the sum of
shear forces is equal to the applied lateral load. Using Eq. 2.30,

the horizontal shear load can be expressed as

= Z— =
H Ao_ KSi AOKS (2.31)
Si
or V., = H— (2.32)
i KS

The second order sway displacement is related to the first

order displacement by

(2.33)

where ZPE is the sum of the elastic buckling loads of all columns
with rigid joints in the bent based on the individual effective

lengths.

Assuming that each rigidly jointed column carries the
P-delta moment of the story in proportion to its first order sway
stiffness, the second order moment of column i, using Eqs. 2.30 and

2.33, becomes

* Si
M = ViLc + ZPA ——= (2.34)

In v1ew of Eq. 2.30 and KL = ZKS L 2P’[6K /n 2 +6)],
the term 6K /ﬂ (2 + G) varies between 1.22 and 1.00 for the range

of O < G < 10.0, which can be conservatively taken to be unity.

Thus, Eq. 2.34 becomes
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;P (2.35)

7
E
For the frames under consideration, the second order moments

for the portal frames and the leaned frames are given by

HLC
Mx = (portal) (2.36)
2t -
E
HLC
and M& = T sp (leaned) (2.37)
1-E
E

In general, the stability load of the frame predicted by

this method is

Zp
1 - 7 = O
ZPE
or Zp = z$% (2.38)

2.5.4 Comparison of Second Order Moments. The results of

the study on approximate second order analysis techmiques for
frames are shown in Figs. 2.33 to 2.40. A computer program was
written for analyzing the frames exactly by the slope deflection
method. The plots show the comparison of second order moments
obtained by the exact second order analysis, the P-delta approach,
the effective length method, and the current AISC expression.
Several values of G, Lc/r and o were chosen. The ordinate of the
plots, M*/M, which is the ratio of the second order moment at the
column top to the moment obtained by first order analysis, is
defined as the amplification factor. The AISC expression for the

amplification factor is equal to 0.85/(1 - P/Pé). Since the
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behavior is elastic, the amplification factor for the column having

the same G and Lc/r is independent of the bending axis.

For the case of o = 0, results for portal frames are the
same as for leaned frames for G = 0.5 times that of the latter (see
Fig. 2.2). It can be seen that the P-delta method is uncomservative
at high axial load when the beam is very stiff (G = 0). The uncon-
servativeness decreases as the value of G increases. The effective
length method gives conservative estimates of second order moments.

The prediction almost coincides with the exact second order analysis.

The AISC expression is slightly unconservative for all cases; this

is due to the factor 0.85.

When there is load on the pinned column, results from the
P-delta method of analysis are unconservative, but much less than the
case when @ = 0. The effective length method gives conservative
results; as o increases, the method becomes more conservative. The
AISC method should not be used for these leaned cases; the results

' show that the method is very unconservative.

The P-delta analysis leads to slightly unconservative
-results because the method does not consider the reduction of stiff-
ness due to axial load while the exact analysis does. In leaned
frames, the effective length method replaces the shear demand by
the pinned columns as an equivalent axial load. This produces more

moment area for rigidly jointed column567 whereas the P-delta

method superimposes two linear moment diagrams corresponding to
first and second order moments. The plots indicate that both the
P-delta method and the effective length method give similar results

and are applicable to both portal and leaned frames.

2.6 Allowable Stresses and Factor of Safety

It was discussed in Chapter 1 that interaction equations

in the current AISC design specification are given in terms of

_————_—
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allowable stresses. In these equations, different factors of safety
for Fg, Fg, and Fb are used. Referring to Fig. 2.41, the allowable
stress for inelastic buckling is based on the CRC basic column
strength curve for both strong and weak axis buckling. Buckling

in the inelastic range is assumed to occur when KL /r < C (C =
n-vEEV?T) and is represented by a parabola joining point A

(F /F = 1.0 at KL /r = 0) to point C (F /F = 0.5 at KL /r = c).
When the effective slenderness ratio is larger than C o’ buckllng

is governed by the Euler strength. The allowable stresses for

axially loaded columns are

KL r 2
Fo|1-1(==¢
y 2 C ‘)

C

FF = = KL /r <¢Cc (2.39)
a 3 c c
5,3 KLC/r 1 KLC/r
3 8 C 8 C
c c
Fpo=F, - 189,000 0002 KL /T 2 C_ (2.40)
(KLC/r)

In these equations, the prime denotes that the value depends
on the effective slenderness ratio. The factor of safety for F’ is
given by the expression in the denominator of Eq. 2.39, which
depends on KLc/r. The factor of safety varies from 1.67 to 1.92
for the range of KLc/r between 0 and CC. For Fg corresponding to
KLc/r >-CC, a constant factor of safety of 1.92 is used. For all
KLC/r, F; is defined by Eq. 2.40,

It should be mentioned that inelastic buckling strength
depends on the bending axis. For Frc/Fy = 0.3, inelastic buckling
occurs when P/Py > 0.7. The solid lines between points A and B

represent the true buckling strengths based on the tangent modulus

theory. For strong axis buckling, it may be approximated by a
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parabola (curve S). A straight line (curve W) gives a close

approximation to the weak axis buckling strength curve.26

The allowable stress for bending about the strong axis of

a compact section is given by

Fb = O.66Fy (2.41)

This is based on the plastic strength of the cross section. Since
the shape factor of most wide flange sections is about 1.12, the
allowable bending moment becomes 0'6Mpx’ giving the factor of
safety of about 1.67. This factor of safety is used for all strong
axis bending situations, even when the section is noncompact. When
bending occurs about the weak axis, AISC specifies an allowable

bending stress of

Fb = O.75Fy (2.42)

Since the shape factor of a W-shape bent about the weak axis is 1.5,
the allowable bending moment is O'SMpy’ yielding the factor of

safety of 2.0.

2.7 Evaluation of Design Interaction

Equations

In this section, the design interaction equations will be

evaluated by comparing the predicted strength of beam-columns in
example frames with the results determined from the inelastic
analysis. Although the computed and allowable stresses are gen-
erally used in the interaction equations, it is convenient to
express the computed stresses in terms of axial load and moments
at the overload level equal to the factor of safety times the work-
ing load and the allowable stresses as the strengths of the member.
Since AISC allows different factors of safety, as discussed in the

previous section, it is simpler to express the computed force and
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moments as the ratio of the basic overload quantities at a factor
of safety of 1.67. Thus, the design interaction equations given

in Sec. 1.3 become

(a) AISC Method

A ' AP
Stability: P} + 0'85 7 g < 1.0 (2.43a)
cr 2
1-5r
E
Strength: = + o < 1.0 (2.43b)
y P
(b) P-delta Method
AP C
%
Stability: Pl + =~ g < 1.0 (2.44a)
cr 2 P
-5
E
P M
Strength: 5 + e < 1.0 (2.44D)
y P
(c) Effective Length Method
AP
Stability: Sp7 < 1.0 (2.45a)
cr
A P
S 2 1 M
trength: B + 5P M S 1.0 (2.45b)
cr 3 P

In these equations, Xi are the ratios of the actual factor
of safety used to the basic factor of 1.67. M¥* is obtained from a
second order analysis and the prime denotes the buckling loads in
which the effective length factor in a sway mode is considered. It
should be noted that the axial load, P, in the interaction equations
is different for AISC and the effective length methods, and the
P-delta method. Generally the axial load to be used in the equa-

tions is the applied load plus the load due to the overturning

—
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effect considering the direction of the applied wind load. Since
AISC and the effective length methods are based on the first order
analysis, for the portal frame studied, the axial load in the column
is P + HLC/Lb. The P-delta method is based on the second order
analysis. In this case the axial 1load that is used in the inter-
action equations is P + (HLC + ZPAel)/Lb, where Ael is the sway
obtained from the elastic second order analysis. The comparison of
results in this section assumes that Lb >>-LC, so that the force
due to the overturning effect is not significant. Its effect
depends on the length of the beam, which will be discussed in the

next section.

The comparisons of various design interaction equations are
shown in Figs. 2.42 to 2.48 for several slenderness ratios, G, and
several ¢ values. In these plots the effective slenderness ratio
varies between 40 and 130. The comparisons are shown for both strong
and weak axis bending. In each plot the results from the analysis
discussed in Sec. 2.3 that considers the effect of residual stress
and inelastic behavior are compared with the interaction equations.
The plots in Figs. 2.42 to 2.48 do not consider the difference in the
factor of safety, i.e., all Xi are unity and the buckling strength

terms Pcr’ Pér are based on curves S or W shown in Fig. 2.41.

For o = 0, which is also the case of portal frames, the
AISC equations are generally conservative. Although the comparison
of elastic second order moment methods reveals that AISC expressions
are slightly unconservative, the stability type interaction equation
which is based on the buckling strength that considers the effective
length factor makes the interaction equation conservative. The
difference between the exact curve and the AISC curve is significant
for large slenderness ratios and G = 2.0 (see Fig, 2.48). The
strength of a very short column (Lc/ry = 20) that is bent about
the weak axis is much higher than that predicted by interaction

equations, especially for low axial load.
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Generally, the P-delta method and the effective length
method predict strengths which are higher than the actual strength,
especially for high axial load on columns with stiff end restraints.
At the same axial load level, the unconservativeness is greater for
weak axis bending. This is due to the effect of residual stress,
which causes a greater reduction in stiffness when bending occurs
in the weak axis than for strong axis bending. The effective
length method gives better results than the P-delta method, because
the estimate of the extent of second order moment is more

conservative. Note that the P-delta method and the effective length
method use different limits for the axial load term in Eq. 2.44b and

use different limits for the axial load term in Eq. 2.44b and

Eq. 2.45b, respectively. This results in a large difference between
the P-delta method and the effective length method for high axial
loads (see Figs. 2.44 and 2.45 as the examples). TFor frames where
buckling occurs in the elastic range, the amplification factor in
Eq. 2.45b checks the stability limit while the P-delta method con-
verges to the load defined by Eq. 2.27. When buckling occurs in the
inelastic range, the cutoff as defined by Eq. 2.45a provides a means
to reduce the unconservativeness. It is to be noted that the
stability limit defined by Eq. 2.45a does not necessarily coincide
with the results from the inelastic analysis. This is attributed
to two reasons. First, the design buckling strength is based on
curve S or W, rather than the true strength curves (see Fig. 2.41).
Second, the maximum strength analysis generally yields the stability
limit higher than that based on the tangent modulus theory (from
which the curves in Fig. 2.41 are derived). In any case, Eq. 2.45a
gives a conservative prediction of buckling load (see Fig. 2.46 as

an example).

When a > 0, the AISC equation does not apply. The effective
length method predicts better results than the P-delta method.

Large discrepancies can be observed for medium length columns with
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rigid restraint. The effective length method is conservative for
predicting the buckling strength for G = 0. This behavior can be
explained by referring to Fig. 2.29. The actual buckling strength
for G = 0 is higher than for the design that useé the 2P < EPgr

concept. The difference in the two methods decreases as C increases,

For columns with soft restraints, strength usually occurs at
large sway displacement. It can be observed in Figs. 2.12 and 2.13
that the sway stiffness for large G is small; the ultimate strength
is reached at A/LC = 0.04. 1In such a case, the deflection at working

load would be excessive. Therefore, in the design of columns with

flexible restraints, deflection at working load should be checked to

be within the limit, e.g., A/LC = 0.002.

The effect of variation in the factor of safety in the

interaction equations can be seen in Figs. 2.49 to 2.51. The com-

parisons of all design methods for the case of G = 0 and Lc/r = 40
are shown. 1In these plots the CRC basic column strength equation
is used for both strong and weak axes, Thus, the stability limit
is different from that shown in the previous plots. Also shown are
the theoretical results for the case of no residual stresses. For wesak
axis bending, curve "D" corresponds to using O.75Fy as the strength

~ implied by the current AISC Specification. Strengths at overload
level of 1.67 are matched with the theoretical results. It can be

seen that using high values of factor of safety for axially loaded

columns leads to more conservativeness in the current AISC method.
It improves the results for the effective length method and the
P-delta method. 1In fact, from the comparisons shown in Figs. 2.42
to 2.48, using the effective length method with the uniform factor
of safety will lead to a satisfactory design. It should be noted
that variations in the factor of safety result in rather a large
scatter of solutions. This scatter is greater than the differences

which occur among the various design approaches themselves using a
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constant factor of safety. Therefore, significant attention to the
effect of variation in the factor of safety should be paid by

specification writers.

2.8 Effect of the Axial Load Due
to the Overturning Effect

In the previous sections of this study, it has been assumed
that the length of the girder is very long compared to the length
of the columns. Therefore, the axial load arising from the over-
turning effect is not significant. In order to examine the effect
of the girder length, a maximum strength analysis was conducted on
a leaned frame. The length of the girder is selected to be equal
to the length of the column. It is felt that this proportion is
the minimum in practice and would show the largest effect of the
over turning force. Figure 2.52 shows the interaction between the
applied column loads and the wind load at the maximum strength of
the frame. The column has LC/r = 40 and G = 0 and is bent about the
strong axis. The solid curve is the result for Lbj>> LC and the
dashed curve is for Lb = Lc' The reduction of the applied column
load due to the variation of beam length is not very significant

and occurs mainly in the low column load region.

For a typical leaned frame subjected to combined column load
and wind load, shown in Fig. 2.2, the axial load on the column to
be substituted into the interaction equation is slightly different,
depending on whether the first order or the second order structural
analysis is used. In the AISC and the effective length methods,
the axial load is P + HLC/LC, while in the P-delta method the axial
load would be P + (HLC + ZPAel)/Lb. It seems that the P-delta
method is conservative as far as the axial load to be used is con-
cerned, especially for leaned frames with relatively high load on
the pinned column. To examine the significance of the secondary

axial load EPAel/Lb’ refer to Fig. 2.53. At the maximum load of
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the frame, the column loads are P and oP and the wind load is H.

The plots show the interaction of the axial load on the rigidly
jointed column with the wind load in nondimensionalized forms.

The solid curve is a true axial load in the column based on the
inelastic analysis. The long and short dashed curves are the loads
based on the first and second order elastic analyses and the broken
curve is the applied column load. For q = 0, the difference between
the first and second order axial loads is not significant. For

a = 2.0, there is some effect due to the secondary axial load. As
an example, at P = 75.03 kips (P/Py =0.23), P + HLc/Lb = 77.85 kips
and P + (HLc + ZPAel)/Lb = 80.31 kips, the difference is in the

order of 3 percent of P.

Figure 2.54 shows a typical comparison of design inter-
action equations for the leaned frame with Lb = Lc' In these com-

parisons the effect of secondary axial load is considered in the

first term of the interaction equations. The first order axial
load (P + HLc/Lb)/Py is plotted as the ordinate. It may be

observed that the effective length method generally gives a closer

prediction of the maximum strength than the P-delta method.




CHAPTER 3

EXPERIMENTAL PROGRAMS

3.1 Design of Test Specimens
and Loading Conditions

The purposes of the experimental study were to provide some
data on the behavior of beam-columns in unbraced frames and to com-
pare the strength of the beam-column test specimens with theoretical
prediction and design interaction equations. Three unbraced frames
and three biaxially loaded restrained beam-columns were tested. The
specimens were full-size and the geometry in each type of structure
was the same; only the loading conditions were different and were
designed to simulate the actual conditions encountered in practice.
The geometry and loading conditions of the specimens were selected
so that the test results, when presented in the interaction diagrams,
would be in the region that shows any difference between design
methods clearly.

In testing the structures in which there is relative joint
translation, difficulty arises because the gravity loading system
must be designed to displace with the structure while maintaining
the original line of action. To overcome this problem, a structure
with twice the length of the actual structure and having identical
boundary conditions at both ends is tested instead (see Fig. 3.1).
This makes use of symmetry about the plane passing through the
middle of the structure. With this testing arrangement, the joints
at both ends of the structure do not translate so that the loading
system can be designed to be fixed in position. The middle plane,
which corresponds to the base of the real structure, translates

with respect to both ends. This technique was used by Laosirichon
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in the experimental study to determine the effect of beam yielding
on the column strength. Another feature of the testing facility
is‘that the plane of the structure is horizontal. Column load was
applied against the reaction brackets which were prestressed to the

testing slab.

3.1.1 Unbraced Frame Specimens. The general layout of the

two-bay frame that was used with the test setup discussed is shown
in Fig. 3.2. The frame was initially studied with column axial
loads only and the specimen is shown at the state of bifurcation in
the braced (Fig. 3.2a) and unbraced modes (Fig. 3.2b). The midlength
of the columns is connected by links so that the displacement of

all three columns is compatible. The links are also used for trans-
mitting shear forces between columns in the combined gravity and
lateral load test. Also shown in the figures are the charts for
determining the effective length factor as a function of the column-
to-beam stiffness, G, at the end and the boundary condition at the
midlength section. These charts were constructed from the align-
ment charts for braced and unbraced modes of buckling. One of the
objectives of the frame test is to verify the theory that the sta-
bility of an unbraced frame is approximately equal to the sum of the
potential buckling strength of the individual columnsin the sidesway
mode; yet the load on each column must be less than the strength in
braced frames. For the test, the loading arrangement was planned

so that a column could carry higher load than its own buckling
capacity in the sway mode, because of the potential bracing effect
provided by other lightly loaded columns. In the design of the
frames, the rangesof L/r and G were studied to determine the combina-
tion that gives a large difference in the buckling strength in the
two modes to ensure that failure will not occur as an individual
column before the frame reaches stability load. The result of the
study on L/r and G is shown in Fig. 3.3, considering that the

columns were bent about the weak axis. For each specified value of
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G and L/r, the effective length factors for braced and unbraced

cases were determined and the buckling strengths were obtained from
the column curve in Fig. 3.3a. The difference in strength between
the braced and unbraced modes is plotted as the ordinate in Fig. 3.3b.
It can be seen that the slenderness ratio of 100 leads to the desir-
able result as G increases. The reason can be explained by referring
to Fig. 3.3b. At an L/r of 100, the effective slenderness ratio

in the unbraced case is likely to fall in the elastic buckling

range, while that for the braced case is on the inelastic curve.

This yields a large difference in the buckling strength. With the
valuesof G and L/r so obtained, several cross sections were examined
and the final design of the frame is shown in Fig. 3.4. The column
and beam sections are W8x17 and M4x13; the lengths of columns and
beams between the centerline of the joints are 20 ft., 11 in. and

8 ft., 6 in., respectively. All members are bent about the weak
axis; therefore, lateral bracing to prevent lateral torsional
buckling is not required. The slenderness ratio of the column from
the joint to the midlength is 102 and G at the ends are 1.79 and

0.89 for exterior and interior columns, respectively. These values

are based on section properties in the AISC Manual.

The next step was to design the loading on the frame. For
the first two specimens, several trials of load arrangements were
studied. The suitable loading scheme would be such that all columns
are loaded to 70 kips; the loads on the exterior columns are main-
tained at this value while the load on the interior column is
increased until failure occurs. The third frame was planned to
study the design interaction equations for combined gravity and
lateral loading, where strength of individual columns is not reached
simul taneously. This is accomplished by loading the columns to
different levels and maintaining the axial load. The lateral load

is then applied until instability is reached. The effect of the

magnitude of load on each column on the distribution of momentsin
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the structure was studied by means of an elastic second order
analysis. It was decided to load the exterior colummsto 50 kips
and the interior column to 80 kips before the application of the

lateral load to failure.

3.1.2 Biaxially Loaded Restrained Beam-Columns. The

column cross section was first selected such that the width-to-
depth ratio is small so as to increase the possibility of lateral
torsional buckling if it would occur. It was decided to use W10x21
section, which has the B/D ratio of 0.58. The length of the column
is restricted to the distance between the reaction beams, which is
about 20 ft. The selection of the slenderness ratio and G with
respect to both axes of bending were based on the interaction equa-
tions considering the specimen as two independent planar problems.
Figure 3.5 shows the plots using AISC-type equations (Eqs. 1.24 and
1.25). The buckling strength about the weak axis controlled the
axial load term. Two extreme values of G, corresponding to rigid
and no restraints at the joint, were determined. It may be seen
that the effect of the variation of G on the strength is confined
to a narrow band for strong axis bending and is significant for
weak axis bending. The specimen designed consists of a column

made of W10x21 section and restraining beams in the strong and weak
directions are fabricated from W8x20 and W5x18.5 shapes. The dimen-
sions of the specimen are shown in Fig. 3.6, in which G for the
strong and weak directions at the joint is 1.20 and 0.24,

respectively.

In the design interaction equations, the three components
of member forces that determine the stremgth of the beam-column
are axial force and moments in two directions. It was planned to
load each specimen with two force components to a certain level
and to increase the other component until failure occurs. Pre-
liminary study on the level of axial force and moments about the

strong and the weak axes of the column was accomplished by
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referring to the currently used design interaction equations (see
Eqs. 1.16, 1.17, and 1.18) treating the specimen as a no-sway beam-
column symmetrically restrained by beams at both ends. The first
order elastic analysis was used to determine column end moments due

to applied joint mments or to applied wind load.

The testing program for biaxially loaded restrained beam-
columns is summarized in Fig. 3.6. The first specimen was planned
for the study of the behavior and the strength of columns subjected
to axial force and moments due to gravity load in two directioms.
This type of moment arises from unbalanced beam loads in actual
unbraced frames and is conveniently simulated by applying the load
by a stub cantilever.33 For the specimen under consideration, the
joint moment produces uniform first order moment diagram in the
column. The symbols MjS and Mjw refer to joint moments applied
about the strong and weak axes, respectively. 1In this specimen the
joint moments are held constant and the column load P is increased
to failure. In the second specimen, the two force components that
are held constant are axial force and moment about the strong axis
due to joint moment. The moment due to wind load in the weak
direction is increased to failure. In the third specimen, axial
force and moment about the weak axis, due to joint moment, are
applied to the column and the specimen is loaded to failure by the
wind load in the strong direction. The results of the preliminary
study indicated that the initial levels of column end moments (due
to joint moments) should be Mx/Mpx:w 0.15 and My/Mpy ~ 0.08. These
values were based on an axial force of O.4Py; this level of axial

force was selected so that the moment components would not be too
small. With the levels of axial load and column end moments

selected, the corresponding joint moments are Mjs ~ 520 kip-in. and

M. ~ 220 kip-in.
Jw
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3.2 Material and Member Properties

For the unbraced frame and biaxially loaded restrained column
specimens, the material for the columns is structural carbon steel
conforming to ASTM A36. For beams, high strength low alloy columbian-
vanadium steel, ASTM A572 Grade 50, is used so that higher elastic
behavior of the restraint can be obtained. To minimize differences
in materials, each shape was rolled from the same heat. The chemical
composition and the mechanical properties of the steel from the
mill reports are shown in Table 3.1. Steel was purchased in stock
length of 40 or 50 ft. Table 3.2 shows the descriptions of steel
lengths that were used for various components of the specimens and
the type of material tests performed. The material properties were
determined from the remaining part of the length. Four types of
tests and measurements were performed: tension tests, cross section

' measurements, stub column test, and residual stress measurement.

3.2.1 Tension Tests. Tension tests were made for most of

the length. Usually three coupons, two from the opposite flanges

and one from the middle of the web,were cut from one section. This
enables the bending and axial load capacity to be calculated if the
section properties are measured. The results of the tension tests
are shown in Table 3.3; static yield strength, Oy, ultimate strength,
O, percent of elongation in 8 in., strain hardening modulus,

E o strain at yield strength, €y’ and strain at strain hardening,

S
are given. It can be seen that the web material usually has

€ o>
hi;her yield strength and much longer yield plateau than the flange
material. The flange coupon has larger strain hardening modulus.
This is typical for the sections which were cold-straightened by
the rotarizing process. The tensile properties from different

lengths of the same shape are quite consistant.

3.2.2 Cross Section Properties. The cross section dimen-

sions were measured at the two ends of each member cut from each
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length using a micrometer and a graduated scale. The awverage
measured dimensions and the measured material properties are used
to calculate cross section properties, i.e., the area and the
moment of inertia, plastic moment of the cross section, and the
yield load. These calculated properties and the nominal values
from the AISC Manual are listed in Table 3.4. The section proper-

ties are in good agreement with those given in the AISC Manual.

3.2.3 Stub Column Tests. The purpose of the stub column

testsis to establish the stress-strain curve in compression for

the entire cross section and to determine if there are any appre-
ciable residual stresses in the members that are used for columns.
A high level of residual stress will lead to localized yielding at
a load less than the cross section yield load, Py. This reduces
the proportional limit and the effective EI of the cross section.
The tests were carried out on three specimens, two from the W8x17
section and one from the W10x21 section. The stub column specimens
were 30 in. long and the end surfaces were machined flat. Before
the tesf, the cross section measurement was also taken and the
specimen whitewashed so that the progress of yielding could be
observed. Specimens were tested in a 400-kip screw-type testing
machine and the testing procedure followed the method recommended
in the SSRC Guide.29 The axial load-axial strain relationship for
the three specimens is shown in Fig. 3.7. The plots revealed that
there was high compressive residual stress in the steel because the
deviation from linearlity occurred at about 70 percent of the‘yield
load. First yielding was observed in the web, so the high compres-
sive residual stress in the web would‘be expected. This was veri- -
fied by the residual stress measurements presented in the next
section. The average yield load from the two specimens of W8x17
section is 198.5 kips and that of W10x21 section is 248.5 kips.
These loads are within 4.5 percent and 1 percent of the calculated

yield loads using the cross section dimensions and the yield
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strength from the tension tests. The results of the stub column
test and the relevant properties of the specimens were summarized

in Table 3.5.

3.2.4 Residual Stress Measurements. Residual stresses

were measured in two specimens, one from W8x17 section and the
other from W10x21 section, by the method of sectioning.26 The
specimens were prepared from the remaining length that was used

for stub column specimens. The distribution of residual stress of
the two cross sections is shown in Fig. 3.8. It can be observed
that the web contains high compressive residual stress and the
distribution is reasonably parabolic. The flange portion has small
residual stress and in some instances the flange tip is in temsionm.
The distribution of residual stress in the flange is irregular.
This pattern is typical for rotarized cross sections. The low
residual stress level in the flange is a favorable characteristic
as far as column strength is concerned, because full flexural
rigidity EI is effective for high levels of axial load. The actual
distribution of residual stresses was used for the theoretical

predictions of the test behavior.




CHAPTER 4

TWO-BAY UNBRACED FRAMES

4.1 Test Setup

4.1.1 Details of Test Specimens. All unbraced frame

specimens were identical in geometry. Steel sections which were
used to fabricate columns and beams were W8x17 and M4x13, respec-
tively, and all members were bent about the weak axis. The length
of the columns between the centerline of the joints was 20 ft.,

11 in., and that of the beam was 8 ft., 6 in. (see Fig. 3.3 and-
Fig. 4.1). All beam-to-column connections were moment resisting
end plate connections in which 1 in. end plates were welded to
both ends of the beam, which in turn werebolted to the web of the
columns by means of 15/16 in. ASTM A325 high strength bolts, as
shown in Fig. 4.2. The connections were designed to transmit the
plastic moment of the beam or the reduced plastic moment of the
column cross section at the maximum axial load. The linkages
between the midlength of the columns were made of two 2 in. x

2 in. x 1/4 in. angles and were connected to the web of the columns
by bolting to a small tee section; this connection could transmit
only shear forces between the exterior and the interior columms.

At the ends of the interior column were welded 1/2 in. end plates
to which a 1-7/8 in. grooved-plate fixture could be fastened, as
shown in Fig. 4.3. Cold rolled pins 1-3/4 in. in diameter were
welded to each flange of the exterior columns at the joint location.
Each pin was reinforced with two triangular plates welded to the pin
and to the flanges of the column. A 1/4 in. stiffener plate was

welded across the web of the column on the outside of each exterior

72
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column joint. These pins were used for connecting the tension ram

fixtures, as shown in Fig. 4.4,

4.1.2 Loading Apparatus. The plane of the frame is hori-

zontal and the weight of the frame was supported by bents made of
4 in. x 4 in. x 1/4 in. angles which were bolted to the testing
slab; rollers were used underneath the frame in order to minimize
the friction. Axial load on the interior column was applied by a
100-ton hydraulic ram acting against a reaction beam at one end of
the column and a load cell was placed between the end plate and the
reaction beam at the other end of the column. The ram and the load
cell were supported on a platform and were braced against movement
in any direction. A spherical end fixture was placed between the
ram and the reaction beam to align the load. A similar arrangement
was used at the other end of the interior column. The reaction
beams were supported by two reaction brackets which were prestressed
to the test slab by means of 3 in. anchor bolts. During loading,
the ram load was transmitted to the column through the fixture con-
sisting of a knife edge mounted on the ram piston and the grooved

plate which was bolted to the column end plate, as shown in Fig. 4.3.

A self-contained loading system was used for the application
of axial load on the exterior columns. The system consists of a
5 in. bore hydraulic tension ram, a 1-1/2 in. loading bar of high
strength steel, and a load cell connected in series (see Figs. 4.4

and 4.5). Load cells in the system were made of high strength

aluminum barsand were calibrated to measure the load in the line.
The fixture at the ends of the system consisted of a knuckle in
which the eye was mounted with two roller bearings which fitted to
the pins that were welded to the flanges of the column. Bearings
were used to minimize the friction between the pin and the knuckle
that would restrain the joint from rotation. Each exterior columm
was loaded with two tension rams and the hydraulic hoses for all

four rams were connected to a common manifold. The axial load on
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the columns was maintained by two pumps; one pump was used for the
interior column and the other was used to operate all tension rams

for loading the exterior columns.

The lateral loading system which was used in Specimen F3
consisted of a Universal load cell connected by means of threaded
rods to the auxiliary frame on one side and to a nut which was
welded to a plate on the other side, as shown in Fig. 4.6. This
plate was bolted to the web of an exterior column opposite the tee
connection of the lateral linkages. By tightening the nuts which
were used to lock the threaded rod to the auxiliary frame, the
frame was forced to displace a specified distance; the force which
was developed in the threaded rods could be measured by the load

cell.

4.2 Instrumentation. The interior column load was measured

by a 240-kip compression load cell and each exterior column load was
monitored by tension load cells connected in series to the 1-1/2 in.
loading bars. The compression load cell was considered accurate

to within 0.3 kip and the tension load cells were accurate to within
0.03 kip. During the test, the pressure in the hydraulic lines to
the rams was also measured by pressure transducers as well as by
pressure gages. The pressure records provide a mean to check the
magnitude of load in the columns. The load indicated by the pressure
readings was within 3 percent of that given by the load cells. All
loads used in the results were taken from the load cells, since
these were considered to be more accurate. The lateral load was
measured by a Universal load cell calibrated to 30 kips and was

considered accurate to within 0.02 kip.

Strain data were recorded by means of W80 electrical strain
gages having the gage factor of 2.12. These gages were placed at
four stations within the elastic zones of each member. At each

station there were four gages bonded to the flange surfaceat 1/4 in.
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from the flange tip. From the strain data, the moment at a cross
section can be computed knowing the modulus of elasticity and
moment of inertia of the cross section. The probable error in the
strain recording system corresponds to a moment of 0. 23 kip-in.
For beams, moments at the strain gage locations are used to deter-
mine the shear force and the beam moments at the joints based on
equilibrium. For columns, the deflection at the strain gage loca-
tions and at the joints must be determined in order that equilibrium
of the colum, which includes the effect of axial force acting
through the displaced configuration of the structure, can be
established. Strain gages were also placed at two stations of an
unloaded column member and these recorded strains were used as

temperature compensation,

Deflection of the columns was measured by 0.001 in. dial
gages mounted on stands. Rotation of the joints and the midlength
of the columns was measured from the differential movement of two
points on an arm which was clamped to the top flange of the members.
The deflection of the interior column was also recorded from a
transit sighting on scales. This provided a check on dial gage
readings. Figure 4.7 shows the arrangement of the instrumentation
for all specimens. Due to the large amount of instrumentation to
be recorded during the test, strain gages and exterior column load
cell gages were connected to a remote switching unit of a VIDAR data
acquisition system so that the strain data could be recorded auto-
matically during each load stage. The pressure dial gages, pressure
transducers, and interior column load cell were monitored and the

displacement data were taken manually during the test.

4.3 Controlled Test

Before the main tests on the unbraced frames were conducted,
a test was performed on one of the exterior columns as an isolated

member. The purpose of the test was to check the loading system
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and to evaluate the significance of friction in the pin connection.
The member was acting as an Euler column and remained elastic
throughout the test. Both tension rams were connected to the same
pump; the axial load and the deflection of the column at the mid-
length and at the joints were recorded. Figure 4.8 shows the results
of the Euler test in the form of an axial load-centerline deflection

plot and the Southwell plot. The Southwell method is a technique

to determine the buckling load from the experimental data of an
elastic column having initial load eccentricity. If the ratio of
the centerline deflection measured from the unloaded position of the
column to the axial load, A/P; is plotted as the ordinate and the
deflection is plotted as the abscissa, it was found that the rela-
tionship is linear.60 The buckling load of the column is the inverse
of the gradient of the straight line and the intersection with the
deflection axis gives the magnitude of the initial eccentricity of
the load with respect to the straight position of the column. The
Southwell method is advantageous because it does not require the
column to be loaded to the buckling load level. The method gives
reliable results if the“maximum axial load level is not less than

80 percent of the actual buckling load.69

In this test the maximum applied load was 33.2 kips. The
Southwell plot yielded a buckling load of 35.5 kips and the Euler
load based on the modulus of elasticity of 29500 kips is 34.5 kips.
The difference between the experimental buckling load and the
theoretical buckling load was 2.9 percent, which may be attributed
to friction at the pin, error in the modulus of elasticity, and
experimental errors in measuring the load and the deflection. The
initial eccentricity determined from the Southwell plot was
0.098 in., compared with the measured eccentricity of 0.125 in.
This 1is attributed to the effect of the pins being eccentric to

the center of the web plane and the initial shape of the column.
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This test indicated that the friction effect, if any, was less than

3 percent.

4.4 Test Procedures and Test Results

4.4.1 Specimen F1l. This specimen was loaded with column
loads only to simulate the condition of unbraced frames under
gravity loading. The initial deflected shapes of the columns were
measured by stretching a string between the joints and measuring

the offset to the flange. The magnitude of the out-of-straightness

was: left exterior column, 0.07 in. to the east; right exterior
column, 0.23 in. to the west; and the interior column, 0.11 in. to
the east. 1Initially all ‘columns were loaded equally to a load of

70 kips. Thereafter, the exterior columns were held at constant
load and the interior column load was increased until ultimate load
was obtained. Figure 4.9 shows the behavior of Specimen F1 through-
out the history of loading. The controlling displacement parameter
is the deflection of the midlength of the columns. This deflection
was measured from the position in the unloaded state. Load stages

2 to 12 corresponded to the proportional application of column
loads. Although the rams on the exterior colummns were operated

from the same pump, the loads on each column differed slightly.

At the end of load stage 12, the loads on the two exterior columns
were 70.1 and 67.0 kips, a difference of about 4 percent. Up to
load stage 15 there were no apparent yield limes. First yield

lines occurred at the top flange of the interior column adjacent

to the end plate at the south end, which was due to the welding
residual stresses. The stiffness of the frame between load stages
15 and 16 decreased rapidly. At the end of load stage 16, extensive
yield lines occurred at a distance about 30 in. from the midlength
towards the south joint of the interior column. The deflected shape
of the interior column was not symmetrical; the curvature seemed

to concentrate at the yielded zone in which the deflection was

i
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larger than that at the midlength. The maximum load on the frame
of 269.1 kips was reached at load stage 16, where the interior
column carried 132.7 kips. Beyond load stage 16, the frame could
not carry higher load and failure occurred suddenly by sidesway
deflection. After the frame stopped moving, the deflection at the
midlength was measured by the transit and was found to be 2.4 in.
The loads dropped to 61.2 and 58.3 kips for the exterior columns
and 110.8 kips for the interior column. The total load on the
frame was 230.1 kips; this corresponds to a reduction of 14.5 per-
cent from the maximum load. The equilibrium path during instability
could not be obtained and is shown dashed in the load displacement
curve. Figure 4.10 shows the deflected shape of the frame before
the specimen was unloaded. It could be observed that the deflected
shape of the interior column was not symmetrical about the mid-
length., The frame was unloaded and by inspection extensive yield-
ing occurred in the compression zones of the interior column.

These zones were at about 8 in. from both joints and along the
length between the middle strain gage locations. The section where
yield lines formed earlier seemed to have reached plastic moment
capacity. At this section, yield lines penetrated to the web
junction. There was no distress in the beams nor in the exterior
columns except some yielding at the top of the web below the pins

due to high crippling stresses.

The strain data that were recorded during the test by VIDAR

acquisition system were in voltage units. By knowing the change

in strain due to temperature and the system drift, the data were
converted into strain due to applied loads, from which bending
moments at strain gage locations could be computed. A computer pro-
gram was written to calculate the moments at the ends of the members,
given the moments at the strain gage locations, the axial force,

the distance between gages and the ends, and the deflection at these

points. The moments at various locations of the frame throughout
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the history of loading are plotted in Figs. 4.11 and 4.12. These
moments were low up to load stage 15. Thereafter, the increase was
rather sudden. The moments at the assumed points of symmetry are
shown on the same plot, which indicates that the behavior of the
frame is not truly symmetrical; however, the difference is not sig-
nificant. From the results of the calculated moments it is indi-
cated that the equilibrium of moments at the joints checks very
well to within 7 percent of MP. The column loads indicated by load
cells agree to within 10 percent of those calculated ffom strain

gage data.

4.4.2 Specimen F2. This test was conducted to confirm
the frame stability load of Specimen F1. At the end of test F1l
the deflected shape of the interior column was not symmetrical.
It was found that the roller on the screw jack near the north end
that was used to support the dead weight of the interior columm
was very tight. This may have restrained the column from deflec-
tion and may have raised the frame stability load. Since the beams
and the exterior columns were still elastic, and could be reused,
it was decided that the. specimen would be retested; only the interior
column need be replaced. The initial shapesof all columns were
measured and the magnitude of the initial out-of-straightness was:
left exterior column, 0.26 in. to the east; right exterior column,
0.28 in. to the east; and interior column, 0.2 in. to the east.
As a precaution against sudden failure due to bifurcation the lateral
loading unit was attached to the left exterior column, but the nut
which was used to lock the threaded rod to the auxiliary frame was
kept loose so that there was no lateral load exerted on the struc-
ture. The sequence of loading was the same as Specimen F1.
Figure 4.13 shows the load displacement behavior of Specimen F2.
Load stages 2 to 11 corresponded to the proportional increase of

all column loads. The frame deflection started to increase as the

loads increased. This behavior was different from the previous
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specimen because the initial deflection was larger and all columns
were bent in the same direction. At the end of load stage 11, all
columns were loaded to about 70 kips. The deflection of the frame
was 0.67 in., compared with 0.1 in. for Specimen Fl1. From load
stage 11, the Joad on the exterior columns was held constant while
that on the interior column was increased independently. The first
yield lines were observed after load stage 16 at the middle of the
flange of the interior column, adjacent to the end plate on the
south end. The frame reached the instability limit after load
stage 17, where the maximum load was 233.6 kips; this corresponded
to a reduction of 13.2 percent from the maximum load of Specimen F1.
Beyond this stage, the deflection of the frame increased while
carrying virtually no additional load. As the deflection increased
further due to the loss of stiffness of the frame, column shorten-
ing caused the ram pressure to drop. Consequently, the column
loads decreased and the frame was in equilibrium state on the
unloading part of the load displacement curve. After load stage 18,
yield lines occurred extensively on the interior column between

the midlength and the strain gage location on the compression side
as well as at a distance of 24 in. from the north joint. The
yielded zone at the midlength region of the interior column pene-
trated about 2 in. from the flange tip. Figure 4.14 shows the
yielded portion near one of the strain gage stations on the interior
column. Yield lines on the exterior columns were rather symmetrical
but not as extensive as the interior column. It was observed that
as the ultimate load was approached the exterior columns moved in
opposite directions in the north-south (longitudinal) direction,
resulting in a racking-type action; this movement increased faster
beyond the ultimate load. The deflected shape of the interior
column was similar to that of Specimen Fl, being unsymmetrical with
respect to the midlength section. The frame was unloaded after

load stage 20.
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The moments in the member components of the frame are shown

in Figs. 4.15 and 4.16. These figures show the moments at the ends
and at the midlength of the columns and at the ends of the beams.
The moments at the locations of assumed symmetry are in good agree-
ment and the change’in moments occurred gradually as the loads
increased. The equilibrium of moments is checked at every joint
for all loading stages and the error is found to be within 8 per-
cent of the plastic moment capacity of the column. Figure 4.17a
and 4.17b shows the variation of the exterior joint rotationsof

the frame with axial loads. The change of the rotationsof the inte-

rior column joints andthe midlength section of all columns with
axial loads is shown in Fig. 4.17c and 4.17d. It may be seen that
for exterior columns, the joints at the north end rotate less

than the joints at the south end. This is attributed to the rack-
ing movement of the frame tending to satisfy the equilibrium condi-

tion. The exterior column on the left is moving longitudinally to

the south direction and the one on the right is moving northwards.
For the interior column, the north joint rotates less than the

south joint and in the opposite sense until the maximum load is
approached; this is also attributed to the racking motion of the
frame. At the maximum load and in the unloading range, the rota-
tion of the north joint changes to the same sense as that of the
south joint. This may be attributed to the switch in the mode shape

as yielding occurs when the axial load is high.

4.4.3 Specimen F3. 1In this specimen, 50 and 80 kip axial
loads were applied proportionally to the exterior and interior
columns, respectively, during this first loading stage. After this,
the column loads were to be kept constant while the lateral load
was applied to the structure. This scheme of loading simulates
the combined gravity and wind loading in real structures. For this

test, two end stops were set up at the north end of the exterior

columns to prevent excessive racking action of the frame as the
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load approached the ultimate condition. The initial deflection of
the columns was: left exterior column, 0.13 in. to the east; right
exterior column, 0.07 in. to the east; and interior column, 0.13 in.
to the west. The lateral load displacement characteristic of the
frame is shown in Fig. 4.18. Load stages 1 to 7 corresponded to
the proportiomal application of axial loads. At the end of load
stage 7, the loads on the exterior columns were 54.7 kips and 53.6
kips, a difference of 2 percent, while the interior column load

was 79.9 kips. After load stage 7, the axial loads were held con-
stant by manually controlling the hydraulic pumps while the lateral
load was applied. The deflection that is shown in Fig. 4.18 was
measured from the initial unloaded position of the midlength of
the columns. The initial behavior of the frame between load
stages 7 and 11 was elastic and the relationship between the lateral
load and the deflection was reasonably linear at low level of wind
load. First yielding occurred after load stage 12, at a distance
of 5 in. from both joints of the exterior columns. These yield
lines were localized and were probably due to residual stresses
arising from welding of the triangular plate to the pin. After
load stage 13, there were some slight yield lines at about 5 in.
from the south joint of the interior column; elsewhere the frame
appeared to remain elastic. Yield lines appeared within a distance
of 13 in. on either side of the midlength of the interior column
after load stage 14 and propagated along the length during load
stage 15. At the end of load stage 16, both exterior columns
started to yield along the midlength to a distance of 14 in. om
either side. There was relatively little yielding at all of the
joints except at the south joint of the interior column where early
yielding was observed. This was probably due to high localized
residual stresses. The maximum lateral load carried was 2.25 kips
and was reached after load stage 14. The deflection at the maximum

strength was 2.43 in., corresponding to a sway index (A/LC) of




83

0.019. The ratio of the load at the stage just before first
yielding (load stage 11) to the maximum load was 0.67. After the

maximum load was reached, the frame unloaded quickly, indicating

an instability type of failure. The deformed shape of the frame is
shown in Fig. 4.19, which appeared to be symmetrical. The frame

was unloaded after load stage 18. The unloading was carried out in
two steps. First, the lateral load was released and, second, the
axial loads on all columns were released. Figure 4.20 shows typical
yield lines at the south joint of the interior column at the end of

load stage 18.

The moments at the ends of the members and at the midlength
of all columns were plotted as a function of lateral load and are
shown in Figs. 4.21 and 4.22. It can be seen that the rate of
increase in moments with the wind load was larger for the loading
stages than for the unloading stages. The moments at the point of
symmetry in the beams were in very good agreement, while there was
some discrepancy in column moments. Generally, the equilibrium of
moments at the joints is checked to within 10 percent of the plastic
strength of the columns. Also, the axial load in the columns indi-
cated by strain gage data is in good agreement with that measured by

the load cells to within 10 percent.

4.5 Discussion of Test Results

4.5.1 Theoretical Analysis. A theoretical prediction of

the behavior of the test specimens was made using a computer pro-
gram, FRAME 99, for the inelastic analysis of planar steel frames
which was developed previouslylf8 This computer program accounts for
all the nonlinear effects due to material properties, support and
geometry changes, and inelastic unloading caused by strain reversals
in the inelastic ranges. The method of analysis which was the basis
for the computer program consists of an iterative nonlinear inelas-

tic member solution nested within an iterative nonlinear solution

wi |
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for the frame joint displacements using the tangent stiffness

technique., A member is divided into a series of discrete elements.
A cross section of the member consists of fibers in which the mate-
rial properties are characterized by independent stress-strain
relationships. Trial joint displacements are assumed and the struc-
ture is analyzed by the two-fold integration scheme until the
equilibrium, compatibility, and boundary conditions are satisfied.
The stability of the frames in this study is determined by
the limit load technique suggested by Oral.48 In this technique a

small value of sway deflection is assumed and the lateral load

required to produce this displacement is determined for several
trial values of gravity load. The critical value of gravity load §
is the one which requires no lateral load to produce the specified

sway displacement. Generally, the‘critical load is determined by ;
linear interpolation between the corresponding values of gravity :

load and lateral 1load.

For frames subjected to combined gravity and lateral loads,
the relationship between the lateral load and sway displacement

can be obtained directly for the loading portion of the response.

For the unloading portion, the computer program provides a deforma-
tion control option to establish the equilibrium position in this
region. A linear spring with very large stiffness is introduced at
a monitor joint in the direction of the required displacement. With
a specified value of deflection, the program can determine the
required load for 